- 1. Decide whether each residue class has a multiplicative inverse modulo m. If so, find it, and if not, explain why not:
 - (a) $\overline{10} \mod 25$.
 - (b) $\overline{11} \mod 25$.
 - (c) $\overline{12} \mod 25$.
 - (d) $\overline{30} \mod 42$.
 - (e) $\overline{31} \mod 42$.
 - (f) $\overline{32} \mod 42$.
- For each of the following relations, decide whether they are (i) reflexive, (ii) symmetric, (iii) transitive, (iv) antisymmetric, (v) irreflexive, (vi) an equivalence relation, (vii) a partial ordering, and (viii) a total ordering.
 - (a) $R = \{(1,1), (2,1), (2,2)\}$ on the set $\{1,2\}$.
 - (b) $R = \{(1, 2), (2, 1)\}$ on the set $\{1, 2\}$.
 - (c) $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$ on the set $\{1,2,3,4\}$.
 - (d) The divisibility relation on the set $\{2, -3, 4, -5, 6\}$.
 - (e) The divisibility relation on the set $\{2, -4, -12, 36\}$.
 - (f) The relation R on Z with a R b precisely when $|a| \equiv |b|$ modulo 5.
 - (g) The relation R on \mathbb{R} with a R b precisely when ab > 0.

3. For each of the following functions $f: A \to B$, determine whether (i) f is one-to-one, (ii) f is onto, (iii) f is a bijection.

- (a) $f = \{(1,2), (2,3), (3,4), (4,1)\}$ from $\{1,2,3,4\}$ to itself.
- (b) $f = \{(1,3), (2,4), (3,1), (4,4)\}$ from $\{1,2,3,4\}$ to itself.
- (c) f(x) = 2x from $A = \mathbb{R}$ to $B = \mathbb{R}$.
- (d) f(n) = 2n from $A = \mathbb{Z}$ to $B = \mathbb{Z}$.
- (e) $f(x) = \frac{x}{x-1}$ from $A = \mathbb{R} \setminus \{1\}$ to $B = \mathbb{R}$.
- (f) $f(x) = x^3$ from $A = \mathbb{R}$ to $B = \mathbb{R}$.
- 4. Identify the ordered pairs in the equivalence relation that corresponds to the partition $\{1, 2, 4\}, \{3, 5\}, \{6\}$ of $\{1, 2, 3, 4, 5, 6\}$
- 5. Show $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : |x| = |y|\}$ is an equivalence relation on \mathbb{Z} and list the equivalence classes of 0, 1, 2, -2, 4.
- 6. Find all minimal, maximal, largest, and smallest elements of the set $\{-2, -1, 1, 2, 3, 6\}$ under the divisibility ordering, and on the ordering a R b when a = b or a + 2 < b.
- 7. Suppose $f: A \to B$ is a function.
 - (a) If f is one-to-one, show that there is a bijection between A and im(f). Deduce that #A = #im(f).
 - (b) If A and B are both finite and #A = #B, show that f is one-to-one implies that f is onto.

- 8. Let A, B, C be sets, R be a relation, f, g be functions, and n be a positive integer. Prove the following:
 - (a) Prove that the sum of any six consecutive integers is congruent to 3 modulo 6.
 - (b) Show that the only equivalence relation R on A that is a function from A to A is the identity relation.
 - (c) Prove that $5^n + 6^n \equiv 0 \pmod{11}$ if and only if n is odd.
 - (d) Prove that if A is countable and B is uncountable, then $B \setminus A$ is uncountable.
 - (e) Suppose that $f : A \to A$ is a function. Show that f(f(a)) = a for all $a \in A$ if and only if f^{-1} exists and $f^{-1}(a) = f(a)$ for all $a \in A$.
 - (f) Suppose A, B are fixed sets and let T be the collection of all sets D with $D \subseteq A$ and $D \subseteq B$. Show that $A \cap B$ is the largest element of T.
 - (g) Prove that the set $\mathbb{Q} \times \mathbb{Z}$ is countable and that the set $\mathbb{R} \times \mathbb{Z}$ is uncountable.
 - (h) Prove that $7^n + 5$ is divisible by 6 for all positive integers n.
 - (i) Suppose $f: B \to C$ is one-to-one. If $g, h: A \to B$ have $f \circ g = f \circ h$, show that g = h.
 - (j) Suppose R is a reflexive and transitive relation on a set A. Show that $S = R \cap R^{-1}$ is an equivalence relation on A.
 - (k) If n is any positive integer, prove that n-1 is invertible modulo n and its multiplicative inverse is itself.
 - (l) Prove that there exists a bijection between \mathbb{Q} and $\mathbb{Q} \cap (0,1)$, the set of rational numbers strictly between 0 and 1.
 - (m) Prove that if $f: A \to B$ is one-to-one and $S \subseteq A$, then $f^{-1}(f(S)) = S$.
 - (n) Prove that if $f: A \to B$ is onto and $T \subseteq B$, then $f(f^{-1}(T)) = T$.
 - (o) Suppose $f: A \to B$ is a bijection. Show that $\tilde{f}: \mathcal{P}(A) \to \mathcal{P}(B)$ given by $\tilde{f}(S) = \{f(s) : s \in S\}$ is also a bijection.
 - (p) If $R, S: A \to B$ are relations, prove that $R^{-1} \cap S^{-1} = (R \cap S)^{-1}$.
 - (q) Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Show that $a(b+c) \equiv b(a+d) \pmod{n}$.
 - (r) Suppose R is an equivalence relation on A and S is an equivalence relation on B. Show that the relation T on $A \times B$ given by (a, b) T(a', b') precisely when a R a' and b S b' is an equivalence relation.
 - (s) Suppose \mathcal{P} is a partition of A and \mathcal{Q} is a partition of B. Show that $\mathcal{P} \times \mathcal{Q} = \{X \times Y : X \in \mathcal{P}, Y \in \mathcal{Q}\}$ is a partition of $A \times B$.
 - (t) Let S be the set of equivalence classes of an equivalence relation R on A and define the function $f : A \to S$ via f(a) = [a]. Show that f is one-to-one if and only if R is the identity relation.
 - (u) Prove that the set of all finite subsets of \mathbb{Z} is countable.