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3 Relations, Orderings, and Functions

Our goal in this chapter is to discuss the basic properties of relations, orderings, and functions along with some
of their applications. We begin by examining the very general idea of a relation, which captures the idea of a
comparison between two objects. Second, we discuss equivalence relations, which generalize the concepts of equality
and modular congruence. Third, we examine partial and total orderings, which generalize the �order relations� of
subset (for sets), divisibility (for integers), and the natural ordering of the real numbers. Fourth, we construct
a formal de�nition for a function as a special type of relation, and then discuss various properties of functions
including injectivity, surjectivity, function composition, and inverse functions. Finally, we close with a discussion of
cardinality, focusing in particular on how the notion of countability allows us (rather unexpectedly!) to show that
there are many di�erent sizes of in�nite sets.

3.1 Relations

• The idea of a relation is quite simple, and generalizes the idea of a comparison between two objects. Here are
some familiar examples of relations that we have already discussed at length:

◦ The subset relation ⊆ on a pair of sets.

◦ The order relations ≤ and < and ≥ and > on a pair of integers (or rational numbers, or real numbers).

◦ The containment relation ∈ on an element and a set.
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◦ The divisibility relation | on a pair of integers.

◦ The mod-m congruence relation ≡ on a pair of integers.

• In each of these examples, the relation R captures some information about two objects, and the relation
statement aR b is a proposition that is either true or false.

◦ For example, 5 < 3 is a statement about the two numbers 5 and 3 (it is a false statement, of course).

◦ The order of the objects in the relation statement is quite clearly important: for example, 3|6 is true
while 6|3 is false.

◦ Also, the objects in a relation statement need not be drawn from the same universe: in the containment
relation x ∈ A, for example, the object x can be anything, while the object A is a set.

• In order to describe a general relation R, then, we could simply list all of the ordered pairs (a, b) for which
the relation statement a R b is true. In fact, we will take this as the de�nition of a relation!

• De�nition: If A and B are sets, we say R is a relation from A to B, written R : A→ B, if R is a subset of the
Cartesian product A×B. For any a ∈ A and b ∈ B, we write a R b if the ordered pair (a, b) is an element of
R, and we write a 6R b if the ordered pair (a, b) is not an element of R.

◦ We think of the statement a R b as saying the ordered pair (a, b) satis�es the relation R, and we think
of a 6R b as saying the ordered pair (a, b) does not satisfy the relation R.

• We can recast all of the familiar relations we have encountered already in this language of Cartesian products.

• Example: The relation R =≤ on integers can be de�ned by taking R = {(a, b) ∈ Z×Z : b− a ∈ Z≥0}, which
is the set of ordered pairs (a, b) where b− a is a nonnegative integer.

◦ Under this de�nition, we see that 3 R 5 and 4 R 13 because 5−3 = 2 and 13−4 = 9 are both nonnegative
integers.

◦ On the other hand, 2 6R 0 because 0− 2 = −2 is not a nonnegative integer.

• Example: The divisibility relation R = | on integers can be de�ned by taking R = {(a, b) ∈ Z × Z : ∃k ∈
Z such that b = ka} = {(a, ka) : a, k ∈ Z}.

◦ Under this de�nition, we see that 3 R 6 and 4 R 20 because the ordered pairs (3, 6) = (3, 2 · 3) and
(4, 20) = (4, 5 · 4) are in the set described above.

◦ On the other hand, 2 6R 3 because (2, 3) is not in the set above.

• Example: The congruence relation R =≡m modulo m can be de�ned by taking R = {(a, b) ∈ Z × Z : ∃k ∈
Z such that b− a = km} = {(a, a+ km) : a, k ∈ Z}.

◦ Under this de�nition, if m = 5 we see that 3 R 18 and 4 R −6 because the ordered pairs (3, 18) =
(3, 3 + 3 · 5) and (4,−6) = (4, 4 + (−2) · 5) are in the set described above.

◦ On the other hand, 1 6R 3 because (1, 3) is not in the set above.

• Example: If A is any set, the identity relation is de�ned by taking R = {(a, a) : a ∈ A}. This is simply the
equality relation, in which a R b precisely when a and b are equal.

◦ Under this de�nition, if A = R for example, we see that 3 R 3 since (3, 3) is an element of the set R, but
1 6R 3 and 3 6R π since (1, 3) and (3, π) are not elements of R.

• There are many other things we can also describe using the language of relations.

◦ Example: The relation R = {(a, b) ∈ Z × Z : gcd(a, b) = 1} is the �is relatively prime� relation on
integers: we have a R b precisely when a and b are relatively prime.

◦ Example: The relation R = {(x, y) ∈ R × R : x2 = y} = {(y2, y) : y ∈ R} is the �is a square root of�
relation on real numbers: we have x R y precisely when x is a square root of y (i.e., when x2 = y).
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◦ Example: The relation R = {(x, y) ∈ R×R : x2 + y2 = 1} is the �lies on the unit circle� relation on real
numbers: we have x R y precisely when the point (x, y) satis�es the equation x2 + y2 = 1 (which is to
say, when the point lies on the unit circle).

◦ Example: The relation R = {(a, b) ∈ Z × Z : |b− a| = 1} is the �di�ers by 1� relation on integers: we
have a R b precisely when a and b di�er by 1.

• We can also simply write down arbitrary subsets of ordered pairs to obtain new relations:

• Example: If A = {1, 2, 3, 4} and B = {1, 3, 5, 7}, then some relations are as follows:

◦ The relation R1 = {(1, 1), (2, 3), (3, 5), (4, 7)} is a relation from A to B.

◦ The relation R2 = {(1, 1), (3, 2), (5, 3), (7, 4)} is a relation from B to A.

◦ The relation R3 = {(1, 4), (3, 2), (2, 1)} is a relation from A to A. (We say R3 is a relation on A.)

◦ The relation R4 = {(1, 3), (3, 1), (4, 3)} is a relation from A to A. It is also a relation from A to B.

◦ The relation R5 = {(7, 1), (7, 3)} is a relation from B to A. It is also a relation from B to B.

◦ The relation R6 = {(1, 1), (3, 3)} is a relation from A to A. It is also a relation from A to B, and from
B to A, and from B to B.

◦ The relation R7 = {(1, 1), (2, 7), (3, 5), (5, 4)} is a relation but it is not a relation on A or on B, or from
A to B, or from B to A.

◦ The empty relation R8 = ∅ is a relation from A to A, and also from A to B, and from B to A, and from
B to B.

• Since relations are merely subsets of a Cartesian product, we can apply any of our set operations to them.

◦ For example, if C is a subset of A and D is a subset of B, then if RA,B : A → B is a relation, we may
construct a new relation RC,D : C → D given by RC,D = RA,B ∩ (C × D); this relation is called the
restriction of R to C ×D.

◦ In the case where R is a relation on A and C is a subset of A, we call R ∩ (C × C) the restriction of R
to C, and denote it as R|C .

• Another useful construction is the inverse of a relation, obtained by reversing all of the ordered pairs:

• De�nition: If R : A → B is a relation, then the inverse relation (also sometimes called the converse relation
or the transpose relation) R−1 : B → A is de�ned as R−1 = {(b, a) : (a, b) ∈ R}, the relation on B × A
consisting of the reverses of all of the ordered pairs in R.

◦ Example: IfA = {1, 2, 3, 4} andB = {1, 3, 5, 7}, then the inverse of the relationR1 = {(1, 1), (2, 3), (3, 5), (5, 7)}
from A to B is the relation R−11 = {(1, 1), (3, 2), (5, 3), (7, 5)} from B to A.

◦ Example: If A = R, then the inverse of the relation R2 =≤ is R−12 =≥. This follows from the observation
that (a, b) ∈ R2 precisely when b − a is nonnegative, and therefore (b, a) ∈ R−12 precisely when b − a is
nonnegative (which is to say, when the �rst element of the ordered pair is greater than or equal to the
second element).

◦ If R : A→ B is any relation, then it is easy to see that (R−1)−1 = R, since if (a, b) ∈ R then (b, a) ∈ R−1
so (a, b) ∈ (R−1)−1, and vice versa.

• In practice, most of the time we do not explicitly work with the de�nition of a relation as a set of ordered
pairs.

◦ Instead, we think of a relation a R b as a true or false statement that captures some information about
a and b, and we usually work using the language of relations rather than subsets of Cartesian products.
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3.2 Equivalence Relations

• We now discuss relations that share similar properties to equality.

◦ We have already encountered one such relation, namely, modular congruence.

◦ The fundamental properties of equality and modular congruence that involve only properties of the
relation itself (and not other properties of arithmetic like addition or multiplication) are as follows: for
any a, b, c, we have (i) a = a, (ii) if a = b then b = a, and (iii) if a = b and b = c, then a = c.

3.2.1 De�nition and Examples

• We can easily give general de�nitions for each of these properties:

• De�nitions: If R : A → A is a relation on the set A, we say R is re�exive if a R a for all a ∈ A. We say R
is symmetric if a R b implies b R a for all a, b ∈ A. We say R is transitive if a R b and b R c together imply
a R c for all a, b, c ∈ A.

◦ In formal language, R is re�exive when ∀a ∈ A, a R a, while R is symmetric when ∀a ∈ A∀b ∈ A, (a R
b)⇒ (b R a), and R is transitive when ∀a ∈ A∀b ∈ A∀c ∈ A, [(a R b) ∧ (b R c)]⇒ (a R c).

• Here are some examples of relations that variously do and do not possess these three properties:

• Example: Suppose A = {1, 2, 3, 4}. Some relations on A are as follows:

◦ The identity relation R1 = {(1, 1), (2, 2), (3, 3), (4, 4)} is re�exive, symmetric, and transitive. More
generally, the identity relation on any set will always be re�exive, symmetric, and transitive.

◦ The relation R2 = {(1, 1), (2, 3), (3, 2)} is not re�exive because for example the ordered pair (2,2) is
not in R2. It is symmetric because the reverses of all ordered pairs in R2 are also in R2, but it is not
transitive because 2 R2 3 and 3 R2 2, but 2 6R2 2.

◦ The relation R3 = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (3, 3), (4, 2), (4, 4)} is easily seen to be re�exive and
symmetric since it contains all ordered pairs (a, a) and also contains the reverse of all its ordered pairs,
but it is not transitive because 1 R2 2 and 2 R2 4, but 1 6R2 4.

◦ The relation R4 = {(1, 2), (2, 4), (1, 4)} is not re�exive because for example it does not contain (1, 1). It
is also not symmetric because 1 R4 2 but 2 6R4 1. However, it is transitive since (observe) the only a, b, c
for which a R4 b and b R4 c are both true is a = 1, b = 2, and c = 4, and in such a case we also have
a R4 c.

◦ The relation R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}, the ≤ relation on
A, is clearly re�exive, but it is not symmetric because 1 R5 2 but 2 6R5 1. It is transitive, although
verifying this fact directly using the ordered pair de�nition is rather tedious.

◦ The relation R6 = {(1, 2), (2, 1)} is not re�exive and not transitive, but is symmetric.

◦ The relation R7 = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4)} is re�exive, transitive, and sym-
metric.

◦ The empty relation R8 = ∅ is not re�exive, but is symmetric because the conditional statement �for all
a, b ∈ A if a R8 b then b R8 a� is (vacuously) true because the hypothesis is always false. This relation
is also transitive, for the same reason.

• Example: The order relation ≤ on integers is re�exive and transitive but not symmetric.

◦ Recall that we de�ned a ≤ b to mean that b− a is a nonnegative integer, which is to say, an element of
the set {0, 1, 2, 3, 4, . . . }.
◦ Then the relation is re�exive because a ≤ a (because a−a = 0 is nonnegative), and it is transitive because
if a ≤ b and b ≤ c (meaning that b−a and c−b are nonnegative) then a ≤ c (because (c−b)+(b−a) = c−a
is nonnegative).

◦ However, the relation is not symmetric because for example 1 ≤ 2 but 2 6≤ 1.
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◦ Remark: The same properties hold for the order relation ≤ on rational numbers and real numbers as
well, along with the subset relation ⊆ on sets and the divisibility relation | on positive integers. We will
return to discuss the general idea of an �order relation� later.

• Example: The implication relation ⇒ on logical propositions, where we write P ⇒ Q when P implies Q, is
re�exive and transitive but not symmetric.

◦ Explicitly, the relation is re�exive because P ⇒ P for any P , and it is transitive because P ⇒ Q and
Q⇒ R together imply P ⇒ R as one may check with a truth table.

◦ However, the relation is not symmetric because P ⇒ Q is not the same as its converse Q⇒ P .

• Example: If m is any positive integer, the mod-m congruence relation ≡m on integers is re�exive, symmetric,
and transitive.

◦ Recall that we write a ≡ b (mod m) when m divides b − a. For the purposes of our discussion we will
abbreviate this statement as a ≡m b for consistency with our notation a R b for relations.

◦ We have (in fact) already shown that this relation is re�exive, symmetric, and transitive as part of our
discussion of properties of congruences.

◦ To summarize: a ≡ a (mod m) because m always divides a− a = 0, so ≡m is re�exive.

◦ Also, if a ≡ b (mod m) then b ≡ a (mod m): this follows because if m divides b− a then m also divides
−(b− a) = a− b, so ≡m is symmetric.

◦ Finally, if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m): this follows because if m divides
b− a and c− b then it also divides (c− b) + (b− a) = c− a, so ≡m is transitive.

• We now de�ne the general notion of an equivalence relation:

• De�nition: If R is a relation on the set A, we say R is an equivalence relation when it is re�exive, symmetric,
and transitive.

◦ Example: The identity relation on any set A is an equivalence relation. In particular, equality of integers,
equality of rational numbers, equality of real numbers, and equality of sets are all equivalence relations.

◦ Example: If m is any positive integer, the mod-m congruence relation ≡m on integers is an equivalence
relation.

◦ Non-Example: The subset relation ⊆ is not an equivalence relation since it is not symmetric.

◦ Example: The relation R7 = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4)} on A = {1, 2, 3, 4}
from above is an equivalence relation.

◦ Example: The relation of having the same birthday (on the set of people) is an equivalence relation:
everyone has the same birthday as themselves, if P has the same birthday as Q then Q has the same
birthday as P , and if P has the same birthday as Q and Q has the same birthday as R, then P has the
same birthday as R.

• Notation: It is very common to use a symbol like ∼ to represent an equivalence relation rather than the letter
R, simply because the letter R produces expressions that are harder to parse.

◦ In our discussion, we will continue to use the letter R because we are still examining basic properties of
equivalence relations.

3.2.2 Equivalence Classes

• We saw previously that the residue classes a modulo m had a number of fundamental properties. There is a
natural extension of this concept to a general equivalence relation:

• De�nition: If R is an equivalence relation on the set A, we de�ne the equivalence class of a as [a] = {b ∈ A :
a R b}, the set of all elements b ∈ A that are related to a via R.
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◦ Example: If R is the equality relation on the set A, the equivalence class [a] of the element a is simply
the set {a} containing a itself, since no other elements of A are related to a.

◦ Example: If R is the mod-m congruence relation on integers, the equivalence class [a] of the element a
is the residue class a = {b ∈ Z : a ≡ b (mod m)}. We saw earlier that these equivalence classes are [0],
[1], ... , [m− 1] and that every integer lies in exactly one of these equivalence classes.

◦ Example: Under the equivalence relation R7 = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4)} on
A = {1, 2, 3, 4}, the equivalence classes are [1] = {1, 4}, [2] = {2, 3}, [3] = {2, 3}, and [4] = {1, 4}. Notice
that there are two di�erent equivalence classes, namely [1] = [4] = {1, 4} and [2] = [3] = {2, 3}, and
every element of A lies in exactly one of these equivalence classes.

◦ Example: Under the equivalence relation �having the same birthday� on the set of people, the equivalence
class of any person [P ] is the set of all people having the same birthday as P . We may alternatively label
these equivalence classes by the shared birthday (e.g., January 1, January 2, ... , up through December
31), and from this description, we can see that there are exactly 366 equivalence classes (one for each
possible birthday, including February 29) and every person lies in exactly one of these equivalence classes
(namely, the one labeled with their birthday).

• Like with the residue classes modulo m, and as suggested by all of the examples above, we can establish some
basic properties of equivalence classes:

• Proposition (Properties of Equivalence Classes): Suppose R is an equivalence relation on the set A. Then

1. For any a ∈ A, a is an element of [a].

◦ Proof: Since R is re�exive, a R a, so by de�nition, a ∈ [a].

2. If a, b ∈ A, then [a] = [b] if and only if a R b.

◦ Proof: If [a] = [b], then since b ∈ [b] by (1) above, this means that b is contained in the residue class
[a], meaning that a R b by de�nition.

◦ Conversely, suppose a R b. If c is any element of the equivalence class [a], then by de�nition a R c,
and so by symmetry c R a.

◦ Hence by transitivity applied to c R a and a R b, we see c R b, or equivalently, b R c.

◦ Therefore, c is an element of the equivalence class [b]. But since c was arbitrary, this means that [a]
is a subset of [b].

◦ By the same argument with a and b interchanged, we see that [b] is also a subset of [a], and thus
[a] = [b].

3. Two equivalence classes of R on A are either disjoint or identical.

◦ Proof: Suppose that [a] and [b] are two equivalence classes of R. If they are disjoint, we are done,
so suppose there is some c contained in both: then a R c and also b R c.

◦ By symmetry, b R c implies c R b, and then by transitivity, we conclude that a R b. Then by
property (2), we conclude [a] = [b].

◦ Hence the two equivalence classes [a] and [b] are either disjoint or identical, as claimed.

4. There is a unique equivalence class of R on A containing a, namely, [a].

◦ Proof: Clearly [a] is an equivalence class of R containing a by property (1) above.

◦ On the other hand, by property (3), any other equivalence class containing a must equal [a], so in
fact, [a] is the unique equivalence class of R containing a.

• From the results in the proposition, we can see that the equivalence classes are nonempty, pairwise disjoint
subsets of A whose union is A. This particular situation is given a name:

• De�nition: If A is a set, a partition P of A is a family of nonempty, pairwise disjoint sets whose union is A.
The sets in P are called parts of the partition.

◦ Example: The sets {1, 5} and {2, 3, 4} yield a partition of {1, 2, 3, 4, 5}; explicitly, we could write P =
{{1, 5}, {2, 3, 4}}.
◦ Example: The sets {1}, {2, 3}, {4, 5} yield a di�erent partition of {1, 2, 3, 4, 5}, as do the sets {1}, {2},
{3}, {4, 5}.
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◦ Non-Example: The sets {1, 2}, {3, 4}, and {4, 5} do not form a partition of {1, 2, 3, 4, 5} because the sets
are not pairwise disjoint: speci�cally, {3, 4} and {4, 5} have the element 4 in common.

◦ Non-Example: The sets {1, 2, 3} and {5} do not form a partition of {1, 2, 3, 4, 5} because the union of
the sets is not all of {1, 2, 3, 4, 5}: the element 4 is missing.

◦ Example: The sets Z+ = {1, 2, 3, . . . }, {0}, and Z− = {−1,−2,−3, . . . } yield a partition of the integers.

• Our results above show that if R is any equivalence relation on a set A, then the equivalence classes of R yield
a partition of A. In fact, the converse of this statement is also true: if we have a partition of A, then it arises
as the equivalence classes of an equivalence relation on A.

◦ To illustrate the idea, consider the partition P = {{1, 5}, {2, 3, 4}} of {1, 2, 3, 4, 5}, and suppose we had
an equivalence relation R with these equivalence classes {1, 5} and {2, 3, 4}.

◦ Then R must contain the ordered pairs (1, 1), (2, 2), (3, 3), (4, 4), and (5, 5) since it is re�exive.

◦ Also, R must also contain the pairs (1, 5) and (5, 1) because 1 and 5 are supposed to lie in the same
equivalence class {1, 5}, and likewise R must contain all of the pairs (2, 3), (2, 4), (3, 2), (3, 4), (4, 2), and
(4, 3) because 2, 3, and 4 all lie in the same equivalence class.

◦ On the other hand, R cannot contain any other pairs than the ones we have listed, because the only
remaining ordered pairs involve elements from di�erent parts of the partition, and we cannot include any
of those ordered pairs because those elements are required to lie in di�erent equivalence classes.

◦ So the only choice isR = {(1, 1), (1, 5), (5, 1), (5, 5), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}.
◦ Notice here that R is the union of the Cartesian products {1, 5} × {1, 5} and {2, 3, 4} × {2, 3, 4} of the
underlying parts of the partition. From this description, it is quite easy to see that this relation R is
indeed an equivalence relation whose equivalence classes are {1, 5} and {2, 3, 4}.

◦ Based on this example, we need only collect the important details of this construction and verify that
they do work in general.

• Theorem (Equivalence Relations and Partitions): Let A be a set. If R is any equivalence relation on A, then
the equivalence classes of R form a partition P of A. Conversely, if P is a partition of A, then there exists
a unique equivalence relation R on A whose equivalence classes are the sets in P, namely, the equivalence
relation R =

⋃
X∈P(X × X) consisting of all ordered pairs of elements that are in the same part X of the

partition P.

◦ Intuitively, the relation R is de�ned by saying that a R b when a and b are in the same part of the
partition. The choice R =

⋃
X∈P X ×X is simply a formalization of this idea.

◦ Proof: The �rst statement was shown above, so now suppose P is a partition of A.

◦ De�ne the relation R =
⋃
X∈P X × X consisting of all ordered pairs of elements that are in the same

part X of the partition P: we must show that this R is an equivalence relation and that its equivalence
classes are the parts of P.
◦ First, R is re�exive: for any a ∈ A, by the de�nition of a partition we must have a ∈ X for some X ∈ P.
Then the ordered pair (a, a) is an element of X ×X, as required.

◦ Second, R is symmetric: if (a, b) ∈ R, then by the de�nition of R as a union, we must have (a, b) ∈ X×X
for some X ∈ P. This means a ∈ X and b ∈ X: then (b, a) ∈ X ×X also, and so (b, a) ∈ R.
◦ Third, R is transitive: if (a, b) ∈ R and (b, c) ∈ R, then we must have (a, b) ∈ X ×X and (b, c) ∈ Y × Y
for some X,Y ∈ P. This means a ∈ X and b ∈ X, and also b ∈ Y and c ∈ Y . Because P is a partition,
since b ∈ X and b ∈ Y we must have X = Y . Then a ∈ X and also c ∈ X, so (a, c) ∈ X × X and so
(a, c) ∈ R.
◦ Hence R is an equivalence relation.

◦ Now let a ∈ A and consider the equivalence class [a] of a. Since P is a partition, a ∈ X for a unique
X ∈ P. We claim that [a] = X.

◦ To see this, if b ∈ X, we have (a, b) ∈ X × X hence (a, b) ∈ R hence a R b hence b ∈ [a]. This shows
X ⊆ [a].
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◦ For the other containment, if b ∈ [a] then a R b so that (a, b) ∈ R. By the de�nition of R as a union,
this requires (a, b) ∈ Y × Y for some y ∈ P where a ∈ Y and b ∈ Y . Since a ∈ X we must have Y = X,
so we see b ∈ X. This shows [a] ⊆ X, so [a] = X as claimed.

◦ We conclude that the equivalence classes of R are the same as the parts of P, as required.
◦ Finally, for uniqueness, if S is another relation with the same property, then for each X ∈ P, the relation
S must contain X ×X, hence must contain R =

⋃
X∈P X ×X.

◦ If S contained any additional ordered pairs, then such an ordered pair would contain elements from two
di�erent parts X and Y of the partition, but then X ∪ Y would be contained in an equivalence class of
S, contrary to hypothesis. Hence we must have S = R, so R is unique as claimed.

• From the theorem above, we obtain another way to verify that a relation is an equivalence relation, namely,
by checking whether it is obtained from a partition.

• We �nish our discussion of equivalence relations by discussing the construction of the rational numbers Q in
terms of equivalence classes.

◦ The rational numbers consist of fractions of the form a/b where a is an integer and b is a nonzero integer,
together with the fundamental operations of addition and multiplication, which work via a/b + c/d =
(ad+ bc)/(bd) and a/b · c/d = (ac)/(bd).

◦ However, we must also deal with the fact that there are many equivalent ways of writing the same rational
number: for example, 1/2 = 2/4 = 1000/2000 = (−5)/(−10).

◦ We can accommodate all of by describing rational numbers in the language of equivalence relations: since
a/b = c/d is equivalent to ad = bc, we can use this as our starting point.

• Proposition (Construction of Q): Let S = Z×Z6=0 be the set of ordered pairs (a, b) of integers with b 6= 0 and
de�ne the relation ∼ by saying (a, b) ∼ (c, d) precisely when ad = bc. Then the following hold:

1. The relation ∼ is an equivalence relation on S.

◦ Proof: First, ∼ is re�exive: clearly we have (a, b) ∼ (a, b) because ab = ab.

◦ Second, ∼ is symmetric: clearly we have (a, b) ∼ (b, a) because ab = ba.

◦ Third, ∼ is transitive: if (a, b) ∼ (c, d) and (c, d) ∼ (e, f), then we know ad − bc = 0 and also
cf − de = 0. Then we see d(af − be) = f(ad− bc) + b(cf − de) = f · 0 + b · 0 = 0.

◦ Then since d 6= 0 since it is a second coordinate, this means af − be = 0 so af = be, and thus
(a, b) ∼ (e, f) as required.

If a, b are integers with b 6= 0, we now think of a/b as being the equivalence class [(a, b)]. We de�ne addition
and multiplication on equivalence classes by [(a, b)] + [(c, d)] = [(ad+ bc, bd)] and [(a, b)] · [(c, d)] = [(ac, bd)].

2. Addition and multiplication of residue classes are well-de�ned, in the sense that if (a, b) ∼ (a′, b′) and
(c, d) ∼ (c′, d′), then (ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′) and (ac, bd) ∼ (a′c′, b′d′).

◦ Proof: Suppose (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), meaning that ab′ = a′b and cd′ = c′d.

◦ First, to show (ad+bc, bd) ∼ (a′d′+b′c′, b′d′), by de�nition we need (ad+bc)(b′d′) = (bd)(a′d′+b′c′).

◦ Then using ab′ = a′b and cd′ = c′d, we can write (ad+ bc)(b′d′) = ab′dd′ + cd′bb′ = a′bdd′ + c′dbb′ =
(bd)(a′d′ + b′c′), as required.

◦ Second, to show (ac, bd) ∼ (a′c′, b′d′), by de�nition we need (ac)(b′d′) = (bd)(a′c′).

◦ Using ab′ = a′b and cd′ = c′d then gives (ac)(b′d′) = (ab′)(cd′) = (a′b)(c′d) = (bd)(a′c′), as required.

3. Addition is associative, commutative, possesses an identity [(0, 1)], and every element [(a, b)] has an
additive inverse [(−a, b)].
◦ Proof: Each of these follows by writing out the corresponding property and checking that the two
quantities are equivalent under ∼.
◦ Associative: We have ([(a, b)] + [(c, d)]) + [(e, f)] = [(ad+ bc, bd)] + [(e, f)] = [(adf + bcf)+ bde, bdf)]
while [(a, b)] + ([(c, d)] + [(e, f)]) = [(a, b)] + [(cf + de, df)] = [(adf + (bcf + bde), bdf)], which is the
same because the integers (adf + bcf) + bde and adf + (bcf + bde) are equal.
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◦ Commutative: We have [(a, b)] + [(c, d)] = [(ad+ bc, bd)] and [(c, d)] + [(a, b)] = [(cb+ da, db)], which
are the same since ad+ bc = cb+ da and bd = db.

◦ Identity: We have [(a, b)] + [(0, 1)] = [(a · 1 + b · 0, b · 1)] = [(a, b)].

◦ Inverses: We have [(a, b)] + [(−a, b)] = [(a · b + (−a) · b, b · b)] = [(0, b2)]. But (0, b2) ∼ (0, 1) so
[(0, b2)] = [(0, 1)] which is the additive identity.

4. Multiplication is commutative, associative, possesses an identity [(1, 1)], every element [(a, b)] 6= [(0, 1)]
has a multiplicative inverse [(b, a)], and distributes over addition.

◦ Proof: These all follow similarly to (3).

◦ Associative: We have ([(a, b)] · [(c, d)]) · [(e, f)] = [(ac, bd)] · [(e, f)] = [(ace, bdf)] = [(a, b)] · [(ce, df)] =
[(a, b)] · ([(c, d)] · [(e, f)]).
◦ Commutative: We have [(a, b)] · [(c, d)] = [(ac, bd)] = [(ca, db)] = [(c, d)] · [(a, b)].
◦ Identity: We have [(a, b)] · [(1, 1)] = [(a · 1, b · 1)] = [(a, b)].

◦ Inverses: We have [(a, b)] · [(b, a)] = [(ab, ab)]. But (ab, ab) ∼ (1, 1) so [(ab, ab)] = [(1, 1)] which is the
multiplicative identity.

◦ Finally, for the distributive law we simply multiply out like above: [(a, b)] · ([(c, d)] + [(e, f)]) =
[(a, b)] · [(cf + de, df)] = [(acf + ade, bdf)], and also [(a, b)] · [(c, d)] + [(a, b)] · [(e, f)] = [(ac, bd)] +
[(ae, bf)] = [(abcf + abde, b2df)].

◦ Then since (acf + ade, bdf) ∼ (abcd+ abde, b2df), the corresponding equivalence classes are equal.

5. The set Q of equivalence classes [(a, b)] in S forms a �eld under the operations + and ·.
◦ Proof: This is just a rephrasing of (3) and (4) put together.

• As a �nal example, we can also formalize the construction of vectors (often simply described as �arrows�,
where any two arrows that have the same length and point in the same direction are considered equivalent)
using equivalence classes, as follows:

• Example (Vectors): A directed line segment in the plane (or 3-space) is given by drawing an arrow from its
starting point P to its ending point Q.

◦ Let R be the relation of translation (on the set of directed line segments): we write S1 R S2 if the
directed line segment S1 can be translated to obtain the directed line segment S2.

◦ It is easy to see from this geometric description that R is an equivalence relation. The equivalence classes
of directed line segments under R are called vectors.

◦ Because there is a unique element in each equivalence class whose starting point is the origin, we may
label each equivalence class with the endpoint of this unique vector. Thus, for example, the vector 〈1, 2〉
is the equivalence class of directed line segments, one of which starts at the origin (0, 0) and ends at the
point (1, 2). Another directed segment in the same equivalence class 〈1, 2〉 is the vector starting at (5, 0)
and ending at (6, 2).

3.3 Orderings

• We now discuss relations that generalize the properties of the order relation ≤ on real numbers (and also
rational numbers and integers) and the subset relation ⊆ on sets.

3.3.1 Partial and Total Orderings

• As we have already seen, both relations ≤ and ⊆ satisfy some of the properties of an equivalence relation:
speci�cally, they are both re�exive and transitive.

◦ However, neither of these relations is symmetric: in fact, the only time when a ≤ b and b ≤ a are both
true is when a = b; similarly, the only time when A ⊆ B and B ⊆ A are both true is when A = B.

◦ This latter property is (almost) the opposite of being symmetric, and is given a name accordingly:

• De�nition: If R is a relation on the set A, then R is antisymmetric when a R b and b R a together imply
a = b.
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◦ In formal language, R is antisymmetric when ∀a ∈ A ∀b ∈ B, [(a R b) ∧ (b R a)]⇒ (a = b).

◦ Example: The order relation ≤ on real numbers is antisymmetric, because a ≤ b and b ≤ a implies a = b.
(In fact, these are equivalent.)

◦ Example: The subset relation ⊆ on sets is antisymmetric, because A ⊆ B and B ⊆ A implies A = B.
(In fact, these are equivalent.)

◦ Example: The identity relation R on A is antisymmetric, since the only time that a R b is true is when
a = b.

◦ Notice that the identity relation on A is both symmetric and antisymmetric. In particular, despite what
may be suggested by the terminology, �antisymmetric� does not mean the same thing as �not symmetric�,
and �symmetric� does not mean the same thing as �not antisymmetric�.

• Both of these relations involve the idea of one object being �at least as big� as another, so we would like to
�nd a way to describe this concept in the abstract language of relations.

◦ If R is a generic relation in which a R b means that b is at least as big as a, then certainly we should
demand that a R a so that R is re�exive (since a is at least as big as itself).

◦ We would also want R to be transitive, since if c is at least as big as b and b is at least as big as a, then
c should be at least as big as a.

◦ Finally, antisymmetry is also a natural condition: the only situation in which we would like b to be at
least as big as a and a to be at least as big as b is when a = b.

◦ These are the conditions we will require for an order relation.

• De�nition: The relation R on a set A is called a partial ordering of A (or partial order on A) if R is re�exive,
antisymmetric, and transitive.

◦ Example: The less-than-or-equal-to relation ≤ on real numbers (or rational numbers, or integers) is a
partial ordering, as is the subset relation ⊆ on sets. In each case we can view the relation x ≤ y as
expressing the idea that y is �at least as big� as x.

◦ Example: The greater-than-or-equal-to relation ≥ on real numbers (or rational numbers, or integers) is
also a partial ordering. Although this may seem strange at �rst, we can think of this relation x ≥ y,
which is the inverse relation of x ≤ y, as capturing the idea that y is �at least as small� as x, in parallel
to how x ≤ y captures the idea that y is �at least as big� as x.

◦ Example: The relation R9 = {(1, 1), (1, 2), (2, 2), (3, 3), (3, 4), (4, 4)} on the set {1, 2, 3, 4} is a partial
ordering. It is easy to see that R9 is re�exive (it contains all pairs (a, a)) and antisymmetric (it does not
contain both (a, b) and (b, a) for any a 6= b), and it is a straightforward check to see it is also transitive.

◦ Non-Example: The divisibility relation | on the set of all integers is not a partial ordering: although it
is re�exive and transitive, it is not antisymmetric because for example 1|(−1) and (−1)|1, but −1 6= 1.

◦ Example: The divisibility relation | on the set of positive integers is a partial ordering: it is re�exive and
transitive, and is also symmetric because if a and b are positive with a|b and b|a, then a = b (since a|b
implies a ≤ b for a, b positive, so a|b and b|a give a ≤ b and b ≤ a so that a = b).

◦ It is not hard to see that if S is a subset of A, then the restriction of a partial ordering on A to S yields
a partial ordering on S. Hence, for example, the divisibility relation | is also a partial ordering on the
set of positive even integers.

• Example: Show that the relation R10 is a partial ordering on all �nite strings of digits, where a R10 b when
the string b contains the string a (consecutively, in the same order) somewhere inside of it.

◦ To illustrate this relation, note that 123 R10 412390 because the second string contains the �rst one (as
its second through fourth digits) but 123 6R10 31213 because the second string does not have �123� in it
anywhere.

◦ This relation is re�exive (any string contains itself), antisymmetric (if two strings each contain one other,
they would have to be the same length and identical), and transitive (if c contains b and b contains a,
then c contains a since a is located inside the string for b). Hence it is a partial ordering, as claimed.
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◦ Remark: Interestingly, this relation is not a partial ordering if we allow in�nite strings of digits, since
it is no longer antisymmetric: for example, the alternating strings 12121212 . . . and 21212121 . . . each
contain the other, but they are not equal.

• We use the term �partial ordering� because a partial order on A gives us a way of comparing some, but not
necessarily all, pairs of elements of A.

◦ For example, if R is the subset relation, then for A = {1, 2} and B = {3}, we cannot compare A to B
using R, because A 6⊆ B and also B 6⊆ A.
◦ If R is the divisibility relation on positive integers, then we cannot compare 2 to 3, since 2 - 3 and 3 - 2.
◦ Likewise, for the relation R9 on {1, 2, 3, 4} we cannot compare 1 to 3, because neither of the ordered
pairs (1, 3) and (3, 1) is in R9.

◦ Similarly, for the relation R10 on strings of digits, we cannot compare 123 to 4567, because neither string
contains the other.

◦ However, for some of the order relations we have listed, it is possible to compare any two elements in
the set: for example, for any two real numbers a and b, it is true that either a ≤ b or b ≤ a (or both, in
which case a = b).

◦ This situation is important enough that we give it a name:

• De�nition: If R is a partial ordering on A such that for any a, b ∈ A at least one of a R b and b R a is true1,
we call R a total ordering (or linear ordering) on A.

◦ Example: The order relation ≤ on real numbers (or rational numbers, or integers) is a total ordering.

◦ Example: The standard dictionary ordering on the letters of the alphabet (namely: a, b, c, ... , z) where
we write L1 ≤ L2 if L2 is after L1 in the alphabet, is a total ordering.

◦ Example: The divisibility relation on the set {1, 2, 4, 8, 16, . . . } of powers of 2 is a total ordering, since it
is clearly a partial ordering, and for any two powers of 2, one of them must divide the other.

• Notice that if R is a total ordering then since R is antisymmetric, we see that for any a, b with a 6= b, exactly
one of a R b and b R a is true.

◦ Thus, we may think of R as allowing us to compare any two unequal elements of A to identify which one
is �bigger�.

◦ Given a total ordering, we can also imagine arranging all of the elements of A �in order� along a line
(whence the name linear ordering); indeed, for the ordering ≤ on the real numbers, this is precisely the
so-called �number line�.

◦ Like with partial orderings, the restriction of a total ordering to a subset S of A is a total ordering on S.

• Notation: Because partial orderings behave so much like the ≤ relation on real numbers, it is very common
to use a similar symbol, such as �, or even just the ≤ symbol itself, to represent a generic partial ordering.

◦ In our discussion, we will continue to use the letter R because we are still examining basic properties of
orderings.

3.3.2 Smallest, Largest, Minimal, and Maximal Elements

• In many contexts when we are working with partial orderings, important properties are often attached to
extremal elements (i.e., elements that are the largest, or smallest, with respect to the ordering).

◦ For example, the greatest common divisor of two integers is (per its name) the greatest integer d such
that d|a and d|b.
◦ Similarly, the union of two subsets A and B is the smallest set C such that A ⊆ C and B ⊆ C.

1For a general relation R, the condition that a R b or b R a is true is called the connex property.
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• We can make these notions precise as follows:

• De�nition: If R is a partial ordering on a set A, we say that an element x ∈ A is a smallest element (or
least element) of A with respect to R when x R a for all a ∈ A. We say x ∈ R is a largest element (or
greatest element) of A with respect to R if a R x for all a ∈ A.

◦ When the relation R is clear from the context, we usually refer to these elements just as the �smallest
element of A� or �largest element of A�, respectively. Also, as we will show shortly, a smallest element
(or largest element) is necessarily unique, so we may refer to the smallest element rather than merely a

smallest element.

◦ Example: If U is a universal set and R is the subset relation on P(U), the smallest element of P(U) is
the empty set ∅ and the largest element of P(U) is U itself.

◦ Example: If A = {1, 2, 5, 10}and R is the divisibility relation, the smallest element of A is 1 and the
largest element of A is 10.

◦ Smallest and largest elements need not exist with respect to a partial or even a total ordering:

◦ Example: If A = {2, 3, 4, 5, 6, 7} and R is the divisibility relation, then A has no smallest element since
no element in A divides all elements in A, and also A has no largest element since no element of A is
divisible by all elements in A.

◦ Example: If A is the set of positive integers and R is the total ordering ≤, the smallest element of A is
1, but there is no largest element of A. (No integer n is largest, since n+ 1 is always larger.)

◦ Example: If A is the set of positive real numbers and R is the total ordering ≤, then A has no smallest
element and no largest element. (No positive real number a can be smallest or largest, since a/2 is always
smaller and 2a is always larger.)

• Closely related to smallest and largest elements are minimal and maximal elements:

• De�nition: If R is a partial ordering on a set A, we say that an element x ∈ A is a minimal element of A with
respect to R (or just minimal) when y R x implies y = x, and we say x ∈ A is a maximal element of A with
respect to R (or just maximal) when x R y implies y = x.

◦ The idea is that a minimal element has no other elements below it, while a maximal element has no other
elements above it, with respect to the ordering.

◦ Example: If U is a universal set and R is the subset relation on P(U), the empty set ∅ is the only
minimal element, and U is the only maximal element. A nonempty set is not minimal since the empty
set is always contained in it, while a proper subset of U is not maximal since it is always contained in U .

◦ As we will prove in a moment, smallest elements are always minimal and largest elements are always
maximal, but minimal elements need not be smallest and maximal elements need not be largest.

◦ Example: If A = {2, 3, 4, 5, 6, 7} and R is the divisibility relation, then 2, 3, and 5 are all minimal
elements, since no other element of A divides any of them. Also, the elements 4, 5, 6, and 7 are all
maximal elements, since they do not divide any other element of A. Note in particular that 5 is both
minimal and maximal.

◦ Example: If A is the collection of subsets of {2, 3, 4, 5, 6, 7} that contain 2 or contain 3 but do not contain
both 6 and 7, and R is the subset relation, then {2} and {3} are both minimal elements, since no other
element of A is a subset of either one. Also, the sets {2, 3, 4, 5, 6} and {2, 3, 4, 5, 7} are both maximal,
since no other element of A contains either one.

◦ Minimal and maximal elements also need not exist at all, even for total orderings:

◦ Example: If A is the set of positive integers and R is the total ordering ≤, then 1 is the only minimal
element of A, and there is no maximal element of A. (No integer n can be maximal, since n+1 is always
larger.)

◦ Example: If A is the set of positive real numbers and R is the total ordering ≤, then A has no minimal
element and no maximal element. (No positive real number r can be minimal or maximal, since r/2 is
always smaller and 2r is always larger.)

• We have various properties of smallest, largest, minimal, and maximal elements:
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• Proposition (Properties of Extremal Elements): Suppose R is a partial ordering on a set A. Then the following
hold:

1. There is at most one smallest element of A and at most one largest element of A.

◦ Proof: Suppose x and y are both smallest elements of A. Then x R y (since x is smallest) and y R x
(since y is smallest), hence by antisymmetry x = y.

◦ A very similar argument holds for largest elements.

2. If A is �nite and nonempty, then A has at least one minimal element and at least one maximal element.

◦ Proof: Induct on the number of elements n of A. The base case n = 1 is trivial, since if A = {x}
then x is both minimal and maximal.

◦ For the inductive step, suppose that n ≥ 2 and any partial ordering on a set with n elements has a
minimal element and a maximal element, and let A = {x1, . . . , xn, xn+1} have n+ 1 elements.

◦ Consider the relation R′ given by restricting R to A′ = {x1, . . . , xn}. By the inductive hypothesis,
there is some element y ∈ A′ that is minimal in A′ under R′, meaning that the only element xi with
1 ≤ i ≤ n with xi R y is y itself.

◦ Now consider xn+1. If xn+1 6R y then y is minimal in A, since now the only element xi with
1 ≤ i ≤ n+ 1 with xi R y is y itself.

◦ Otherwise, if xn+1 R y then we claim xn+1 is minimal in A. To see this suppose there were some
z 6= xn+1 with z R xn+1: then by transitivity we would have z R y, but this is impossible because
z ∈ A′ and y is minimal in A′ and thus z = y, but then xn+1 R y and z R xn+1 together would
imply y = xn+1, which is impossible because y ∈ A′ and xn+1 6∈ A′.

◦ Thus we see in either case that A has a minimal element. By a similar argument A also has a
maximal element, and so the result holds for all �nite sets by induction.

3. If A is �nite and nonempty and R is a total ordering, then A has a unique smallest element and a unique
largest element.

◦ Proof: The existence of these elements follows by an argument similar to (2), while the uniqueness
follows from (1).

4. If x ∈ A is smallest then x is the unique minimal element of A, and if x ∈ A is largest then x is the
unique maximal element of A.

◦ Proof: Suppose x is a smallest element of A. Then x is minimal because if y R x then since x is
smallest we also have x R y so by antisymmetry we would have y = x.

◦ Additionally, if z is some other minimal element, then since x is smallest we have x R z, but since z
is minimal this implies z = x: thus, x is the unique minimal element.

◦ A similar argument (with all of the directions reversed) establishes the corresponding result for
largest elements.

5. If R is a total ordering and x ∈ A is a minimal element of A, then x is the smallest element of A.
Likewise, if x ∈ A is a maximal element of A, then x is the largest element of A. In particular, a total
ordering has at most one minimal element and one maximal element.

◦ Proof: Suppose R is a total ordering and x is minimal. Then for any y ∈ A we either have y R x or
x R y.

◦ But since x is minimal, y R x can only happen when y = x. So, if y 6= x we must have x R y,
meaning that x is the smallest element of A.

◦ A similar argument establishes the corresponding result for maximal and largest elements. The last
statement then follows immediately from (1).

• We remark that item (5) in the proposition above is essentially the converse of item (4) � if x is a unique
minimal element of A then x is the smallest element of A � but it has an extra hypothesis: namely, that R is
a total ordering.

◦ In fact this extra hypothesis is necessary, although it is not so easy to write down a counterexample (i.e.,
a set with a minimal element but no smallest element) since (3) implies such a set A must be in�nite.
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◦ Here is a partial ordering with a unique minimal element but no smallest element: take A to be the
set of positive real numbers along with an extra number �x� under the usual ordering ≤, where we also
declare x ≤ x but otherwise x is not comparable to any of the positive real numbers. Then x is the
unique minimal element of A (since y ≤ x is only true when y = x) but x is not the smallest element of
A, since for example x 6≤ 1.

• We close our discussion here with some examples of smallest, largest, minimal, and maximal elements that
are of concrete interest.

◦ Example: If A is the set of positive common divisors of two positive integers a and b and R is the
divisibility relation, the largest element of A under R is the greatest common divisor gcd(a, b).

◦ Example: If A is the set of positive common multiples of two positive integers a and b and R is the
divisibility relation, the smallest element of A under R is the least common multiple lcm(a, b).

◦ Example: If F is the collection of sets that are simultaneously subsets of the sets B and C, and R is the
subset relation, the largest element of F under R is the intersection B ∩ C.
◦ Example: If F is the collection of sets each containing all of the elements of the two sets B and C, and
R is the subset relation, the smallest element of F under R is the union B ∪ C.
◦ Example: If A is the set of real numbers of the form x2 for some x ∈ R, and R is the relation ≤, then
the smallest element of A is the number 0. (We usually express this statement in this simpler form: if
x ∈ R then x2 ≥ 0. This seemingly trivial inequality has surprisingly many applications in establishing
other inequalities.)

3.4 Functions

• We now discuss how to formalize the idea of a function using the language of relations.

3.4.1 De�nition and Examples

• The idea of a function is already quite familiar: to each element of its domain, a function f associates a unique
value in its range.

◦ More explicitly, we write f(a) = b to indicate that the value of f at the element a is equal to b.

◦ We can then view f as a relation by saying that f(a) = b precisely when (a, b) ∈ f .
◦ The requirement that f is de�ned on every element of its domain means that for all a ∈ A, where A
is the domain of f , there exists some value b in some other set B such that (a, b) ∈ f . Furthermore,
because f is well-de�ned, there is only one such element b.

◦ We can summarize all of this as follows:

• De�nition: If A and B are sets, a function (or map) from A to B is a relation f : A→ B such that for every
a ∈ A there exists a unique b ∈ B with (a, b) ∈ f , and in such an event we write f(a) = b. The set A is called
the domain of f and the set B is called the target (or codomain) of f .

◦ We emphasize that the domain and target are part of the de�nition of a function. Two functions are
equal when their domains are equal, their targets are equal, and their underlying sets of ordered pairs
are equal.

◦ Example: Some functions from {1, 2, 3, 4} to {1, 2, 3, 4} are f1 = {(1, 2), (2, 3), (3, 1), (4, 4)}, f2 =
{(1, 1), (2, 3), (3, 2), (4, 2)}, and f3 = {(1, 4), (2, 3), (3, 2), (4, 1)}. We have, for example, f1(1) = 2,
f1(3) = 1, f2(4) = 2, and f3(1) = 4.

◦ Example: One function from {a, b, c} to {31, 37} is given by f = {(a, 31), (b, 31), (c, 37)}. For this
function, f(a) = 31, f(b) = 31, and f(c) = 37.

◦ Non-Example: The relation R : {1, 2, 3} → {1, 2, 3, 4} given by R = {(1, 1), (1, 2), (2, 2), (3, 1)} is not
a function because it is not well-de�ned on the element 1 (since it contains the ordered pairs (1, 1) and
(1, 2)).
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◦ Example: If T is the set of triangles in the Cartesian plane, then there is a function f4 : T → R where
f4(4) is the area of the triangle 4. Every triangle has a well-de�ned area, and this area is an element
of the target set R.
◦ Example: If S is the set of integers greater than 1, then there is a function f5 : S → Z where f5(n) is
the smallest prime number dividing n. For example, we have f5(100) = 2 and f5(33) = 3.

◦ Example: If A is the set of all capital cities and B is the set of all countries, then there is a function
l : A → B where l(C) is the country of which C is the capital. (In order for this to be a well-de�ned
function, we observe that no city is the capital of more than one country.)

◦ Example: If A is any set, the identity function iA : A→ A is the function with iA(a) = a for all a ∈ A.
Note that this de�nition is still well-posed when A is the empty set: in this case iA is the empty function
consisting of no ordered pairs at all.

◦ Non-Example: If S is the set of all people, then the relation R : S → S, consisting of all ordered pairs
(P,Q) where P is a parent of Q, is not a function: there exist some people P that are the parent of more
than one person, and for such people there is not a unique value to call R(P ).

◦ Example: If S is the set of all people, consider the relation R : S → P(S) consisting of all ordered pairs
(P,Q) where Q is the set of all children of P . Then R is a function, because to each person in S there
is associated a unique element of P(S), namely, the set of all children of P . This set may be empty or
contain more than one person, but in all cases it is well-de�ned and unique.

• Many functions (and most of the functions we typically work with) can be de�ned by a general rule or
description, such as the function f3 : {1, 2, 3, 4} → {1, 2, 3, 4} above: explicitly, we can see that f3(n) = 5− n
for all n ∈ {1, 2, 3, 4}.

◦ We typically abbreviate such a de�nition by merely writing f3(n) = 5− n with the implicit assumption
that this rule is valid for all n in the domain of f3, which in this case is {1, 2, 3, 4}.
◦ Example: Some examples of functions from R to R that can be de�ned in this way are the squaring
function p(x) = x2, the sine function s(x) = sin(x), and the absolute value function a(x) = |x| ={
x for x ≥ 0

−x for x < 0
.

◦ When de�ning a function in this way, it is very important to ensure that the de�nition is unambiguous
and well-de�ned.

◦ For example, although it may seem valid to de�ne a function f : Q → Z by saying f(a/b) = a for any
a/b ∈ Q, this de�nition does not actually yield a well-de�ned function: notice that, per the rule given,
we would have f(1/2) = 1 while f(2/4) = 2, but 1/2 = 2/4 as rational numbers. (One way to �x this
de�nition would be to specify that a/b must be in lowest terms, and also to clarify what happens with
negative elements of the domain.)

• It is crucial to specify the domain and target when we de�ne a function via a rule in this manner; otherwise,
the de�nition can be ambiguous.

◦ To illustrate why, consider the functions g1 : R→ R with g1(x) = x2 and g2 : Z→ Z with g2(x) = x2.

◦ The functions g1 and g2 are (seemingly) de�ned by the same rule, but they are di�erent functions
because their underlying sets of ordered pairs are di�erent: notice for example that (1/2, 1/4) ∈ g1, but
(1/2, 1/4) 6∈ g2.

• It is often very helpful to represent functions geometrically.

◦ For functions from (a subset of) R to (a subset of) R we may draw the graph of a function f , which
consists of all points (x, y) in the Cartesian plane such that (x, y) ∈ f .2

◦ If the domain is unbounded (i.e., contains points arbitrarily far from 0) we can of course only draw a
portion of the graph.

2In fact, if R : A → B where A and B are both subsets of R, we may actually draw the graph of the relation R, consisting of all
points (x, y) ∈ R, although we will not need to invoke this idea.
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◦ Here are some examples of graphs of functions:

◦ For functions f : A → B de�ned on �nite sets, or sets that do not consist of real numbers, the graph
is typically either not useful, or not possible to draw sensibly. For this reason we also use �relation
diagrams�, in which we represent the sets A and B as collections of points and draw an arrow from a ∈ A
to b ∈ B whenever f(a) = b.

◦ Here are function diagrams for f1 = {(1, 2), (2, 3), (3, 1), (4, 4)}, f2 = {(1, 1), (2, 3), (3, 2), (4, 2)}, and
f3 = {(1, 4), (2, 3), (3, 2), (4, 1)} from A = {1, 2, 3, 4} to B = {1, 2, 3, 4}:

• An important property of a function is its set of �output values�:

• De�nition: If f : A→ B is a function, the set of elements b ∈ B for which there exists at least one a ∈ A with
f(a) = b is called the image (or range) of f .

◦ Terminology: Some authors use the word �range� as a synonym for �codomain�, while others use it as
synonym for �image�. We will avoid using the word �range� for this reason.

◦ Example: For the functions on {1, 2, 3, 4} given by f1 = {(1, 2), (2, 3), (3, 1), (4, 4)}, f2 = {(1, 1), (2, 3), (3, 2), (4, 2)},
and f3 = {(1, 4), (2, 3), (3, 2), (4, 1)}, the image of f1 is {1, 2, 3, 4}, the image of f2 is {1, 2, 3}, and the
image of f3 is {1, 2, 3, 4}.
◦ The image of a function f : A → B is always a subset of the target set B, but need not be equal: for
example, the image of f2 above is only the set {1, 2, 3} even though the target set is {1, 2, 3, 4}.

◦ Example: The image of the function f : R → R with f(x) = x2 is the set R≥0 of nonnegative real
numbers.

• Since we view functions as relations, all of the operations we can perform with relations can also be performed
on functions. One important operation is that of restricting a function to a smaller domain; since this operation
on functions is particularly useful, we (re-)record the de�nition explicitly:

• De�nition: If C is a subset of A and f : A → B is a function, the restriction of f to the domain C, denoted
f |C , is the function f |C : C → B given by f |C = f ∩ (C ×B).

◦ The ordered pairs in f |C are precisely those of the form (c, b) where c ∈ C and (c, b) ∈ f : we can think of
f |C as the function obtained by �throwing away� the information about the values on f on the elements
of A not in C.

◦ Example: For f : {1, 2, 3, 4} → {1, 2, 3, 4} with f = {(1, 2), (2, 3), (3, 1), (4, 4)}, the restriction of f to
the domain {1, 3} is the function g : {1, 3} → {1, 2, 3, 4} with g = {(1, 2), (3, 1)}.
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◦ In the particular situation where f is de�ned using a rule, we simply use the same rule for f |C on the
smaller domain C.

◦ Example: For f : R→ R de�ned by f(x) = x2, we may restrict f to the positive real numbers to obtain
a new function g : R+ → R de�ned by g(x) = x2.

• In some situations we can also restrict, or enlarge, the target set of a function.

◦ Indeed, if f : A → B is a function with image im(f), then we also have a function g : A → im(f) given
by the same collection of ordered pairs, whose target set is now im(f).

◦ More generally, if C is any set with im(f) ⊆ C, we may also view the same collection of ordered pairs as
yielding a function h : A→ C.

◦ It is a matter of taste whether to consider this function h as being �the same as� f , since its underlying
collection of ordered pairs, domain, and image are the same as f 's. In practice, it is common to view
this function as being equivalent to f , since it carries the same information.

◦ However, we have adopted the convention that the domain and target are parts of the de�nition of a
function, and so we would not consider h to be equal to f , since its target set is di�erent.

3.4.2 Function Composition

• We now discuss ways of constructing new functions from other functions, of which the most fundamental is
function composition.

◦ Informally, if f and g are functions, the notation f(g(x)) is used to symbolize the result of applying f
to the value g(x). This operation is well-de�ned provided that the image of g is a subset of the domain
of f .

◦ We use the notation f ◦ g to refer to the composite function itself, so that (f ◦ g)(x) = f(g(x)).

◦ We may formalize this as follows:

• De�nition: Let g : A→ B and f : B → C be functions. Then the composite function f ◦ g : A→ C is de�ned
by taking (f ◦ g)(a) = f(g(a)) for all a ∈ A.

◦ More explicitly, the ordered pairs in f ◦ g are those pairs (a, c) ∈ A × C for which there exists a b ∈ B
with (a, b) ∈ g (so that g(a) = b) and with (b, c) ∈ f (so that f(b) = c).

◦ In symbolic language, f ◦ g = {(a, c) ∈ A× C : ∃b ∈ B, [(a, b) ∈ g)] ∧ [(b, c) ∈ f ]}.

• In practice, if f and g are both described by rules, it is easiest to �nd compositions using the de�nition
(f ◦ g)(a) = f(g(a)).

• Example: Let f : R → R and g : R → R be the functions f(x) = x2 and g(x) = 2x + 1. Find f ◦ g, g ◦ f ,
f ◦ f , and g ◦ g.

◦ We have (f ◦g)(x) = f(g(x)) = f(2x+1) = (2x+1)2, and similarly (g◦f)(x) = g(f(x)) = g(x2) = 2x2+1.

◦ Also, (f ◦ f)(x) = f(f(x)) = f(x2) = x4, and (g ◦ g)(x) = g(g(x)) = g(2x+ 1) = 4x+ 3.

• Notice that the result of function composition depends on the order of the functions: in general, it will be the
case that f ◦ g and g ◦ f are completely unrelated functions.

◦ Indeed, depending on the domains and images of f and g, it is quite possible that one of f ◦ g is de�ned
while the other is not.

◦ For example, suppose f : {1, 2} → {a, b} has f(1) = a and f(2) = b, and g : {a, b} → {3, 4} has g(a) = 3
and g(b) = 4.

◦ Then the composite function g ◦ f exists and is a function from {1, 2} to {3, 4}, where, speci�cally, we
have (g ◦ f)(1) = g(f(1)) = g(a) = 3, and (g ◦ f)(2) = g(f(2)) = g(b) = 4.
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◦ However, the composite function f ◦ g does not exist: the only possible elements in the domain are
the elements in the domain of g, but if we try to evaluate (f ◦ g)(a), for example, we would have
(f ◦ g)(a) = f(g(a)) = f(3), and this expression does not make sense because 3 is not in the domain of
f . Similarly, (f ◦ g)(b) = f(g(b)) = f(4) also does not make sense.

• If f and g are given as sets of ordered pairs, we can use function diagrams to visualize and evaluate com-
positions: we draw the diagrams for the two functions together, and then follow the arrows from left to
right.

◦ For example, for the functions f1 = {(1, 2), (2, 3), (3, 1), (4, 4)} and f2 = {(1, 1), (2, 3), (3, 2), (4, 2)} on
{1, 2, 3, 4}, here are composition diagrams for f1 ◦ f2 and f2 ◦ f1:

◦ By following the arrows from left to right, we can see that if g = f1◦f2, then g(1) = 2, g(2) = 1, g(3) = 3,
and g(4) = 3. Similarly, for h = f2 ◦ f1, we have h(1) = 3, h(2) = 2, h(3) = 1, and h(4) = 2.

• As we have seen, function composition is not commutative. However, composition does satisfy some other
algebraic properties:

• Proposition (Properties of Composition): Suppose A,B,C,D are sets.

1. Function composition is associative: If f : C → D, g : B → C, and h : A → B are any functions then
(f ◦ g) ◦ h and f ◦ (g ◦ h) are equal as functions from A to D.

◦ Proof: Observe �rst that the domain of both (f ◦ g) ◦ h and f ◦ (g ◦ h) is A, and the target of both
(f ◦ g) ◦ h and f ◦ (g ◦ h) is D.

◦ Now let a ∈ A. Then by de�nition we have [(f ◦ g) ◦ h](a) = [(f ◦ g)](h(a)) = f(g(h(a))), and we
also have [f ◦ (g ◦ h)](a) = f [(g ◦ h)(a)] = f(g(h(a))).

◦ Since these two quantities are equal, we see [(f ◦ g) ◦ h](a) = [f ◦ (g ◦ h)](a) for all a ∈ A.
◦ Hence the functions (f ◦ g) ◦ h and f ◦ (g ◦ h) have the same domain and target, and take the same
value at every element of their common domain, so they are the same function.

2. The identity function behaves as a left and right identity: For any f : A→ B, f ◦ iA = f and iB ◦ f = f .

◦ Proof: Observe that the domain of f ◦ iA is A and the target is B, the same as for f .

◦ Then for any a ∈ A we have (f ◦ iA)(a) = f(iA(a)) = f(a), and so we see f ◦ iA and f take the same
value at every point of their shared domain. Hence they are equal as functions.

◦ In the same way, the domain of iB ◦ f is A and the target is B, the same as for f .

◦ Then for any a ∈ A we have (iB ◦ f)(a) = iB(f(a)) = f(a), and so we see iB ◦ f and f take the same
value at every point of their shared domain. Hence they are equal as functions.

3.4.3 Inverses of Functions, One-to-One and Onto Functions

• Next we examine inverses of functions.

◦ Under the common interpretation of a function f as a �machine� that operates on an input value to
produce an output value, the inverse f−1 would correspond to a machine that inverts this process,
taking an output value of f and giving the corresponding input value.

◦ In particular, if f : A→ B, then we would like to have f−1 : B → A, and on the level of ordered pairs,
if (a, b) ∈ f , then we would like (b, a) ∈ f−1.
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◦ Indeed, we have already de�ned an object with this exact property, namely, the inverse relation to f .

◦ However, if f : A→ B is an arbitrary function, the inverse relation f−1 need not be a function from B
to A.

◦ For example, suppose f : {1, 2, 3} → {1, 2, 3, 4} is the function with f(1) = 2, f(2) = 4, and f(3) = 2, so
that as a set of ordered pairs, f = {(1, 2), (2, 4), (3, 2)}.
◦ Then the inverse relation is f−1 = {(2, 1), (4, 2), (2, 3)} = {(2, 1), (2, 3), (4, 2)}. However, f−1 is not a
function (on any domain) because it contains the ordered pairs (2, 1) and (2, 3), meaning that f−1 is not
well-de�ned on the element 2.

◦ It is easy to identify the di�culty here: the problem is that f maps both 1 and 3 to 2, so we cannot
assign a unique value to f−1(2) since we want it to equal both 1 and 3.

◦ As another example, suppose g : {1, 2, 3} → {1, 2, 3, 4} is the function with g(1) = 2, g(2) = 4, and
g(3) = 1.

◦ Then g = {(1, 2), (2, 4), (3, 1)} so g−1 = {(2, 1), (4, 2), (1, 3)} = {(1, 3), (2, 1), (4, 2)}. We can see that
g−1 is indeed a function, but it is a function from {1, 2, 4} → {1, 2, 3}, not a function from {1, 2, 3, 4} →
{1, 2, 3}.
◦ In this case, we see that the inverse relation to g : A → B is not a function g−1 : B → A from B to A,
but rather a function g−1 : im(g)→ A from the image of g to A.

◦ We can clarify this behavior by identifying the precise characteristics of the functions that cause these
behaviors:

• De�nition: The function f : A → B is one-to-one (or injective) if for any a1, a2 ∈ A, f(a1) = f(a2) implies
a1 = a2.

◦ Equivalently, f : A→ B is one-to-one when a1 6= a2 implies f(a1) 6= f(a2), which is the same as saying
that f maps unequal elements in its domain to unequal elements in its image.

◦ Example: The function f : R → R given by f(x) = 3x− 4 is one-to-one, because f(a1) = f(a2) implies
3a1 − 4 = 3a2 − 4, and this only occurs when a1 = a2.

◦ Non-Example: The function f : R→ R given by f(x) = x2 is not one-to-one, because f(2) = 4 = f(−2).
◦ Example: The function f : Z → Z given by f(n) = 2n is one-to-one, because f(a1) = f(a2) implies
2a1 = 2a2, which only occurs for a1 = a2.

◦ Non-Example: The function f : R → R given by f(x) = sin(x) is not one-to-one, because f(0) = 0 =
f(π).

◦ Example: If A ⊆ B, then the inclusion map ι : A→ B given by ι(a) = a for all a ∈ A is one-to-one.

◦ We will remark that the property of being one-to-one depends on the domain of f , although not on the
target set. For example, the function f : R → R with f(x) = x2 is not one-to-one, but its restriction
f |R+ to the positive real numbers is one-to-one.

◦ In general, any restriction of a one-to-one function to a smaller domain will still be one-to-one, since if
C ⊆ A then if c1, c2 ∈ C with f |C(c1) = f |C(c2) then by de�nition f(c1) = f(c2) and so c1 = c2.

• De�nition: The function f : A→ B is onto (or surjective) if im(f) = B.

◦ Equivalently, f : A→ B is onto when for any b ∈ B, there exists an a ∈ A with f(a) = b.

◦ Example: The function f : R→ R given by f(x) = 3x− 4 is onto, because for any b ∈ R, there exists an
a ∈ R with f(a) = b, namely, a = (b+ 4)/3, as can be found by solving the equation 3a− 4 = b for a.

◦ Non-Example: The function f : R → R given by f(x) = x2 is not onto, because there is no a ∈ R such
that f(a) = −1.
◦ Non-Example: The function f : Z → Z given by f(n) = 2n is not onto, because there is no a ∈ Z with
2a = 1.

◦ Example: The function f : R→ R+ given by f(x) = ex is onto, because for any b ∈ R+, there exists an
a ∈ R with f(a) = b, namely, a = ln(b), since in such a case we have f(ln(b)) = eln(b) = b.

◦ We will remark that the property of being onto requires explicitly knowing the target set for f . Every
function is surjective onto its image, but is not surjective onto any (strictly) larger set.
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• Using function diagrams, it is easy to see visually whether a function is one-to-one or onto:

◦ For the functions shown above from A = {1, 2, 3, 4} to B = {1, 2, 3, 4}, we can see that f1 is one-to-one
since no two arrows land at the same point in the target, and f1 is onto since every point in the target
has at least one arrow pointing to it.

◦ On the other hand, f2 is not one-to-one because it has two arrows pointing to 2, and it is not onto
because it has no arrow pointing to 4.

• We can now establish the precise relationship between being one-to-one (or onto) and the existence of an
inverse function:

• Proposition (One-to-One, Onto, and Inverses): Suppose f : A→ B is a function.

1. The inverse relation f−1 is a function (from im(f) to A) if and only if f is one-to-one.

◦ Proof: Note that f−1 is a function precisely when (c, a) ∈ f−1 and (c, b) ∈ f−1 implies a = b.

◦ This condition is equivalent to saying that if (a, c) ∈ f and (b, c) ∈ f then a = b, which is in turn
equivalent to saying that if f(a) = c = f(b) then a = b. But this last condition is precisely the same
as saying f is one-to-one.

2. If f−1 : B → A is a function, then f−1 ◦ f = iA and f ◦ f−1 = iB .

◦ Proof: For the �rst statement, note that f−1 ◦ f is a function from A to A.

◦ Now let a ∈ A be arbitrary and set b = f(a) ∈ B. Then (a, b) ∈ f so (b, a) ∈ f−1, meaning that
f−1(b) = a.

◦ Now we compute (f−1 ◦ f)(a) = f−1(f(a)) = f−1(b) = a by the above.

◦ But since a was arbitrary, and f−1 ◦ f and iA have the same domain and target and take the same
values for all a ∈ A, they are equal as functions.

◦ The argument to see that f ◦ f−1 = iB is similar: as above note f ◦ f−1 and iB have the same
domain and target.

◦ Now let b ∈ B be arbitrary and set a = f−1(b) ∈ A. Then (b, a) ∈ f−1 and so (a, b) ∈ f .
◦ We compute (f ◦ f−1)(b) = f(f−1(b)) = f(a) = b, so since b was arbitrary, f ◦ f−1 and iB are equal
as functions.

3. If there exists a function g : B → A such that g ◦ f = iA, then f is one-to-one.

◦ Proof: Suppose g : B → A has g ◦ f = iA and that f(a1) = f(a2).

◦ Then a1 = iA(a1) = (g◦f)(a1) = g(f(a1)) = g(f(a2)) = (g◦f)(a2) = iA(a2) = a2, so f is one-to-one.

4. If there exists a function g : B → A such that f ◦ g = iB , then f is onto.

◦ Proof: Suppose g : B → A has f ◦ g = iB and let b ∈ B be arbitrary.

◦ Then b = iB(b) = (f ◦ g)(b) = f(g(b)), meaning that if we set a = g(b), then we have f(a) = b, so f
is onto.

• By combining all of these observations we can give several equivalent characterizations of when a function has
an inverse function:

• Theorem (Inverse Functions): Suppose f : A→ B is a function. Then the following are equivalent:
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1. f is one-to-one and onto.

2. f−1 is a function from B to A.

3. There exists a function g : B → A such that g ◦ f = iA and f ◦ g = iB .

◦ Proof: We show that (1) implies (2), that (2) implies (3), and that (3) implies (1). This is su�cient
because the other implications (such as (1) implies (3)) follow from these three because logical implication
is transitive as we have previously noted.

◦ (1)⇒ (2): If f is one-to-one, then f−1 is a function from im(f) to A by result (1) from the proposition
above. If f is also onto, then im(f) = B, and so f−1 is a function from B to A.

◦ (2)⇒ (3): If f−1 is a function from B to A, then simply take g = f−1; by result (2) from the proposition
above, f−1 ◦ f = iA and f ◦ f−1 = iB as required.

◦ (3) ⇒ (1): If there exists a function g : B → A such that g ◦ f = iA, then by result (3) from the
proposition above, we see f is one-to-one. If g also has the property that f ◦ g = iB , then by result (4)
from the proposition above, we see f is also onto.

• We can also deduce that (when it exists) the inverse function is the unique two-sided inverse of f :

• Corollary (Uniqueness of Inverse): Suppose f : A→ B and g : B → A are functions such that g ◦ f = iA and
f ◦ g = iB . Then g = f−1.

◦ Proof: If there exists such a function g, then by the theorem above, f−1 is a function from B to A and
it satis�es the same properties as g.

◦ Then by the basic properties of function composition, we can write g = iA ◦ g = (f−1 ◦ f) ◦ g =
f−1 ◦ (f ◦ g) = f−1 ◦ iB = f−1, as required.

• The actual calculation of the inverse function, when it exists, is trivial when f is described as a list of ordered
pairs, since f−1 is obtained simply by reversing all of the pairs.

◦ When f is described as a rule (typically, for functions written algebraically), to �nd the inverse we simply
solve the equation y = f(x) for x in terms of y: this will give x = f−1(y).

• Example: Verify that the function h : R→ R given by h(x) = 3x−2 is invertible and �nd its inverse function.

◦ To show that h is one-to-one, notice that h(a) = h(b) is the same as 3a− 2 = 3b− 2, and this can easily
be rearranged to obtain a = b.

◦ To �nd h−1, we solve y = 3x − 2 for x in terms of y. We obtain x =
y + 2

3
, so h−1(y) =

y + 2

3
. Note

that this calculation also shows that h is onto.

• In the example above, notice h is a composite function: h scales its argument by 3 and then subtracts 2.

◦ Its inverse function reverses each of these operations in the opposite order: namely, h−1 �rst adds 2 and
then divides its argument by 3.

◦ The observation in this example holds in general:

• Proposition (Properties of Inverses): If f : B → C and g : A → B are invertible functions, then so are f−1

and f ◦ g, and (f−1)−1 = f and (f ◦ g)−1 = g−1 ◦ f−1.

◦ Proof: By our theorem on invertible functions, to show two functions are inverses we need only verify
that composing them in either order yields the appropriate identity function.

◦ For f and f−1 we have f−1 ◦f = iA and f ◦f−1 = iB , meaning that f �lls the role of the inverse function
(f−1)−1. So f−1 is invertible and its inverse is f , as claimed.

◦ For f ◦g and g−1◦f−1, �rst observe that [f ◦g]◦[g−1◦f−1] = f ◦[g◦g−1]◦f−1 = f ◦iB◦f−1 = f ◦f−1 = iC .

◦ Likewise, [g−1 ◦ f−1] ◦ [f ◦ g] = g−1 ◦ [f−1 ◦ f ] ◦ g = g−1 ◦ iB ◦ g = g−1 ◦ g = iA.

◦ Hence f ◦ g is invertible and its inverse is g−1 ◦ f−1, as claimed.
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3.4.4 Bijections

• As we have already seen, functions that are both one-to-one and onto have convenient properties. We now
analyze these functions in a bit more detail.

• De�nition: A function that is both one-to-one and onto is called a bijection.

◦ From our results on inverses, f : A → B is equivalently a bijection when it has an inverse function
f−1 : B → A.

◦ Example: The function f : R → R given by f(x) = 3x − 4 is a bijection because it is both one-to-one
and onto.

◦ Example: The function g : (−π2 ,
π
2 ) → R given by g(x) = tan(x) is a bijection because it is both

one-to-one and onto.

◦ Non-Example: The function f : Z→ Z given by f(n) = 3n−4 is not a bijection: although it is one-to-one,
it is not onto since there is no n with f(n) = 0.

◦ Non-Example: The function h : [0, π] → [−1, 1] given by g(x) = sin(x) is not a bijection: although it is
onto, it is not one-to-one since for example h(0) = h(π).

◦ Non-Example: The function k : Q\{0} → Q given by k(x) = 1/x is not a bijection: although it is
one-to-one, it is not onto because there is no x for which k(x) = 0.

• If f : A → B is a bijection, it establishes a one-to-one correspondence between the elements of A and the
elements of B: to each element a ∈ A, f associates a unique element of B, namely f(a), and to each element
b ∈ B, f associates a unique element of A, namely f−1(b).

◦ We may think of f as being a �relabeling�: if we relabel the elements of the set A by applying f to them,
then the result is the set B.

◦ In general, if there exists a bijection f : A→ B, we say that A and B are in one-to-one correspondence.
This property is, in fact, an equivalence relation:

• Proposition (One-to-One Correspondences): Suppose A, B, and C are sets.

1. The identity function iA : A→ A is a bijection from A to A.

◦ Proof: The identity function is self-evidently one-to-one and onto (alternatively, it is its own inverse).

2. If f : A→ B is a bijection, then its inverse f−1 : B → A is also a bijection.

◦ Proof: If f : A→ B is a bijection, then from our results on inverses we know that f−1 : B → A is a
function.

◦ Furthermore, since f−1 ◦ f = iA and f ◦ f−1 = iB , we see that f
−1 is invertible with inverse f , and

therefore f−1 : B → A is also a bijection.

3. If f : B → C and g : A→ B are bijections, then f ◦ g : A→ C is also a bijection.

◦ Proof: If f : B → C and g : A → B are bijections, then from our results on inverses we know that
f−1 : B → A and g−1 : C → B are functions.

◦ Also, we know that f ◦ g : A → C is invertible with inverse (f ◦ g)−1 = g−1 ◦ f−1 : C → A, so it is
also a bijection.

4. The relation on sets de�ned by A ∼ B when there exists a bijection f : A→ B is an equivalence relation.

◦ Proof: This follows immediately from (1)-(3): (1) shows re�exivity, (2) shows symmetry, and (3)
shows transitivity.

5. If f : A→ B is a bijection and g : C → D is a bijection, then the �product map� f×g : (A×C)→ (B×D)
given by (f × g)(a, c) = (f(a), g(c)) is also a bijection.

◦ Proof: If (f × g)(a1, c1) = (f × g)(a2, c2) then by de�nition (f(a1), g(c1)) = (f(a2), g(c2)) which is
the same as saying f(a1) = f(a2) and g(c1) = g(c2).

◦ Then because f and g are both one-to-one, we see a1 = a2 and c1 = c2, so (a1, c1) = (a2, c2). Hence
f × g is one-to-one.
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◦ Also, if b ∈ B and d ∈ D, then because f and g are both onto, there exist a ∈ A and c ∈ C with
f(a) = b and g(c) = d. Then (f×g)(a, c) = (f(a), g(c)) = (b, d), so f×g is onto and thus a bijection.

• Example: Determine whether f : R→ R given by f(x) = x2 is a bijection.

◦ Although f is onto, f is not one-to-one since for example f(−1) = 1 = f(1), so f is not a bijection .

• Example: Determine whether f : R+ → R+ given by f(x) = x2 is a bijection.

◦ This function is a bijection : it is one-to-one since x2 = y2 with x, y positive can only occur for x = y,

and it is onto since every positive real number has a positive real square root.

◦ Equivalently, we could observe that f has an inverse function f−1 : R+ → R+ given by f−1(x) =
√
x.

• Example: Show that there is a bijection between R and R+.

◦ We claim that the exponential function f : R → R+ with f(x) = ex is a bijection. To see this, simply
observe f has an inverse function f−1 : R+ → R given by the natural logarithm f−1(x) = lnx.

3.5 Cardinality and Countability

• In the previous section, we discussed how bijections provide a one-to-one correspondence between the elements
of the domain with the elements of the target. Our goal now is to use bijections to give a formal treatment
of the notion of cardinality, which provides a way of measuring the �size� of a set, with a primary focus on
in�nite sets.

• Quite surprisingly, as we will show, there are actually many di�erent cardinalities that in�nite sets can have.

3.5.1 Cardinality

• We start by observing that the process of counting the elements of a �nite set A is the same as labeling the
elements of A with the positive integers 1, 2, 3, . . . , n.

◦ By our interpretation of a bijection as a relabeling, this is the same as giving a bijection between A and
the set {1, 2, 3, . . . , n}.
◦ We can use this idea to give a formal de�nition of the cardinality of a �nite set:

• De�nition: If A is a set and n is a nonnegative integer, we say the cardinality of A is n (written #A = n)
if there exists a bijection between A and the set {1, 2, 3, . . . , n}. If there exists an integer n such that the
cardinality of A is n, we say A is a �nite set, and otherwise we say A is an in�nite set.

◦ We take the usual convention that if n = 0 the set written as {1, 2, 3, . . . , n} means the empty set, and
so the cardinality of ∅ is 0.
◦ We must verify that this de�nition is well-posed, in the sense that for any �nite set A, there is a unique
positive integer n for which there exists a bijection between A and {1, 2, 3, . . . , n}.
◦ If there were bijections between A and {1, 2, 3, . . . , n}, and also between A and {1, 2, 3, . . . ,m}, then since
one-to-one correspondence is an equivalence relation, this would give a bijection between {1, 2, 3, . . . , n}
and {1, 2, 3, . . . ,m}.

◦ However, such a bijection cannot exist unless m = n, as is straightforward to verify using induction. For
completeness: without loss of generality assume n ≤ m, and induct on n. The base case n = 0 follows by
observing that the only function from the empty set is the empty function (with image the empty set)
so necessarily m = 0 also.
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◦ For the inductive step, assume that having a bijection from {1, 2, 3, . . . , n} to {1, 2, 3, . . . ,m} for m = k
implies n = k, and suppose we have a bijection from {1, 2, 3, . . . , n} to {1, 2, 3, . . . ,m} where m = k + 1.
If we have a bijection f : {1, 2, . . . , k + 1} → {1, 2, . . . , n}, then let g = f |{1,2,...k} be the restriction of
f to {1, 2, . . . , k} and observe that the image of g is the set {1, 2, . . . , n} with one element removed. So
then g is a bijection between {1, 2, . . . , k} and its image, which (by relabeling) is in turn in bijection with
the set {1, 2, . . . , n− 1}. Hence by the inductive hypothesis, we see k = n− 1, and so m = k + 1 = n as
claimed.

• We have various other basic properties of cardinality:

• Proposition (Properties of Cardinality): Suppose A and B are sets.

1. If A is �nite and B ⊆ A, then B is �nite, and #B ≤ #A with equality if and only if B = A.

◦ Proof: Induction on n = #A. The base case n = 0 is trivial, since in that case A = B = ∅ so
#A = #B = 0, and we have equality.

◦ For the inductive step, suppose #A = n with n ≥ 1. If B = A the result is trivial so suppose B is a
proper subset of A.

◦ Since #A = n there exists a bijection f : A→ {1, 2, . . . , n}. Then the set f(B) = {f(b) : b ∈ B} is
a proper subset of {1, 2, . . . , n} since B is a proper subset of A and f is a bijection. Restricting f to
f |B yields a bijection of B with this proper subset, which must have cardinality k for some k < n.
Then by relabeling the elements of this subset as {1, 2, . . . , k} we see that #B = k < n = #A, as
required.

2. If A and B are �nite and disjoint, then #(A ∪B) = #A+#B.

◦ Proof: Suppose #A = n and #B = m and let f : A→ {1, 2, . . . , n} and g : B → {1, 2, . . . ,m} be bi-

jections. Then the function h : {1, 2, . . . ,m+n} → A∪B with h(k) =

{
f(k) for 1 ≤ k ≤ m
g(k − n) for m+ 1 ≤ k ≤ m+ n

is also a bijection, so #(A ∪B) = m+ n = #A+#B.

3. If A is �nite, then for any B we have #(A\B) = #A−#(A ∩B).

◦ Proof: By (1) we see that A\B and A∩B are �nite since they are both subsets of A. Since they are
also disjoint and have union A, by (2) we have #A = #(A\B) +#(A ∩B) which yields the desired
result immediately.

4. If A and B are �nite, then #(A ∪B) = #A+#B −#(A ∩B).

◦ Proof: Let C = A\B and observe that C ∪B = A ∪B and that C and B are disjoint. Then by (2)
and (3) we have #(A ∪B) = #(C ∪B) = #C +#B = #A+#B −#(A ∩B) as claimed.

◦ Remark: This result generalizes inductively to larger unions, yielding a general statement that is
known as the inclusion-exclusion formula. For example, for three sets one obtains #(A ∪ B ∪ C) =
#A+#B +#C −#(A ∩B)−#(A ∩ C)−#(B ∩ C) + #(A ∩B ∩ C).

5. If A and B are �nite, then #(A×B) = #A ·#B.
◦ Proof: Suppose #A = n and #B = m and let f : {1, 2, . . . , n} → A and g : {1, 2, . . . ,m} → B
be bijections. Then the function h : {1, 2, . . . ,mn} → A × B de�ned by taking h(a + n(b − 1)) =
(f(a), g(b)) for 1 ≤ a ≤ n and 1 ≤ b ≤ m is also a bijection, so #(A × B) = mn = #A · #B as
claimed.

◦ Remark: This result generalizes inductively to larger Cartesian products. For example, for three
sets one obtains #(A×B × C) = #A ·#B ·#C.

6. If A is in�nite and A ⊆ B, then B is in�nite. In particular, A ∪ C is in�nite precisely when A or C is
in�nite.

◦ Proof: Suppose A ⊆ B. By (1), if B is �nite, then A is �nite, so taking the contrapositive yields
that if A is in�nite, then B is in�nite.

◦ For the second part, if A or C is in�nite, then since each is a subset of the union A ∪ C, the union
is in�nite. Otherwise, if both A and C are �nite, then by (4) so is A ∪ C.

7. If A is in�nite and B is nonempty, then A×B is in�nite.
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◦ We remark that A × ∅ = ∅, so the hypothesis that B be nonempty is needed here for A × B to be
in�nite.

◦ Proof: Suppose A is in�nite and x ∈ B. Then A × B contains the subset A × {x}, which is in
bijection with the in�nite set A hence is also in�nite. Then by (6), we see A×B is in�nite.

8. If f : A→ B is one-to-one, then #A = #im(f).

◦ Proof: Observe that f gives a bijection of A with im(f), since f : A → im(f) is one-to-one by
hypothesis, and is also onto by de�nition of im(f).

◦ Since bijections preserve cardinality that means #im(f) = #A, as claimed.

9. If A and B are �nite and have same cardinality, then a function f : A → B is one-to-one if and only if
it is onto, if and only if it is a bijection.

◦ Proof: Suppose f : A → B is one-to-one and #A = #B. Then by (8), f is a bijection of A with
im(f), so #im(f) = #A = #B. But then because B is �nite, and im(f) ⊆ B, we have im(f) = B
by (1). Hence f is onto.

◦ Conversely, suppose f : A → B is onto, and de�ne Sb = {a ∈ A : f(a) = b} for each b ∈ B. Then
the Sb are pairwise disjoint sets (if x ∈ Sb ∩ Sb′ then b = f(x) = b′) such that A = ∪b∈BSb (since
any a ∈ A lies in Sf(a)) and #Sb ≥ 1 for each b ∈ B (since f is onto).

◦ Then by repeatedly applying (2) we see that #A = #S1 +#S2 + · · ·+#S#B and by summing we
also have #B ≤ #S1 + · · ·+#S#B since each of the sizes is at least 1.

◦ But then we have #A = #B ≤ #S1 + · · · +#S#B = #A, meaning that we must have equality in
the middle, and so #Sb = 1 for each b ∈ B. That means f is one-to-one.

◦ So we deduce that f is one-to-one if and only if f is onto. This means either condition is equivalent
to both, which is to say, either condition is equivalent to saying f is a bijection.

• We can use these results to establish two fundamental counting principles, as follows:

◦ (�Addition Principle�) When choosing among n disjoint options labeled 1 through n, if option i has ai
possible outcomes for each 1 ≤ i ≤ n, then the total number of possible outcomes is a1 + a2 + · · ·+ an.

◦ To illustrate the addition principle, if a restaurant o�ers 5 main courses with chicken, 6 main courses
with beef, and 12 vegetarian main courses, then (presuming no course is counted twice) the total possible
number of main courses is 5 + 6 + 12 = 23.

◦ The addition principle can be justi�ed using our results about cardinalities of unions of disjoint sets: if
Ai corresponds to the set of outcomes of option i, then the union A1 ∪ A2 ∪ · · · ∪ An corresponds to a
single choice of one outcome from one of the Ai. Then because all of the di�erent options are disjoint,
the number of such choices is #(A1 ∪A2 ∪ · · · ∪An) = #A1 +#A2 + · · ·+#An by repeatedly applying
(2).

◦ (�Multiplication Principle�) When making a sequence of n independent choices, if step i has bi possible
outcomes for each 1 ≤ i ≤ n, then the total number of possible collections of choices is b1 · b2 · · · · · bn.
◦ To illustrate the multiplication principle, if a fair coin is tossed (2 possible outcomes) and then a fair
6-sided die is rolled (6 possible outcomes), the total number of possible results of �ipping a coin and then
rolling a die is 2 · 6 = 12.

◦ The multiplication principle follows from our results about cardinalities of Cartesian products: if Bi
corresponds to the set of outcomes of choice i, then the elements of the Cartesian product B1 × B2 ×
· · · ×Bn correspond to ordered n-tuples of outcomes, one for each choice. The number of such n-tuples
is #(B1 ×B2 × · · · ×Bn) = #B1 ·#B2 · · · · ·#Bn by repeatedly applying (5).

• By employing these principles appropriately, we can solve a variety of basic counting problems.

• Example: Determine the number of possible outcomes from rolling a 6-sided die 5 times in a row.

◦ Each individual roll has 6 possible outcomes. Thus, by the multiplication principle, the number of
possible sequences of 5 rolls is 65 = 7776 .

• Example: Determine the number of subsets of the set {1, 2, . . . , n}.
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◦ We may characterize a subset S of {1, 2, . . . , n} by listing, for each k ∈ {1, 2, . . . , n}, whether k ∈ S or
k 6∈ S.

◦ By the multiplication principle, the number of possible ways of making this sequence of n choices is 2n .

• Example: If #A = n and #B = m, �nd the total number of functions f : A→ B.

◦ If A = {a1, a2, . . . , an}, then a function f : A→ B is characterized by the values f(a1), f(a2), ... , f(an).

◦ Since #B = m, there are m possible choices for each of the n values f(a1), f(a2), ... , f(an).

◦ Since all such choices are allowed, the total number of functions is therefore mn .

• Example: Find the number of positive integer divisors of 90000.

◦ Note that 90000 = 243254, so any positive integer divisor must have the form 2a3b5c where a ∈
{0, 1, 2, 3, 4}, b ∈ {0, 1, 2}, and c ∈ {0, 1, 2, 3, 4}.
◦ On the other hand, every such integer is a divisor, and so since there are 5 choices for a, 3 for b, and 5
for c, there are 5 · 3 · 5 = 75 divisors in total.

◦ Remark: In the same way, one may see that n = 2n23n35n5 · · · has a total of (n2 +1)(n3 +1)(n5 +1) · · ·
positive integer divisors.

3.5.2 Countable and Uncountable Sets

• Because we have de�ned cardinality in terms of bijections, and the property of being in a one-to-one corre-
spondence is an equivalence relation on sets, we see that there is a bijection between two �nite sets if and
only if they have the same cardinality.

◦ This gives us an alternative way to view cardinalities, namely, as representing the equivalence classes of
sets under the relation of being in one-to-one correspondence.

◦ For example, one equivalence class contains the sets {1, 2}, {1, 5}, {22, π}, {A,B}, {?, potato}, ... , since
any two of these sets are in one-to-one correspondence with one another. This equivalence class may be
thought of as being the collection of all sets of cardinality 2.

◦ The advantage of this approach to cardinality is that it also extends to in�nite sets:

• De�nition: We say two sets are equinumerous (or equipollent) if there exists a bijection between them.

◦ Example: The sets {1, 2, 3} and {a, b,Q} are equinumerous because there exists a bijection between
them, namely, the function f = {(1, a), (2, b), (3, Q)}.
◦ Example: The sets Z and 2Z (the even integers) are equinumerous because there exists a bijection
between them, namely, the function f : Z→ 2Z given by f(n) = 2n (it is easy to see that f is one-to-one
and onto).

◦ We think of two equinumerous sets as having the same cardinality: from our observations above, this
interpretation agrees with the de�nition of cardinality for �nite sets.

◦ It is somewhat strange to think of the set of even integers as having the same cardinality as the set of
all integers, because the set of even integers is a proper subset of the set of all integers (indeed, in some
sense3 only �half� of all integers are even). But this is the type of statement we must accept if we are to
give any sensible de�nition for the cardinality of an in�nite set that behaves well under set operations.

3One may make precise the idea that half of all integers are even by noting that if E is the set of even integers, then the limit

limN→∞
#[E ∩ {−N, . . . , N}]

#[{−N, . . . , N}]
is equal to

1

2
. Equivalently, the proportion of the integers in {−N,−N + 1, . . . , N − 1, N} that

are even approaches 1/2 as N → ∞). In general, if S is a subset of the integers, its �natural density� is de�ned as the limit

limN→∞
#[S ∩ {−N, . . . , N}]
#[{−N, . . . , N}]

, if the limit exists; note that there do exist sets whose natural density is unde�ned, such as the set

of integers with leading digit 1 (in base 10).
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◦ Example: The sets Z and Z>0 (the positive integers) are equinumerous, because the function f : Z→ Z>0

given by f(n) =

{
2n+ 2 if n ≥ 0

−2n+ 1 if n < 0
is a bijection, since it maps the nonnegative integers to the even

positive integers and it maps the negative integers to the odd positive integers.

◦ Example: The sets Z>0 (the positive integers) and the set S of perfect squares are equinumerous, because
the function f : Z>0 → S given by f(n) = (n− 1)2 is a bijection.

• As we have noted above, counting elements of a set is the same as assigning positive integer labels to the
elements of the set, which is in turn the same as creating a bijection with a subset of the positive integers.

• De�nition: If S is a set, we say S is countable if there exists a bijection between S and a subset of the positive
integers, and we say S is countably in�nite if S is countable and in�nite. If S is not countable, we say S is
uncountable.

◦ By de�nition, any �nite set is countable since it can be put in bijection with the set {1, 2, 3, . . . , n} where
n is its cardinality.

• Proposition (Properties of Countability): The following are true:

1. If S is a countably in�nite subset of the positive integers, there exists a bijection between S and Z>0.

◦ Intuitively, we can just de�ne the bijection by mapping 1 to the smallest element of S, 2 to the
second smallest, and so forth.

◦ Proof: By the well ordering axiom, since S is nonempty it has a smallest element a1.

◦ Since S is in�nite, S\{a1} is also in�nite hence nonempty, so it has a smallest element a2 > a1.

◦ By a trivial induction, we may continue this process for each positive integer n ≥ 1 to construct
an > an−1 > · · · > a1 where S\{a1, . . . , an} is in�nite and has all elements greater than an. Since
the ai are all distinct positive integers in increasing order, we also see that an ≥ n for each n.

◦ Setting f(n) = an then yields a one-to-one function f : Z>0 → S. But f is also onto, since any
k ∈ S will be the smallest element of S\{1, 2, . . . , k − 1} hence necessarily is among the values
f(1), . . . , f(k).

2. More generally, any subset of a countable set is countable.

◦ Proof: Suppose A is countable and B ⊆ A. Then by de�nition there is a bijection f : A→ Z with a
subset Z of the positive integers.

◦ The restriction f |B is a then bijection from B to im(f |B) ⊆ Z, which is also a subset of the positive
integers.

◦ Hence there is a bijection from B to a subset of the positive integers, so B is countable.

3. A nonempty set S is countable if and only if there exists an onto function f : Z>0 → S.

◦ The utility of this result is that it provides an easier way to establish countability, since onto maps
are less restrictive and thus easier to construct than bijections.

◦ Proof: Suppose S is nonempty. If there exists an onto function f : Z>0 → S, let nx be the smallest
positive integer such that f(nx) = x. (Note that this integer necessarily exists by applying the
well-ordering axiom to the set of integers f maps to x which is nonempty since f is onto.)

◦ Then for A = {nx : x ∈ S}, we see that f |A is a bijection (since it is onto and also one-to-one) with
the subset A of Z>0 with S, so S is countable.

◦ Conversely, suppose S is countable and nonempty, so that there exists a bijection g : A→ S where
A is a subset of the positive integers. Let x ∈ S (here is where we are using the fact that S is

nonempty), and then de�ne f : Z>0 → S via f(n) =

{
g(n) if n ∈ A
x if n 6∈ A

.

◦ Clearly f is onto since it contains the image of g (which is A), so there exists an onto function
f : Z>0 → S as claimed.

4. The Cartesian product of two countable sets is countable.
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◦ Proof: Since the product map of two bijections is a bijection on the respective Cartesian products,
and a subset of a countable set is countable by (2) above, it is enough to prove that the Cartesian
product Z>0 × Z>0 is countable.

◦ We give an explicit bijection f : Z>0 × Z>0 → Z>0 by labeling the points in �diagonal stripes� as
shown in the diagram below:

◦ More explicitly, the bijection is given by f(a, b) =
(a+ b)(a+ b− 1)

2
− a + 1 for positive integers a

and b.

◦ It is a straightforward induction on b to see that this labeling is correct on all of the points with
a = 1: then increasing a by 1 and decreasing b by 1 decreases f by exactly 1 (since a + b is not
changed), so the labeling is also correct on all of the diagonal stripes.

◦ Thus, Z>0 × Z>0 is countable, hence so is the Cartesian product of any two countable sets.

5. The union of two countable sets is countable.

◦ Proof: Suppose A and B are countable. If either A or B is empty then the union is just the other
of the two sets, so the result is trivial.

◦ Now assume both sets are nonempty. Then by (3) there exist onto functions fA : Z>0 → A and
fB : Z>0 → B.

◦ Now de�ne the function f : Z>0 → A ∪B via f(n) =

{
fA(

n+1
2 ) if n is odd

fB(
n
2 ) if n is even

.

◦ Then f is onto, since its image contains each value fA(k) = f(2k) and fB(k) = f(2k − 1) for each
positive integer k. Hence by (3) again we see that A ∪B is countable.

6. More generally, a countable union of countable sets is countable: if I is a countable indexing set and Si
is a countable set for each i ∈ I, then

⋃
i∈I Si is countable.

◦ Proof: If any Si is empty we may simply discard it without a�ecting the union, so suppose each
Si is nonempty. Additionally, if I is �nite, then an easy induction using (5) shows that

⋃
i∈I Si is

countable.

◦ So assume that I is in�nite. Then by (1) there is a bijection f : Z>0 → I and the positive integers, so
by setting Tj = Sf(j) for each positive integer j, we are reduced to showing that

⋃∞
j=1 Tj is countable.

◦ By (3), for each j ≥ 1 there exists an onto function fj : Z>0 → Tj . Now de�ne the function
g : Z>0 × Z>0 →

⋃∞
j=1 Tj via g(a, b) = fa(b). Then g is onto, since its image contains im(fj) = Tj

for each j.

◦ Finally, since Z>0 × Z>0 is countable by (5), composing a bijection h : Z>0 → Z>0 × Z>0 with g
yields an onto map h ◦ g : Z>0 →

⋃∞
j=1 Tj , so by (3) we see that

⋃∞
j=1 Tj is countable.

7. (Cantor) The set of rational numbers Q is countable.

◦ Proof 1: For Q, associate the rational number a/b in lowest terms with b > 0 to the ordered pair
(a, b) in the Cartesian product Z× Z. This yields a bijection between Q and a subset of Z× Z.
◦ Then since Z × Z is countable by (4) above, and any subset of a countable set is countable by (2)
above, we conclude Q is countable, as claimed.

◦ Proof 2: By de�nition Q is the union of the countable sets Sn =
1

n
Z = {. . . ,− 2

n
,− 1

n
, 0,

1

n
,
2

n
,
3

n
, . . . }

for integers n ≥ 1. By (6), a countable union of countable sets is countable, so Q is countable.
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◦ Remark: It is also possible to show that Z×Z is countable directly by labeling the points in �spirals�
outward from the origin. The countability of Q can also be established using this method, where we
label the points (a, b) in spirals, where a/b is a rational number in lowest terms.

◦ Remark: Another way to show that Q is countable is �rst to observe that the rational numbers be-
tween 0 and 1 are countable, by simply listing them �rst in order of increasing denominators and then
in order of increasing numerators, skipping terms already listed: { 01 ,

1
1 ,

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 ,

5
6 , . . . }.

Then we can obtain any rational number merely by including reciprocals and negatives (and negative
reciprocals) after each term in the list above: { 01 ,

1
1 ,−

1
1 ,

1
2 , −

1
2 ,

2
1 , −

2
1 ,

1
3 , −

1
3 ,

3
1 , −

3
1 , . . . }.

• So far we have only given examples of sets that are countable. However, not every set is countable:

• Theorem (Cardinality of Power Set): If S is any set, �nite or in�nite, then there does not exist a bijection
between S and its power set P(S). In particular, the power set P(Z>0) is uncountable.

◦ Proof: Suppose f : S → P(S) is any function. We will show that f cannot be onto, so in particular, f
cannot be a bijection.

◦ Let A = {a ∈ S : a 6∈ f(a)} be the collection of elements of S that are not an element of their image
under f . We claim that A is not in the image of f .

◦ For any s ∈ S, either s ∈ A or s 6∈ A.
◦ If s ∈ A, then by de�nition of A, s 6∈ f(s). Hence f(s) 6= A because s is an element of A but not f(s).

◦ If s 6∈ A, then by de�nition of A, s ∈ f(s). Hence f(s) 6= A, because s is an element of f(s) but not A.

◦ In either case, f(s) 6= A. Since this holds for every s ∈ S, we conclude A 6∈ im(f). Hence f is not onto,
so (in particular) is not a bijection.

◦ Remark: Compare this argument to our analysis of Russell's paradox, in which we established that there
is no set of all sets. It uses the same technique of considering sets whose (image) does not contain itself.

• It is also true that the set R of real numbers is uncountable, as �rst established by Cantor in 1874:

• Theorem (Uncountability of R): The set R of real numbers is uncountable. In fact, the set of real numbers in
the interval [0, 1] is uncountable.

◦ In this proof we will use a few basic facts about decimal expansions of real numbers; in particular, recall
that every real number has a decimal expansion, and some real numbers have two decimal representations,
such as 1.000 · · · = 0.999 . . . . More speci�cally, the real numbers with two decimal expansions are the
ones of the form n/10k where n and k are integers: one representation ends in an in�nite string of 0s
while the other ends in an in�nite string of 9s.

◦ Proof: By way of contradiction suppose that the set of real numbers in [0, 1] is countable. Then we may
list the elements as r1, r2, r3, . . . .

◦ Arrange the decimal expansions of these real numbers in an array as follows:

r1 = 0.d1,1d2,1d3,1d4,1 . . .

r2 = 0.d1,2d2,2d3,2d4,2 . . .

r3 = 0.d1,3d2,3d3,3d4,3 . . .

r4 = 0.d1,4d2,4d3,3d4,4 . . .

...
...

...

◦ Now we construct a real number in [0, 1] that cannot be equal to any of the numbers r1, r2, r3, r4 using
the �diagonal� digits di,i: if di,i = 1, set ei = 2, and if di,i = 2, set ei = 1.

◦ We claim the real number α = 0.e1e2e3e4 . . . cannot be equal to any of the numbers ri.

◦ To see this, �rst observe that for any i, the ith decimal digit of α di�ers from the ith decimal digit of ri.
Then because α cannot have two decimal representations and its representation cannot be equal to any
decimal expansion of any ri, we conclude that α ∈ [0, 1] is a real number not equal to any ri.

◦ This is a contradiction, and therefore the set of real numbers in [0, 1] is countable.

◦ Then R must be uncountable also, since otherwise [0, 1] would be a subset of a countable set and thus
countable itself.

◦ Remark: This type of argument, �rst given by Cantor, is known as a diagonalization argument.
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3.5.3 In�nite Cardinalities

• We now discuss some other results about in�nite sets. We have seen above that there are at least two di�erent
�sizes� of in�nite sets (namely, countably in�nite and uncountably in�nite) but in fact there are more:

• Proposition (In�nite Cardinals): There exists an in�nite sequence of in�nite sets S1, S2, S3, . . . , no two of
which are equinumerous.

◦ Another way to interpret this result is that there are in�nitely many di�erent in�nite cardinalities, or
more informally, there are in�nitely many di�erent in�nities.

◦ Proof: As we have shown, there does not exist an onto map from a set to its power set.

◦ Hence if we take S1 = Z>0, and de�ne Sn = P(Sn−1) for each n ≥ 2, then any map from Si to Sj with
i < j cannot be onto, since an appropriate restriction would necessarily yield an onto map from Si to
Si+1 = P(Si).
◦ This means in particular that no two of the in�nite sets S1, S2, S3, . . . are equinumerous, as required.

• By de�nition, two sets have the same cardinality if there is a one-to-one correspondence between them. But it
is also natural to want to compare sets of di�erent cardinalities, which we may do using one-to-one functions:

• De�nition: If A and B are sets, we say A is dominated by B, written A - B, if there exists a one-to-one
function f : A→ B.

◦ The motivation for this de�nition is the observation that if f : A→ B is one-to-one, then f is a bijection
from A to im(f) ⊆ B, and so A is in bijection with a subset of B. This is a reasonable way to capture
the idea that B has �at least as many� elements as A.

◦ Example: {1, 2, 3} - {a, p, q, s} because there exists a one-to-one function f : {1, 2, 3} → {a, p, q, s}, such
as f = {(1, a), (2, p), (3, s)}.
◦ Example: Z>0 × Z>0 - Z because there exists a one-to-one function f : Z>0 × Z>0 → Z, namely the
explicit map we constructed that gives a bijection of Z>0 × Z>0 with Z>0.

• Note that we have used the symbol -, which suggests that this relation should behave like a partial ordering.

◦ Re�exivity follows immediately, because the identity function from A to itself is one-to-one, so A - A.

◦ Transitivity is also straightforward: if A - B and B - C, then there exist one-to-one functions f : B → C
and g : A→ B. Then it is straightforward to check that f ◦ g : A→ C is also one-to-one, whence A - C.

◦ However, this relation is not antisymmetric: there are examples of sets A and B with A - B and B - A
but with A 6= B. For example, {1, 2} - {a, b} and {a, b} - {1, 2}, and also Z - Q and Q - Z.
◦ However, these examples do suggest that if A - B and B - A, then A and B are equinumerous, in
which case the relation - is antisymmetric when viewed on cardinalities (i.e., on equivalence classes of
equinumerous sets). This turns out to be true, but not so easy to prove:

• Theorem (Cantor-Schröder-Bernstein): Suppose A and B are sets such that there exists an injection from A
to B and an injection from B to A. Then there exists a bijection between A and B.

◦ The proof of this theorem is somewhat involved, but the overall idea is to consider the one-to-one maps
f : A→ B and g : B → A. If f is onto then we are done.

◦ Otherwise, we glue together part of f with part of the surjective map g−1 : im(g) → B to create a
one-to-one map h : A→ B that also takes on the values in B that were missing from im(f). Rather than
motivating the construction further, we simply give the proof.

◦ Proof: Suppose f : A→ B and g : B → A are one-to-one. Then g has an inverse function g−1 : im(g)→ B
whose image is B.

◦ Now de�ne a sequence of sets A1, A2, A3, . . . recursively: take A1 = A\im(g), and for each n ≥ 2, take
An = g(f(An−1)) = {g(f(a)) : a ∈ An−1}.

◦ Also de�ne X =
⋃
n≥1An and Y = A\X, and �nally de�ne h : A→ B via h(a) =

{
f(a) if a ∈ X
g−1(a) if a ∈ Y

.
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◦ Observe that h is well-de�ned because X and Y are disjoint by de�nition, and also that if a ∈ Y (so that
a 6∈ X) then by de�nition a 6∈ A1, so a ∈ im(g) and thus g−1(a) makes sense.

◦ To show that h is one-to-one, suppose h(a1) = h(a2).

◦ If a1, a2 ∈ X then we would have f(a1) = f(a2), but since f is one-to-one, we see a1 = a2. Likewise, if
a1, a2 ∈ Y then we would have g−1(a1) = g−1(a2), and then applying g yields a1 = a2.

◦ For the remaining case assume without loss of generality that a1 ∈ X and a2 ∈ Y . Then we would
have f(a1) = g−1(a2), implying g(f(a1)) = a2, but this would mean a2 ∈ g(f(X)) = X, which is a
contradiction. Hence this case cannot occur, and so a1 = a2 in all cases, meaning that h is one-to-one.

◦ To show that h is onto, let b ∈ B: then g(b) ∈ A.
◦ If g(b) ∈ Y , then h(g(b)) = g−1(g(b)) = b, so b ∈ im(h).

◦ If g(b) ∈ X, then by de�nition of X as a union we have g(b) ∈ An for some n.

◦ In particular since g(b) ∈ im(g) we have n 6= 1. This means g(b) ∈ g(f(An−1)), meaning that for some
a ∈ An−1 we have g(b) = g(f(a)).

◦ But then since g is one-to-one this implies b = f(a) = h(a) since a ∈ An−1 ⊆ X, and so we also have
b ∈ im(h) in this case.

◦ Hence b ∈ im(h) in either cases, so h is onto. Thus, h is a bijection as required.

• The Cantor-Schröder-Bernstein theorem shows that the relation - is a partial ordering on cardinalities.

◦ A natural followup question is whether this relation is actually a total ordering on cardinalities.

◦ Equivalently, we are asking whether any two sets are always comparable under -, which is to say, given
any two sets, does there necessarily exist an injection from one the other?

◦ It turns out that the answer relies on a foundational axiom of set theory known as the axiom of choice,
which (in one formulation) states that the Cartesian product of an arbitrary collection of nonempty sets
is nonempty.

◦ If the axiom of choice is accepted, it can be shown that - is a total ordering on sets: in fact, it is actually
true that the axiom of choice is equivalent to the statement that - is a total ordering on sets.

• In this formulation (the Cartesian product of an arbitrary collection of nonempty sets is nonempty), the axiom
of choice seems like a natural assumption to make, and it is generally accepted by most mathematicians in
practical work.

◦ There exist many other equivalent formulations of the axiom of choice, some of which seem fairly natural,
and others which are less so.

◦ Another statement equivalent to the axiom of choice is called Zorn's lemma, which states that every
nonempty partially-ordered set having the property that any totally ordered subset has an upper bound
(an element greater than or equal to every element of the subset) has a maximal element (an element
such that no element is greater than it).

◦ A third equivalent to the axiom of choice (familiar to students who have studied linear algebra) is the
statement that every vector space has a basis.

◦ A fourth equivalent to the axiom of choice is called the well-ordering principle, which states that every
set admits a well-ordering (a total ordering in which every nonempty subset has a smallest element).

◦ This fact was one of our axioms [N3] for the de�nition of the integers. However, it is much less intuitive
to ask what a well-ordering on the set R would look like: the usual total ordering ≤ is not a well-ordering,
because there are many sets, like the open interval (0, 1) or even R itself, that have no smallest element
under ≤.
◦ It has also been proven that the axiom of choice is independent of the standard Zermelo-Fraenkel axioms
of set theory, in the sense that the axioms are consistent provided the axiom of choice is accepted if and
only if the axioms are consistent provided the axiom of choice is rejected.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2019-2023. You may not reproduce or distribute this
material without my express permission.
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