Math 1365 (Intensive Mathematical Reasoning)

Lecture #23 of 35 \sim November 2, 2023

Function Composition + One-To-One and Onto Functions

- Function Composition
- One-to-One Functions
- Onto Functions

This material represents $\S3.4.2 + \S3.4.3$ from the course notes.

Recall, I

Recall some definitions:

Definition

If A and B are sets, a <u>function</u> (or <u>map</u>) from A to B is a relation $f : A \rightarrow B$ such that for every $a \in A$ there exists a unique $b \in B$ with $(a, b) \in f$, and in such an event we write f(a) = b.

The set A is called the <u>domain</u> of f and the set B is called the <u>target</u> (or <u>codomain</u>) of f.

Definition

If $f : A \to B$ is a function, the <u>image</u> of f is the set $im(f) = \{b \in B : \exists a \in A \text{ with } f(a) = b\}$ of elements $b \in B$ for which there exists at least one $a \in A$ with f(a) = b.

Note that the image is always a subset of the target, but need not be equal.

Function Composition, I

Here's the formal definition:

Definition

Let $g : A \to B$ and $f : B \to C$ be functions. Then the <u>composite function</u> $f \circ g : A \to C$ is defined by taking $(f \circ g)(a) = f(g(a))$ for all $a \in A$.

Here's the formal definition:

Definition

Let $g : A \to B$ and $f : B \to C$ be functions. Then the <u>composite function</u> $f \circ g : A \to C$ is defined by taking $(f \circ g)(a) = f(g(a))$ for all $a \in A$.

More explicitly, the ordered pairs in $f \circ g$ are those pairs $(a, c) \in A \times C$ for which there exists a $b \in B$ with $(a, b) \in g$ (so that g(a) = b) and with $(b, c) \in f$ (so that f(b) = c).

• In symbolic language,

 $f \circ g = \{(a, c) \in A \times C : \exists b \in B, [(a, b) \in g)] \land [(b, c) \in f]\}.$ Remember that function composition is applied right-to-left: in the composition $f \circ g$, the function g is the one that is applied first. When f and g are both described by rules, it is easiest to find compositions using the definition $(f \circ g)(a) = f(g(a))$.

Example: Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be the functions $f(x) = x^2$ and g(x) = 2x + 1. Find $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$.

When f and g are both described by rules, it is easiest to find compositions using the definition $(f \circ g)(a) = f(g(a))$.

<u>Example</u>: Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be the functions $f(x) = x^2$ and g(x) = 2x + 1. Find $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$.

- We have $(f \circ g)(x) = f(g(x)) = f(2x + 1) = (2x + 1)^2$.
- Likewise $(g \circ f)(x) = g(f(x)) = g(x^2) = 2x^2 + 1$.
- Also, $(f \circ f)(x) = f(f(x)) = f(x^2) = x^4$.
- Finally, $(g \circ g)(x) = g(g(x)) = g(2x + 1) = 4x + 3$.

When f and g are given as sets of ordered pairs, we can use function diagrams to visualize and evaluate compositions: we draw the diagrams for the two functions together, and then follow the arrows from left to right.

• It's very important to make sure that the order of the functions is correct.

When f and g are given as sets of ordered pairs, we can use function diagrams to visualize and evaluate compositions: we draw the diagrams for the two functions together, and then follow the arrows from left to right.

- It's very important to make sure that the order of the functions is correct.
- Remember that function composition is applied right-to-left: in the composition f ∘ g, the function g is the one that is applied first.
- This is most easily remembered using the expression $(f \circ g)(x) = f(g(x))$: when evaluating f(g(x)), we first calculate g(x), and then we apply f to the result.

Function Composition, V

<u>Example</u>: For $f_1 = \{(1, 2), (2, 3), (3, 1), (4, 4)\}$ and $f_2 = \{(1, 1), (2, 3), (3, 2), (4, 2)\}$ on $\{1, 2, 3, 4\}$, here is a composition diagram for $f_1 \circ f_2$:

We can follow the arrows to see that $(f_1 \circ f_2)(1) = 2$, for instance.

Function Composition, VI

<u>Example</u>: For $f_1 = \{(1, 2), (2, 3), (3, 1), (4, 4)\}$ and $f_2 = \{(1, 1), (2, 3), (3, 2), (4, 2)\}$ on $\{1, 2, 3, 4\}$, here is a composition diagram for $f_2 \circ f_1$:

We can follow the arrows to see that $(f_2 \circ f_1)(1) = 3$, for instance.

Notice that the result of function composition depends on the order of the functions: in general, it will be the case that $f \circ g$ and $g \circ f$ are completely unrelated functions.

 Indeed, depending on the domains and images of f and g, it is quite possible that one of f ∘ g is defined while the other is not. For example, suppose $f : \{1,2\} \rightarrow \{a,b\}$ has f(1) = a and f(2) = b, and $g : \{a,b\} \rightarrow \{3,4\}$ has g(a) = 3 and g(b) = 4.

- Then $g \circ f$ exists and is a function from $\{1,2\}$ to $\{3,4\}$.
- Specifically, we have $(g \circ f)(1) = g(f(1)) = g(a) = 3$, and $(g \circ f)(2) = g(f(2)) = g(b) = 4$.

For example, suppose $f : \{1,2\} \rightarrow \{a,b\}$ has f(1) = a and f(2) = b, and $g : \{a,b\} \rightarrow \{3,4\}$ has g(a) = 3 and g(b) = 4.

- Then $g \circ f$ exists and is a function from $\{1,2\}$ to $\{3,4\}$.
- Specifically, we have $(g \circ f)(1) = g(f(1)) = g(a) = 3$, and $(g \circ f)(2) = g(f(2)) = g(b) = 4$.
- However, $f \circ g$ does not exist.
- The only possible elements in the domain are the elements in the domain of g, but if we try to evaluate (f ∘ g)(a), for example, we would have (f ∘ g)(a) = f(g(a)) = f(3), and this expression does not make sense because 3 is not in the domain of f.
- Similarly, (f ∘ g)(b) = f(g(b)) = f(4) also does not make sense.

In general, even when both of them are defined, $f \circ g$ and $g \circ f$ are completely unrelated functions.

- For instance, suppose f(x) = x² and g(x) = 2x + 1 as functions from ℝ to ℝ.
- Then $f(g(x)) = f(2x + 1) = (2x + 1)^2 = 4x^2 + 4x + 1$ while $g(f(x)) = g(x^2) = 2x^2 + 1$.

This tells us that function composition is NOT commutative: $f \circ g \neq g \circ f$ in general.

Composition is not commutative, but it does possess some other algebraic properties:

Proposition (Properties of Composition)

Suppose A, B, C, D are sets.

- Function composition is associative: If f : C → D, g : B → C, and h : A → B are any functions then (f ∘ g) ∘ h and f ∘ (g ∘ h) are equal as functions from A to D.
- 2. The identity function behaves as a left and right identity: For any $f : A \rightarrow B$, $f \circ i_A = f$ and $i_B \circ f = f$.

Algebra of Function Composition, III

1. Function composition is associative: If $f : C \to D$, $g : B \to C$, and $h : A \to B$ are any functions then $(f \circ g) \circ h$ and $f \circ (g \circ h)$ are equal as functions from A to D.

Algebra of Function Composition, III

 Function composition is associative: If f : C → D, g : B → C, and h : A → B are any functions then (f ∘ g) ∘ h and f ∘ (g ∘ h) are equal as functions from A to D.

- The domain of both (f ∘ g) ∘ h and f ∘ (g ∘ h) is A, and the target of both (f ∘ g) ∘ h and f ∘ (g ∘ h) is D.
- Now let a ∈ A. Then by definition we have
 [(f ∘ g) ∘ h](a) = [(f ∘ g)](h(a)) = f(g(h(a))), and we also
 have [f ∘ (g ∘ h)](a) = f[(g ∘ h)(a)] = f(g(h(a))).
- Since these two quantities are equal, we see $[(f \circ g) \circ h](a) = [f \circ (g \circ h)](a)$ for all $a \in A$.
- So, (f ∘ g) ∘ h and f ∘ (g ∘ h) have the same domain and target and take the same value at every element of their common domain. So they are the same function.

2. The identity function behaves as a left and right identity: For any $f : A \rightarrow B$, $f \circ i_A = f$ and $i_B \circ f = f$.

2. The identity function behaves as a left and right identity: For any $f : A \rightarrow B$, $f \circ i_A = f$ and $i_B \circ f = f$.

- Observe that the domain of f ∘ i_A is A and the target is B, the same as for f.
- Then for any a ∈ A we have (f ∘ i_A)(a) = f(i_A(a)) = f(a), and so we see f ∘ i_A and f take the same value at every point of their shared domain. Hence they are equal as functions.
- In the same way, the domain of i_B f is A and the target is B, the same as for f.
- Then for any a ∈ A we have (i_B ∘ f)(a) = i_B(f(a)) = f(a), and so we see i_B ∘ f and f take the same value at every point of their shared domain. Hence they are equal as functions.

Next we examine inverses of functions.

- Under the common interpretation of a function f as a "machine" that operates on an input value to produce an output value, the inverse f⁻¹ would correspond to a machine that inverts this process, taking an output value of f and giving the corresponding input value.
- In particular, if f : A → B, then we would like to have
 f⁻¹: B → A, and on the level of ordered pairs, if (a, b) ∈ f,
 then we would like (b, a) ∈ f⁻¹.

Next we examine inverses of functions.

- Under the common interpretation of a function f as a "machine" that operates on an input value to produce an output value, the inverse f⁻¹ would correspond to a machine that inverts this process, taking an output value of f and giving the corresponding input value.
- In particular, if f : A → B, then we would like to have f⁻¹: B → A, and on the level of ordered pairs, if (a, b) ∈ f, then we would like (b, a) ∈ f⁻¹.
- Indeed, we have already defined an object with this exact property, namely, the inverse relation to *f*.
- However, if $f : A \rightarrow B$ is an arbitrary function, the inverse relation f^{-1} need not be a *function* from B to A.

<u>Example</u>: Suppose $f : \{1, 2, 3\} \rightarrow \{5, 6, 7\}$ is given by $f = \{(1, 5), (2, 7), (3, 6)\}$, so that f(1) = 5, f(2) = 7, and f(3) = 6. Find the inverse relation f^{-1} . Is it a function from $\{5, 6, 7\}$ to $\{1, 2, 3\}$?

<u>Example</u>: Suppose $f : \{1, 2, 3\} \rightarrow \{5, 6, 7\}$ is given by $f = \{(1, 5), (2, 7), (3, 6)\}$, so that f(1) = 5, f(2) = 7, and f(3) = 6. Find the inverse relation f^{-1} . Is it a function from $\{5, 6, 7\}$ to $\{1, 2, 3\}$?

- Swapping the orders of all the pairs yields the inverse relation $f^{-1} = \{(5, 1), (6, 3), (7, 2)\}.$
- Each of the elements in $\{5, 6, 7\}$ appears in exactly one pair, and all of the second coordinates are in $\{1, 2, 3\}$, so this is a function from $\{5, 6, 7\}$ to $\{1, 2, 3\}$.
- Explicitly, we have $f^{-1}(5) = 1$, $f^{-1}(6) = 3$, and $f^{-1}(7) = 2$.

<u>Example</u>: Suppose $g : \{1, 2, 3, 4\} \rightarrow \{5, 6, 7\}$ is given by $g = \{(1, 6), (2, 7), (3, 7), (4, 5)\}$, so that g(1) = 6, g(2) = 7, g(3) = 7, g(4) = 5. Find the inverse relation g^{-1} . Is it a function from $\{5, 6, 7\}$ to $\{1, 2, 3, 4\}$?

<u>Example</u>: Suppose $g : \{1, 2, 3, 4\} \rightarrow \{5, 6, 7\}$ is given by $g = \{(1, 6), (2, 7), (3, 7), (4, 5)\}$, so that g(1) = 6, g(2) = 7, g(3) = 7, g(4) = 5. Find the inverse relation g^{-1} . Is it a function from $\{5, 6, 7\}$ to $\{1, 2, 3, 4\}$?

- Swapping the orders of all the pairs yields the inverse relation $g^{-1} = \{(5,4), (6,1), (7,2), (7,3)\}.$
- However, g⁻¹ is not a function (on any domain) because it contains the ordered pairs (7,1) and (7,3), meaning that g⁻¹ is not well-defined on the element 7.
- The problem is that g maps both 2 and 3 to 7, so we cannot assign a unique value to $g^{-1}(7)$ since we want it to equal both 2 and 3.

<u>Example</u>: Suppose $h : \{1, 2, 3\} \rightarrow \{5, 6, 7, 8\}$ is given by $h = \{(1, 5), (2, 7), (3, 8)\}$, so that h(1) = 5, h(2) = 7, and h(3) = 8. Find the inverse relation h^{-1} . Is it a function from $\{5, 6, 7, 8\}$ to $\{1, 2, 3\}$?

<u>Example</u>: Suppose $h : \{1, 2, 3\} \rightarrow \{5, 6, 7, 8\}$ is given by $h = \{(1, 5), (2, 7), (3, 8)\}$, so that h(1) = 5, h(2) = 7, and h(3) = 8. Find the inverse relation h^{-1} . Is it a function from $\{5, 6, 7, 8\}$ to $\{1, 2, 3\}$?

- Swapping the orders of all the pairs yields the inverse relation $h^{-1} = \{(5, 1), (7, 2), (8, 3)\}.$
- However, h⁻¹ is not a function from {5, 6, 7, 8} to {1, 2, 3}, because there is no pair with first coordinate 6. This is not allowed because then h⁻¹(6) would be undefined.
- In fact, though, h⁻¹ is a function from {5,7,8} to {1,2,3}, since all elements of the domain set {5,7,8} are the first coordinate in a unique pair.
- Explicitly, we have $h^{-1}(5) = 1$, $h^{-1}(7) = 2$, and $h^{-1}(8) = 3$.
- Notice here that im(h) = {5,7,8}, meaning that h⁻¹ is a function from im(h) to the original domain {1,2,3} of h.

We can clarify this behavior by identifying the precise characteristic of the functions that cause these behaviors:

Definition

The function $f : A \to B$ is <u>one-to-one</u> (or <u>injective</u>) if for any $a_1, a_2 \in A$, $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

We can clarify this behavior by identifying the precise characteristic of the functions that cause these behaviors:

Definition

The function $f : A \to B$ is <u>one-to-one</u> (or <u>injective</u>) if for any $a_1, a_2 \in A$, $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

Equivalently, $f : A \to B$ is one-to-one when $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$ – in other words, when f maps unequal elements in its domain to unequal elements in its image.

If we draw a function diagram for f, the definition above says that f is one-to-one whenever we *don't* see two arrows pointing to the same element of the target.

Here's a function diagram for a one-to-one function:

Notice that each of the points on the right has at most one arrow pointing to it.

Here's a function diagram for a function that isn't one-to-one:

This function is not one-to-one because it maps 3 and 4 in the domain to the same value 2 in the target.

When a function is defined symbolically via a rule, we can check whether it is one-to-one using the definition.

- Specifically, we want to know whether f(a₁) = f(a₂) implies that a₁ = a₂.
- If we think f is one-to-one, to show that we would need to write the equation $f(a_1) = f(a_2)$ and then show that the only solutions are the ones where $a_1 \neq a_2$.
- Alternatively, if we think f isn't one-to-one, we can try looking for counterexamples, which would be a pair (a₁, a₂) with f(a₁) = f(a₂) but a₁ ≠ a₂.

One-to-One Functions, V

Examples:

1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 3x - 4 one-to-one?

Examples:

- Is the function f : R → R given by f(x) = 3x 4 one-to-one? Yes: because f(a₁) = f(a₂) says 3a₁ - 4 = 3a₂ - 4. Adding 4 to both sides and then dividing by 3 shows that a₁ = a₂. So f is one-to-one.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n one-to-one?

One-to-One Functions, V

Examples:

- Is the function f : R → R given by f(x) = 3x 4 one-to-one? Yes: because f(a₁) = f(a₂) says 3a₁ - 4 = 3a₂ - 4. Adding 4 to both sides and then dividing by 3 shows that a₁ = a₂. So f is one-to-one.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n one-to-one? Yes: if $g(a_1) = g(a_2)$ then that means $2a_1 = 2a_2$ which upon dividing by 2 yields $a_1 = a_2$.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ one-to-one?

Examples:

- Is the function f : R → R given by f(x) = 3x 4 one-to-one? Yes: because f(a₁) = f(a₂) says 3a₁ - 4 = 3a₂ - 4. Adding 4 to both sides and then dividing by 3 shows that a₁ = a₂. So f is one-to-one.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n one-to-one? Yes: if $g(a_1) = g(a_2)$ then that means $2a_1 = 2a_2$ which upon dividing by 2 yields $a_1 = a_2$.
- Is the function h : ℝ → ℝ given by h(x) = x² one-to-one? No, because for example h(2) = h(-2) but 2 ≠ -2.
- 4. Is the function $k : \mathbb{R}_+ \to \mathbb{R}$ given by $k(x) = x^2$ one-to-one?

One-to-One Functions, V

- Is the function f : R → R given by f(x) = 3x 4 one-to-one? Yes: because f(a₁) = f(a₂) says 3a₁ - 4 = 3a₂ - 4. Adding 4 to both sides and then dividing by 3 shows that a₁ = a₂. So f is one-to-one.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n one-to-one? Yes: if $g(a_1) = g(a_2)$ then that means $2a_1 = 2a_2$ which upon dividing by 2 yields $a_1 = a_2$.
- Is the function h : ℝ → ℝ given by h(x) = x² one-to-one? No, because for example h(2) = h(-2) but 2 ≠ -2.
- 4. Is the function k : R₊ → R given by k(x) = x² one-to-one? Yes: if k(x) = k(y) so that x² = y², then factoring yields x = y or x = -y, but since x, y > 0 (since they are in R₊) the second condition cannot occur, and so x = y.

As we can see from the last two examples, whether a function is one-to-one depends on the domain, though it doesn't depend on the target.

- Specifically, the function h : ℝ → ℝ with h(x) = x² was not one-to-one, but its restriction k = h|_{ℝ+} to the positive real numbers is one-to-one.
- So we see that restricting the domain of a function that isn't one-to-one can produce a one-to-one function.

As we can see from the last two examples, whether a function is one-to-one depends on the domain, though it doesn't depend on the target.

- Specifically, the function h : ℝ → ℝ with h(x) = x² was not one-to-one, but its restriction k = h|_{ℝ+} to the positive real numbers is one-to-one.
- So we see that restricting the domain of a function that isn't one-to-one can produce a one-to-one function.

Any restriction of a one-to-one function to a smaller domain will still be one-to-one.

• Specifically, if $f : A \to B$ is one-to-one and $C \subseteq A$, then for $c_1, c_2 \in C$ with $f|_C(c_1) = f|_C(c_2)$ then by definition $f(c_1) = f(c_2)$ and so $c_1 = c_2$.

Another important property of a function is whether its image is the entire target set:

Definition

The function $f : A \rightarrow B$ is <u>onto</u> (or <u>surjective</u>) if im(f) = B.

More explicitly, $f : A \rightarrow B$ is onto when for any $b \in B$, there exists an $a \in A$ with f(a) = b.

Another important property of a function is whether its image is the entire target set:

Definition

The function $f : A \to B$ is <u>onto</u> (or <u>surjective</u>) if im(f) = B.

More explicitly, $f : A \rightarrow B$ is onto when for any $b \in B$, there exists an $a \in A$ with f(a) = b.

If we draw a function diagram for f, the definition above says that f is onto when every point in the target set has at least one arrow pointing to it.

Here's a function diagram for an onto function:

Notice that each of the points on the right has at least one arrow pointing to it.

Onto Functions, III

Here's a function diagram for a function that isn't onto:

This function is not onto because there is no arrow pointing to the value 4 in the target space.

When a function is defined symbolically via a rule, we can use the definition to check whether it is onto.

- Specifically, we want to know that for every b in the target set B, whether there exists some a in the domain A with f(a) = b.
- If we think *f* is onto, we would need to find (or otherwise show the existence of) such an *a* for each *b* ∈ *B*.
- Alternatively, if we think f isn't onto, we can try looking for counterexamples, which would be an element b ∈ B such that there exists no a ∈ A with f(a) = b.

When a function is defined symbolically via a rule, we can use the definition to check whether it is onto.

- Specifically, we want to know that for every b in the target set B, whether there exists some a in the domain A with f(a) = b.
- If we think *f* is onto, we would need to find (or otherwise show the existence of) such an *a* for each *b* ∈ *B*.
- Alternatively, if we think f isn't onto, we can try looking for counterexamples, which would be an element b ∈ B such that there exists no a ∈ A with f(a) = b.

The property of being onto requires explicitly knowing the target set for f.

 Every function f : A → B is surjective onto its image (i.e., when we think of it as a function f : A → im(f)), but it is not surjective onto any (strictly) larger set.

Examples:

1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 3x - 4 onto?

- Is the function f : R → R given by f(x) = 3x 4 onto? Yes: for any b ∈ R, there exists an a ∈ R with f(a) = b, namely, a = (b+4)/3, as can be found by solving the equation 3a - 4 = b for a.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n onto?

- Is the function f : R → R given by f(x) = 3x 4 onto? Yes: for any b ∈ R, there exists an a ∈ R with f(a) = b, namely, a = (b+4)/3, as can be found by solving the equation 3a - 4 = b for a.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n onto? No: for example, there is no *a* with g(a) = 1, since the number 1/2 is not an integer.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ onto?

- Is the function f : R → R given by f(x) = 3x 4 onto? Yes: for any b ∈ R, there exists an a ∈ R with f(a) = b, namely, a = (b+4)/3, as can be found by solving the equation 3a - 4 = b for a.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n onto? No: for example, there is no a with g(a) = 1, since the number 1/2 is not an integer.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ onto? No, because for example there is no $a \in \mathbb{R}$ such that h(a) = -1.
- 4. Is the function $k : \mathbb{R}_+ \to \mathbb{R}_+$ given by $k(x) = x^2$ onto?

- Is the function f : R → R given by f(x) = 3x 4 onto? Yes: for any b ∈ R, there exists an a ∈ R with f(a) = b, namely, a = (b+4)/3, as can be found by solving the equation 3a - 4 = b for a.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n onto? No: for example, there is no *a* with g(a) = 1, since the number 1/2 is not an integer.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ onto? No, because for example there is no $a \in \mathbb{R}$ such that h(a) = -1.
- 4. Is the function k : R₊ → R₊ given by k(x) = x² onto? Yes: for any positive real number b, there exists a positive real number a, namely, a = √b, with k(a) = b. (This value of a is found by solving the equation a² = b for a.)

Winding Down

Our goal next time is to connect inverse functions with being one-to-one / onto:

Theorem (Inverse Functions)

Suppose $f : A \rightarrow B$ is a function. The following are equivalent:

- 1. f is one-to-one and onto.
- 2. f^{-1} is a function from B to A.
- 3. There exists a function $g : B \to A$ such that $g \circ f = i_A$ and $f \circ g = i_B$.

When any of the conditions (1)-(3) hold, we say f is a <u>bijection</u> from A to B. ("Bijection" = "injection" + "surjection".)

This result gives us a way to know when f has an inverse function, and (when it does have one) how to calculate it.

We introduced function composition and established some of its properties.

We discussed one-to-one and onto functions and established some of their properties.

We introduced the question of when a function possesses an inverse function.

Next lecture: Inverse functions and bijections.