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Function Composition + One-To-One and Onto Functions

Function Composition

One-to-One Functions

Onto Functions

This material represents §3.4.2 + §3.4.3 from the course notes.



Recall, I

Recall some definitions:

Definition

If A and B are sets, a function (or map) from A to B is a relation
f : A→ B such that for every a ∈ A there exists a unique b ∈ B
with (a, b) ∈ f , and in such an event we write f (a) = b.

The set A is called the domain of f and
the set B is called the target (or codomain) of f .

Definition

If f : A→ B is a function, the image of f is the set
im(f ) = {b ∈ B : ∃a ∈ A with f (a) = b} of elements b ∈ B for
which there exists at least one a ∈ A with f (a) = b.

Note that the image is always a subset of the target, but need not
be equal.



Function Composition, I

Here’s the formal definition:

Definition

Let g : A→ B and f : B → C be functions. Then the
composite function f ◦ g : A→ C is defined by taking
(f ◦ g)(a) = f (g(a)) for all a ∈ A.

More explicitly, the ordered pairs in f ◦ g are those pairs
(a, c) ∈ A× C for which there exists a b ∈ B with (a, b) ∈ g (so
that g(a) = b) and with (b, c) ∈ f (so that f (b) = c).

In symbolic language,
f ◦ g = {(a, c) ∈ A×C : ∃b ∈ B, [(a, b) ∈ g)]∧ [(b, c) ∈ f ]}.

Remember that function composition is applied right-to-left: in the
composition f ◦ g , the function g is the one that is applied first.
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Function Composition, III

When f and g are both described by rules, it is easiest to find
compositions using the definition (f ◦ g)(a) = f (g(a)).

Example: Let f : R→ R and g : R→ R be the functions
f (x) = x2 and g(x) = 2x + 1. Find f ◦ g , g ◦ f , f ◦ f , and g ◦ g .

We have (f ◦ g)(x) = f (g(x)) = f (2x + 1) = (2x + 1)2.

Likewise (g ◦ f )(x) = g(f (x)) = g(x2) = 2x2 + 1.

Also, (f ◦ f )(x) = f (f (x)) = f (x2) = x4.

Finally, (g ◦ g)(x) = g(g(x)) = g(2x + 1) = 4x + 3.
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Function Composition, IV

When f and g are given as sets of ordered pairs, we can use
function diagrams to visualize and evaluate compositions: we draw
the diagrams for the two functions together, and then follow the
arrows from left to right.

It’s very important to make sure that the order of the
functions is correct.

Remember that function composition is applied right-to-left:
in the composition f ◦ g , the function g is the one that is
applied first.

This is most easily remembered using the expression
(f ◦ g)(x) = f (g(x)): when evaluating f (g(x)), we first
calculate g(x), and then we apply f to the result.
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Function Composition, V

Example: For f1 = {(1, 2), (2, 3), (3, 1), (4, 4)} and
f2 = {(1, 1), (2, 3), (3, 2), (4, 2)} on {1, 2, 3, 4}, here is a
composition diagram for f1 ◦ f2:

We can follow the arrows to see that (f1 ◦ f2)(1) = 2, for instance.



Function Composition, VI

Example: For f1 = {(1, 2), (2, 3), (3, 1), (4, 4)} and
f2 = {(1, 1), (2, 3), (3, 2), (4, 2)} on {1, 2, 3, 4}, here is a
composition diagram for f2 ◦ f1:

We can follow the arrows to see that (f2 ◦ f1)(1) = 3, for instance.



Function Composition, VII

Notice that the result of function composition depends on the
order of the functions: in general, it will be the case that f ◦ g and
g ◦ f are completely unrelated functions.

Indeed, depending on the domains and images of f and g , it
is quite possible that one of f ◦ g is defined while the other is
not.



Function Composition, VIII

For example, suppose f : {1, 2} → {a, b} has f (1) = a and
f (2) = b, and g : {a, b} → {3, 4} has g(a) = 3 and g(b) = 4.

Then g ◦ f exists and is a function from {1, 2} to {3, 4}.
Specifically, we have (g ◦ f )(1) = g(f (1)) = g(a) = 3, and
(g ◦ f )(2) = g(f (2)) = g(b) = 4.

However, f ◦ g does not exist.

The only possible elements in the domain are the elements in
the domain of g , but if we try to evaluate (f ◦ g)(a), for
example, we would have (f ◦ g)(a) = f (g(a)) = f (3), and this
expression does not make sense because 3 is not in the
domain of f .

Similarly, (f ◦ g)(b) = f (g(b)) = f (4) also does not make
sense.
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Algebra of Function Composition, I

In general, even when both of them are defined, f ◦ g and g ◦ f are
completely unrelated functions.

For instance, suppose f (x) = x2 and g(x) = 2x + 1 as
functions from R to R.

Then f (g(x)) = f (2x + 1) = (2x + 1)2 = 4x2 + 4x + 1 while
g(f (x)) = g(x2) = 2x2 + 1.

This tells us that function composition is NOT commutative:
f ◦ g 6= g ◦ f in general.



Algebra of Function Composition, II

Composition is not commutative, but it does possess some other
algebraic properties:

Proposition (Properties of Composition)

Suppose A,B,C ,D are sets.

1. Function composition is associative: If f : C → D,
g : B → C , and h : A→ B are any functions then (f ◦ g) ◦ h
and f ◦ (g ◦ h) are equal as functions from A to D.

2. The identity function behaves as a left and right identity: For
any f : A→ B, f ◦ iA = f and iB ◦ f = f .



Algebra of Function Composition, III

1. Function composition is associative: If f : C → D,
g : B → C , and h : A→ B are any functions then (f ◦ g) ◦ h
and f ◦ (g ◦ h) are equal as functions from A to D.

Proof:

The domain of both (f ◦ g) ◦ h and f ◦ (g ◦ h) is A, and the
target of both (f ◦ g) ◦ h and f ◦ (g ◦ h) is D.

Now let a ∈ A. Then by definition we have
[(f ◦ g) ◦ h](a) = [(f ◦ g)](h(a)) = f (g(h(a))), and we also
have [f ◦ (g ◦ h)](a) = f [(g ◦ h)(a)] = f (g(h(a))).

Since these two quantities are equal, we see
[(f ◦ g) ◦ h](a) = [f ◦ (g ◦ h)](a) for all a ∈ A.

So, (f ◦ g) ◦ h and f ◦ (g ◦ h) have the same domain and
target and take the same value at every element of their
common domain. So they are the same function.
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Algebra of Function Composition, IV

2. The identity function behaves as a left and right identity: For
any f : A→ B, f ◦ iA = f and iB ◦ f = f .

Proof:

Observe that the domain of f ◦ iA is A and the target is B, the
same as for f .

Then for any a ∈ A we have (f ◦ iA)(a) = f (iA(a)) = f (a),
and so we see f ◦ iA and f take the same value at every point
of their shared domain. Hence they are equal as functions.

In the same way, the domain of iB ◦ f is A and the target is B,
the same as for f .

Then for any a ∈ A we have (iB ◦ f )(a) = iB(f (a)) = f (a),
and so we see iB ◦ f and f take the same value at every point
of their shared domain. Hence they are equal as functions.
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Motivation for Inverses, I

Next we examine inverses of functions.

Under the common interpretation of a function f as a
“machine” that operates on an input value to produce an
output value, the inverse f −1 would correspond to a machine
that inverts this process, taking an output value of f and
giving the corresponding input value.

In particular, if f : A→ B, then we would like to have
f −1 : B → A, and on the level of ordered pairs, if (a, b) ∈ f ,
then we would like (b, a) ∈ f −1.

Indeed, we have already defined an object with this exact
property, namely, the inverse relation to f .

However, if f : A→ B is an arbitrary function, the inverse
relation f −1 need not be a function from B to A.
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Motivation for Inverses, II

Example: Suppose f : {1, 2, 3} → {5, 6, 7} is given by
f = {(1, 5), (2, 7), (3, 6)}, so that f (1) = 5, f (2) = 7, and
f (3) = 6. Find the inverse relation f −1. Is it a function from
{5, 6, 7} to {1, 2, 3}?

Swapping the orders of all the pairs yields the inverse relation
f −1 = {(5, 1), (6, 3), (7, 2)}.
Each of the elements in {5, 6, 7} appears in exactly one pair,
and all of the second coordinates are in {1, 2, 3}, so this is a
function from {5, 6, 7} to {1, 2, 3}.
Explicitly, we have f −1(5) = 1, f −1(6) = 3, and f −1(7) = 2.
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Example: Suppose f : {1, 2, 3} → {5, 6, 7} is given by
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Motivation for Inverses, III

Example: Suppose g : {1, 2, 3, 4} → {5, 6, 7} is given by
g = {(1, 6), (2, 7), (3, 7), (4, 5)}, so that g(1) = 6, g(2) = 7,
g(3) = 7, g(4) = 5. Find the inverse relation g−1. Is it a function
from {5, 6, 7} to {1, 2, 3, 4}?

Swapping the orders of all the pairs yields the inverse relation
g−1 = {(5, 4), (6, 1), (7, 2), (7, 3)}.
However, g−1 is not a function (on any domain) because it
contains the ordered pairs (7, 1) and (7, 3), meaning that g−1

is not well-defined on the element 7.

The problem is that g maps both 2 and 3 to 7, so we cannot
assign a unique value to g−1(7) since we want it to equal
both 2 and 3.



Motivation for Inverses, III
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Motivation for Inverses, IV

Example: Suppose h : {1, 2, 3} → {5, 6, 7, 8} is given by
h = {(1, 5), (2, 7), (3, 8)}, so that h(1) = 5, h(2) = 7, and
h(3) = 8. Find the inverse relation h−1. Is it a function from
{5, 6, 7, 8} to {1, 2, 3}?

Swapping the orders of all the pairs yields the inverse relation
h−1 = {(5, 1), (7, 2), (8, 3)}.
However, h−1 is not a function from {5, 6, 7, 8} to {1, 2, 3},
because there is no pair with first coordinate 6. This is not
allowed because then h−1(6) would be undefined.

In fact, though, h−1 is a function from {5, 7, 8} to {1, 2, 3},
since all elements of the domain set {5, 7, 8} are the first
coordinate in a unique pair.

Explicitly, we have h−1(5) = 1, h−1(7) = 2, and h−1(8) = 3.

Notice here that im(h) = {5, 7, 8}, meaning that h−1 is a
function from im(h) to the original domain {1, 2, 3} of h.
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One-to-One Functions, I

We can clarify this behavior by identifying the precise characteristic
of the functions that cause these behaviors:

Definition

The function f : A→ B is one-to-one (or injective) if for any
a1, a2 ∈ A, f (a1) = f (a2) implies a1 = a2.

Equivalently, f : A→ B is one-to-one when a1 6= a2 implies
f (a1) 6= f (a2) – in other words, when f maps unequal elements in
its domain to unequal elements in its image.

If we draw a function diagram for f , the definition above says that
f is one-to-one whenever we don’t see two arrows pointing to the
same element of the target.
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One-to-One Functions, II

Here’s a function diagram for a one-to-one function:

Notice that each of the points on the right has at most one arrow
pointing to it.



One-to-One Functions, III

Here’s a function diagram for a function that isn’t one-to-one:

This function is not one-to-one because it maps 3 and 4 in the
domain to the same value 2 in the target.



One-to-One Functions, IV

When a function is defined symbolically via a rule, we can check
whether it is one-to-one using the definition.

Specifically, we want to know whether f (a1) = f (a2) implies
that a1 = a2.

If we think f is one-to-one, to show that we would need to
write the equation f (a1) = f (a2) and then show that the only
solutions are the ones where a1 6= a2.

Alternatively, if we think f isn’t one-to-one, we can try
looking for counterexamples, which would be a pair (a1, a2)
with f (a1) = f (a2) but a1 6= a2.



One-to-One Functions, V

Examples:

1. Is the function f : R→ R given by f (x) = 3x − 4 one-to-one?

Yes: because f (a1) = f (a2) says 3a1 − 4 = 3a2 − 4. Adding 4
to both sides and then dividing by 3 shows that a1 = a2. So f
is one-to-one.

2. Is the function g : Z→ Z given by f (n) = 2n one-to-one?
Yes: if g(a1) = g(a2) then that means 2a1 = 2a2 which upon
dividing by 2 yields a1 = a2.

3. Is the function h : R→ R given by h(x) = x2 one-to-one?
No, because for example h(2) = h(−2) but 2 6= −2.

4. Is the function k : R+ → R given by k(x) = x2 one-to-one?
Yes: if k(x) = k(y) so that x2 = y2, then factoring yields
x = y or x = −y , but since x , y > 0 (since they are in R+)
the second condition cannot occur, and so x = y .
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3. Is the function h : R→ R given by h(x) = x2 one-to-one?
No, because for example h(2) = h(−2) but 2 6= −2.

4. Is the function k : R+ → R given by k(x) = x2 one-to-one?
Yes: if k(x) = k(y) so that x2 = y2, then factoring yields
x = y or x = −y , but since x , y > 0 (since they are in R+)
the second condition cannot occur, and so x = y .



One-to-One Functions, VI

As we can see from the last two examples, whether a function is
one-to-one depends on the domain, though it doesn’t depend on
the target.

Specifically, the function h : R→ R with h(x) = x2 was not
one-to-one, but its restriction k = h|R+ to the positive real
numbers is one-to-one.

So we see that restricting the domain of a function that isn’t
one-to-one can produce a one-to-one function.

Any restriction of a one-to-one function to a smaller domain will
still be one-to-one.

Specifically, if f : A→ B is one-to-one and C ⊆ A, then for
c1, c2 ∈ C with f |C (c1) = f |C (c2) then by definition
f (c1) = f (c2) and so c1 = c2.
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Onto Functions, I

Another important property of a function is whether its image is
the entire target set:

Definition

The function f : A→ B is onto (or surjective) if im(f ) = B.

More explicitly, f : A→ B is onto when for any b ∈ B, there exists
an a ∈ A with f (a) = b.

If we draw a function diagram for f , the definition above says that
f is onto when every point in the target set has at least one arrow
pointing to it.
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Onto Functions, II

Here’s a function diagram for an onto function:

Notice that each of the points on the right has at least one arrow
pointing to it.



Onto Functions, III

Here’s a function diagram for a function that isn’t onto:

This function is not onto because there is no arrow pointing to the
value 4 in the target space.



Onto Functions, IV

When a function is defined symbolically via a rule, we can use the
definition to check whether it is onto.

Specifically, we want to know that for every b in the target set
B, whether there exists some a in the domain A with
f (a) = b.

If we think f is onto, we would need to find (or otherwise
show the existence of) such an a for each b ∈ B.

Alternatively, if we think f isn’t onto, we can try looking for
counterexamples, which would be an element b ∈ B such that
there exists no a ∈ A with f (a) = b.

The property of being onto requires explicitly knowing the target
set for f .

Every function f : A→ B is surjective onto its image (i.e.,
when we think of it as a function f : A→ im(f )), but it is not
surjective onto any (strictly) larger set.
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Onto Functions, V

Examples:

1. Is the function f : R→ R given by f (x) = 3x − 4 onto?

Yes:
for any b ∈ R, there exists an a ∈ R with f (a) = b, namely,
a = (b + 4)/3, as can be found by solving the equation
3a− 4 = b for a.

2. Is the function g : Z→ Z given by f (n) = 2n onto? No: for
example, there is no a with g(a) = 1, since the number 1/2 is
not an integer.

3. Is the function h : R→ R given by h(x) = x2 onto? No,
because for example there is no a ∈ R such that h(a) = −1.

4. Is the function k : R+ → R+ given by k(x) = x2 onto? Yes:
for any positive real number b, there exists a positive real
number a, namely, a =

√
b, with k(a) = b. (This value of a is

found by solving the equation a2 = b for a.)
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Winding Down

Our goal next time is to connect inverse functions with being
one-to-one / onto:

Theorem (Inverse Functions)

Suppose f : A→ B is a function. The following are equivalent:

1. f is one-to-one and onto.

2. f −1 is a function from B to A.

3. There exists a function g : B → A such that g ◦ f = iA and
f ◦ g = iB .

When any of the conditions (1)-(3) hold, we say f is a bijection
from A to B. (“Bijection” = “injection” + “surjection”.)

This result gives us a way to know when f has an inverse function,
and (when it does have one) how to calculate it.



Summary

We introduced function composition and established some of its
properties.

We discussed one-to-one and onto functions and established some
of their properties.

We introduced the question of when a function possesses an
inverse function.

Next lecture: Inverse functions and bijections.


