Math 1365 (Intensive Mathematical Reasoning)

Lecture #23 of 35 \sim November 2, 2023

Function Composition $+$ One-To-One and Onto Functions

- **•** Function Composition
- **One-to-One Functions**
- **Onto Functions**

This material represents $\S 3.4.2 + \S 3.4.3$ from the course notes.

Recall, I

Recall some definitions:

Definition

If A and B are sets, a function (or map) from A to B is a relation f : $A \rightarrow B$ such that for every a $\in A$ there exists a unique $b \in B$ with $(a, b) \in f$, and in such an event we write $f(a) = b$.

The set A is called the domain of f and the set B is called the target (or codomain) of f.

Definition

If $f : A \rightarrow B$ is a function, the image of f is the set $\lim(f) = \{b \in B : \exists a \in A \text{ with } f(a) = b\}$ of elements $b \in B$ for which there exists at least one $a \in A$ with $f(a) = b$.

Note that the image is always a subset of the target, but need not be equal.

Function Composition, I

Here's the formal definition:

Definition

Let $g : A \rightarrow B$ and $f : B \rightarrow C$ be functions. Then the composite function $f \circ g : A \to C$ is defined by taking $(f \circ g)(a) = f(g(a))$ for all $a \in A$.

Here's the formal definition:

Definition

Let $g : A \rightarrow B$ and $f : B \rightarrow C$ be functions. Then the composite function $f \circ g : A \to C$ is defined by taking $(f \circ g)(a) = f(g(a))$ for all $a \in A$.

More explicitly, the ordered pairs in $f \circ g$ are those pairs $(a, c) \in A \times C$ for which there exists a $b \in B$ with $(a, b) \in g$ (so that $g(a) = b$) and with $(b, c) \in f$ (so that $f(b) = c$).

• In symbolic language,

 $f \circ g = \{(a, c) \in A \times C : \exists b \in B, [(a, b) \in g] \} \wedge [(b, c) \in f] \}.$ Remember that function composition is applied right-to-left: in the composition $f \circ g$, the function g is the one that is applied first.

When f and g are both described by rules, it is easiest to find compositions using the definition $(f \circ g)(a) = f(g(a))$.

Example: Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be the functions $f(x) = x^2$ and $g(x) = 2x + 1$. Find $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$. When f and g are both described by rules, it is easiest to find compositions using the definition $(f \circ g)(a) = f(g(a))$.

Example: Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be the functions $f(x) = x^2$ and $g(x) = 2x + 1$. Find $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$.

- We have $(f \circ g)(x) = f(g(x)) = f(2x+1) = (2x+1)^2$.
- Likewise $(g \circ f)(x) = g(f(x)) = g(x^2) = 2x^2 + 1$.
- Also, $(f \circ f)(x) = f(f(x)) = f(x^2) = x^4$.
- Finally, $(g \circ g)(x) = g(g(x)) = g(2x + 1) = 4x + 3$.

When f and g are given as sets of ordered pairs, we can use function diagrams to visualize and evaluate compositions: we draw the diagrams for the two functions together, and then follow the arrows from left to right.

• It's very important to make sure that the order of the functions is correct.

When f and g are given as sets of ordered pairs, we can use function diagrams to visualize and evaluate compositions: we draw the diagrams for the two functions together, and then follow the arrows from left to right.

- It's very important to make sure that the order of the functions is correct.
- Remember that function composition is applied right-to-left: in the composition $f \circ g$, the function g is the one that is applied first.
- This is most easily remembered using the expression $(f \circ g)(x) = f(g(x))$: when evaluating $f(g(x))$, we first calculate $g(x)$, and then we apply f to the result.

Function Composition, V

Example: For $f_1 = \{(1, 2), (2, 3), (3, 1), (4, 4)\}\$ and $f_2 = \{(1, 1), (2, 3), (3, 2), (4, 2)\}\$ on $\{1, 2, 3, 4\}$, here is a composition diagram for $f_1 \circ f_2$:

We can follow the arrows to see that $(f_1 \circ f_2)(1) = 2$, for instance.

Function Composition, VI

Example: For $f_1 = \{(1, 2), (2, 3), (3, 1), (4, 4)\}\$ and $f_2 = \{(1, 1), (2, 3), (3, 2), (4, 2)\}\$ on $\{1, 2, 3, 4\}$, here is a composition diagram for $f_2 \circ f_1$:

We can follow the arrows to see that $(f_2 \circ f_1)(1) = 3$, for instance.

Notice that the result of function composition depends on the order of the functions: in general, it will be the case that $f \circ g$ and $g \circ f$ are completely unrelated functions.

• Indeed, depending on the domains and images of f and g , it is quite possible that one of $f \circ g$ is defined while the other is not.

For example, suppose $f: \{1,2\} \rightarrow \{a,b\}$ has $f(1) = a$ and $f(2) = b$, and $g : \{a, b\} \rightarrow \{3, 4\}$ has $g(a) = 3$ and $g(b) = 4$.

- Then $g \circ f$ exists and is a function from $\{1,2\}$ to $\{3,4\}$.
- Specifically, we have $(g \circ f)(1) = g(f(1)) = g(a) = 3$, and $(g \circ f)(2) = g(f(2)) = g(b) = 4.$

For example, suppose $f: \{1,2\} \rightarrow \{a,b\}$ has $f(1) = a$ and $f(2) = b$, and $g : \{a, b\} \rightarrow \{3, 4\}$ has $g(a) = 3$ and $g(b) = 4$.

- Then $g \circ f$ exists and is a function from $\{1, 2\}$ to $\{3, 4\}$.
- Specifically, we have $(g \circ f)(1) = g(f(1)) = g(a) = 3$, and $(g \circ f)(2) = g(f(2)) = g(b) = 4.$
- \bullet However, $f \circ g$ does not exist.
- The only possible elements in the domain are the elements in the domain of g, but if we try to evaluate $(f \circ g)(a)$, for example, we would have $(f \circ g)(a) = f(g(a)) = f(3)$, and this expression does not make sense because 3 is not in the domain of f.
- Similarly, $(f \circ g)(b) = f(g(b)) = f(4)$ also does not make sense.

In general, even when both of them are defined, $f \circ g$ and $g \circ f$ are completely unrelated functions.

- For instance, suppose $f(x) = x^2$ and $g(x) = 2x + 1$ as functions from $\mathbb R$ to $\mathbb R$.
- Then $f(g(x)) = f(2x + 1) = (2x + 1)^2 = 4x^2 + 4x + 1$ while $g(f(x)) = g(x^2) = 2x^2 + 1.$

This tells us that function composition is NOT commutative: $f \circ g \neq g \circ f$ in general.

Composition is not commutative, but it does possess some other algebraic properties:

Proposition (Properties of Composition)

Suppose A, B, C, D are sets.

- 1. Function composition is associative: If $f: C \rightarrow D$, $g : B \to C$, and $h : A \to B$ are any functions then $(f \circ g) \circ h$ and $f \circ (g \circ h)$ are equal as functions from A to D.
- 2. The identity function behaves as a left and right identity: For any $f: A \rightarrow B$, $f \circ i_A = f$ and $i_B \circ f = f$.

Algebra of Function Composition, III

1. Function composition is associative: If $f: C \rightarrow D$, $g : B \to C$, and $h : A \to B$ are any functions then $(f \circ g) \circ h$ and $f \circ (g \circ h)$ are equal as functions from A to D.

Algebra of Function Composition, III

1. Function composition is associative: If $f: C \rightarrow D$, $g : B \to C$, and $h : A \to B$ are any functions then $(f \circ g) \circ h$ and $f \circ (g \circ h)$ are equal as functions from A to D.

- The domain of both $(f \circ g) \circ h$ and $f \circ (g \circ h)$ is A, and the target of both $(f \circ g) \circ h$ and $f \circ (g \circ h)$ is D.
- Now let $a \in A$. Then by definition we have $[(f \circ g) \circ h](a) = [(f \circ g)](h(a)) = f(g(h(a)))$, and we also have $[f \circ (g \circ h)](a) = f[(g \circ h)(a)] = f(g(h(a))).$
- Since these two quantities are equal, we see $[(f \circ g) \circ h](a) = [f \circ (g \circ h)](a)$ for all $a \in A$.
- So, $(f \circ g) \circ h$ and $f \circ (g \circ h)$ have the same domain and target and take the same value at every element of their common domain. So they are the same function.

2. The identity function behaves as a left and right identity: For any $f : A \rightarrow B$, $f \circ i_A = f$ and $i_B \circ f = f$.

2. The identity function behaves as a left and right identity: For any $f: A \rightarrow B$, $f \circ i_A = f$ and $i_B \circ f = f$.

- Observe that the domain of $f \circ i_A$ is A and the target is B, the same as for f
- Then for any $a \in A$ we have $(f \circ i_A)(a) = f(i_A(a)) = f(a)$, and so we see $f \circ i_A$ and f take the same value at every point of their shared domain. Hence they are equal as functions.
- In the same way, the domain of $i_B \circ f$ is A and the target is B, the same as for f .
- Then for any $a \in A$ we have $(i_B \circ f)(a) = i_B(f(a)) = f(a)$, and so we see $i_B \circ f$ and f take the same value at every point of their shared domain. Hence they are equal as functions.

Next we examine inverses of functions.

- \bullet Under the common interpretation of a function f as a "machine" that operates on an input value to produce an output value, the inverse f^{-1} would correspond to a machine that inverts this process, taking an output value of f and giving the corresponding input value.
- In particular, if $f : A \rightarrow B$, then we would like to have $f^{-1}:B\rightarrow A$, and on the level of ordered pairs, if $(a,b)\in f,$ then we would like $(b,a)\in f^{-1}.$

Next we examine inverses of functions.

- \bullet Under the common interpretation of a function f as a "machine" that operates on an input value to produce an output value, the inverse f^{-1} would correspond to a machine that inverts this process, taking an output value of f and giving the corresponding input value.
- In particular, if $f : A \rightarrow B$, then we would like to have $f^{-1}:B\rightarrow A$, and on the level of ordered pairs, if $(a,b)\in f,$ then we would like $(b,a)\in f^{-1}.$
- Indeed, we have already defined an object with this exact property, namely, the inverse relation to f .
- However, if $f : A \rightarrow B$ is an arbitrary function, the inverse relation f^{-1} need not be a *function* from B to A.

Example: Suppose $f: \{1, 2, 3\} \rightarrow \{5, 6, 7\}$ is given by $f = \{(1, 5), (2, 7), (3, 6)\}\text{, so that } f(1) = 5, f(2) = 7, \text{ and }$ $f(3)=6.$ Find the inverse relation $f^{-1}.$ Is it a function from $\{5, 6, 7\}$ to $\{1, 2, 3\}$?

Example: Suppose $f: \{1,2,3\} \rightarrow \{5,6,7\}$ is given by $f = \{(1, 5), (2, 7), (3, 6)\}\)$, so that $f(1) = 5$, $f(2) = 7$, and $f(3)=6.$ Find the inverse relation $f^{-1}.$ Is it a function from $\{5, 6, 7\}$ to $\{1, 2, 3\}$?

- Swapping the orders of all the pairs yields the inverse relation $f^{-1} = \{(5, 1), (6, 3), (7, 2)\}.$
- Each of the elements in $\{5, 6, 7\}$ appears in exactly one pair, and all of the second coordinates are in $\{1, 2, 3\}$, so this is a function from $\{5, 6, 7\}$ to $\{1, 2, 3\}$.
- Explicitly, we have $f^{-1}(5) = 1$, $f^{-1}(6) = 3$, and $f^{-1}(7) = 2$.

Example: Suppose $g: \{1, 2, 3, 4\} \rightarrow \{5, 6, 7\}$ is given by $g = \{(1,6), (2,7), (3,7), (4,5)\}\$, so that $g(1) = 6, g(2) = 7$, $g(3)=7$, $g(4)=5.$ Find the inverse relation $g^{-1}.$ Is it a function from $\{5, 6, 7\}$ to $\{1, 2, 3, 4\}$?

Example: Suppose $g: \{1, 2, 3, 4\} \rightarrow \{5, 6, 7\}$ is given by $g = \{(1, 6), (2, 7), (3, 7), (4, 5)\}\$, so that $g(1) = 6$, $g(2) = 7$, $g(3)=7$, $g(4)=5.$ Find the inverse relation $g^{-1}.$ Is it a function from $\{5, 6, 7\}$ to $\{1, 2, 3, 4\}$?

- Swapping the orders of all the pairs yields the inverse relation $g^{-1}=\{(5,4),(6,1),$ $(7,2),$ $(7,3)\}.$
- However, g^{-1} is not a function (on any domain) because it contains the ordered pairs $(7,1)$ and $(7,3)$, meaning that g^{-1} is not well-defined on the element 7.
- The problem is that g maps both 2 and 3 to 7, so we cannot assign a unique value to $g^{-1}(7)$ since we want it to equal both 2 and 3.

Example: Suppose $h: \{1,2,3\} \rightarrow \{5,6,7,8\}$ is given by $h = \{(1, 5), (2, 7), (3, 8)\}\$, so that $h(1) = 5$, $h(2) = 7$, and $h(3)=8.$ Find the inverse relation $h^{-1}.$ Is it a function from $\{5, 6, 7, 8\}$ to $\{1, 2, 3\}$?

Example: Suppose $h: \{1, 2, 3\} \rightarrow \{5, 6, 7, 8\}$ is given by $h = \{(1, 5), (2, 7), (3, 8)\}\$, so that $h(1) = 5$, $h(2) = 7$, and $h(3)=8.$ Find the inverse relation $h^{-1}.$ Is it a function from $\{5, 6, 7, 8\}$ to $\{1, 2, 3\}$?

- Swapping the orders of all the pairs yields the inverse relation $h^{-1} = \{(5, 1), (7, 2), (8, 3)\}.$
- However, h^{-1} is not a function from $\{5,6,7,8\}$ to $\{1,2,3\}$, because there is no pair with first coordinate 6. This is not allowed because then $h^{-1}(6)$ would be undefined.
- In fact, though, h^{-1} is a function from $\{5, 7, 8\}$ to $\{1, 2, 3\}$, since all elements of the domain set $\{5, 7, 8\}$ are the first coordinate in a unique pair.

Explicitly, we have $h^{-1}(5) = 1$, $h^{-1}(7) = 2$, and $h^{-1}(8) = 3$.

Notice here that $\text{im}(h) = \{5, 7, 8\}$, meaning that h^{-1} is a function from $\text{im}(h)$ to the original domain $\{1, 2, 3\}$ of h.

We can clarify this behavior by identifying the precise characteristic of the functions that cause these behaviors:

Definition

The function $f : A \rightarrow B$ is <u>one-to-one</u> (or <u>injective</u>) if for any $a_1, a_2 \in A$, $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

We can clarify this behavior by identifying the precise characteristic of the functions that cause these behaviors:

Definition

The function $f : A \rightarrow B$ is <u>one-to-one</u> (or <u>injective</u>) if for any $a_1, a_2 \in A$, $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

Equivalently, $f : A \rightarrow B$ is one-to-one when $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$ – in other words, when f maps unequal elements in its domain to unequal elements in its image.

If we draw a function diagram for f , the definition above says that f is one-to-one whenever we *don't* see two arrows pointing to the same element of the target.

Here's a function diagram for a one-to-one function:

Notice that each of the points on the right has at most one arrow pointing to it.

Here's a function diagram for a function that isn't one-to-one:

This function is not one-to-one because it maps 3 and 4 in the domain to the same value 2 in the target.

When a function is defined symbolically via a rule, we can check whether it is one-to-one using the definition.

- Specifically, we want to know whether $f(a_1) = f(a_2)$ implies that $a_1 = a_2$.
- \bullet If we think f is one-to-one, to show that we would need to write the equation $f(a_1) = f(a_2)$ and then show that the only solutions are the ones where $a_1 \neq a_2$.
- Alternatively, if we think f isn't one-to-one, we can try looking for counterexamples, which would be a pair (a_1, a_2) with $f(a_1) = f(a_2)$ but $a_1 \neq a_2$.

Examples:

1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x - 4$ one-to-one?

- 1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x 4$ one-to-one? Yes: because $f(a_1) = f(a_2)$ says $3a_1 - 4 = 3a_2 - 4$. Adding 4 to both sides and then dividing by 3 shows that $a_1 = a_2$. So f is one-to-one.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = 2n$ one-to-one?

- 1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x 4$ one-to-one? Yes: because $f(a_1) = f(a_2)$ says $3a_1 - 4 = 3a_2 - 4$. Adding 4 to both sides and then dividing by 3 shows that $a_1 = a_2$. So f is one-to-one.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = 2n$ one-to-one? Yes: if $g(a_1) = g(a_2)$ then that means $2a_1 = 2a_2$ which upon dividing by 2 yields $a_1 = a_2$.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ one-to-one?

- 1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x 4$ one-to-one? Yes: because $f(a_1) = f(a_2)$ says $3a_1 - 4 = 3a_2 - 4$. Adding 4 to both sides and then dividing by 3 shows that $a_1 = a_2$. So f is one-to-one.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = 2n$ one-to-one? Yes: if $g(a_1) = g(a_2)$ then that means $2a_1 = 2a_2$ which upon dividing by 2 yields $a_1 = a_2$.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ one-to-one? No, because for example $h(2) = h(-2)$ but $2 \neq -2$.
- 4. Is the function $k : \mathbb{R}_+ \to \mathbb{R}$ given by $k(x) = x^2$ one-to-one?

- 1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x 4$ one-to-one? Yes: because $f(a_1) = f(a_2)$ says $3a_1 - 4 = 3a_2 - 4$. Adding 4 to both sides and then dividing by 3 shows that $a_1 = a_2$. So f is one-to-one.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = 2n$ one-to-one? Yes: if $g(a_1) = g(a_2)$ then that means $2a_1 = 2a_2$ which upon dividing by 2 yields $a_1 = a_2$.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ one-to-one? No, because for example $h(2) = h(-2)$ but $2 \neq -2$.
- 4. Is the function $k : \mathbb{R}_+ \to \mathbb{R}$ given by $k(x) = x^2$ one-to-one? Yes: if $k(x) = k(y)$ so that $x^2 = y^2$, then factoring yields $x = y$ or $x = -y$, but since $x, y > 0$ (since they are in \mathbb{R}_+) the second condition cannot occur, and so $x = v$.

As we can see from the last two examples, whether a function is one-to-one depends on the domain, though it doesn't depend on the target.

- Specifically, the function $h : \mathbb{R} \to \mathbb{R}$ with $h(x) = x^2$ was not one-to-one, but its restriction $k = h|_{\mathbb{R}^+}$ to the positive real numbers is one-to-one.
- So we see that restricting the domain of a function that isn't one-to-one can produce a one-to-one function.

As we can see from the last two examples, whether a function is one-to-one depends on the domain, though it doesn't depend on the target.

- Specifically, the function $h : \mathbb{R} \to \mathbb{R}$ with $h(x) = x^2$ was not one-to-one, but its restriction $k = h|_{\mathbb{R}^+}$ to the positive real numbers is one-to-one.
- So we see that restricting the domain of a function that isn't one-to-one can produce a one-to-one function.

Any restriction of a one-to-one function to a smaller domain will still be one-to-one.

• Specifically, if $f : A \rightarrow B$ is one-to-one and $C \subseteq A$, then for $c_1, c_2 \in C$ with $f|_C(c_1) = f|_C(c_2)$ then by definition $f(c_1) = f(c_2)$ and so $c_1 = c_2$.

Another important property of a function is whether its image is the entire target set:

Definition

The function $f : A \rightarrow B$ is <u>onto</u> (or surjective) if $\text{im}(f) = B$.

More explicitly, $f : A \rightarrow B$ is onto when for any $b \in B$, there exists an $a \in A$ with $f(a) = b$.

Another important property of a function is whether its image is the entire target set:

Definition

The function $f : A \rightarrow B$ is <u>onto</u> (or surjective) if $\text{im}(f) = B$.

More explicitly, $f : A \rightarrow B$ is onto when for any $b \in B$, there exists an $a \in A$ with $f(a) = b$.

If we draw a function diagram for f , the definition above says that f is onto when every point in the target set has at least one arrow pointing to it.

Here's a function diagram for an onto function:

Notice that each of the points on the right has at least one arrow pointing to it.

Onto Functions, III

Here's a function diagram for a function that isn't onto:

This function is not onto because there is no arrow pointing to the value 4 in the target space.

When a function is defined symbolically via a rule, we can use the definition to check whether it is onto.

- \bullet Specifically, we want to know that for every b in the target set B, whether there exists some a in the domain A with $f(a) = b$.
- \bullet If we think f is onto, we would need to find (or otherwise show the existence of) such an a for each $b \in B$.
- Alternatively, if we think f isn't onto, we can try looking for counterexamples, which would be an element $b \in B$ such that there exists no $a \in A$ with $f(a) = b$.

When a function is defined symbolically via a rule, we can use the definition to check whether it is onto.

- \bullet Specifically, we want to know that for every b in the target set B, whether there exists some a in the domain A with $f(a) = b$.
- \bullet If we think f is onto, we would need to find (or otherwise show the existence of) such an a for each $b \in B$.
- Alternatively, if we think f isn't onto, we can try looking for counterexamples, which would be an element $b \in B$ such that there exists no $a \in A$ with $f(a) = b$.

The property of being onto requires explicitly knowing the target set for f .

• Every function $f : A \rightarrow B$ is surjective onto its image (i.e., when we think of it as a function $f : A \rightarrow \text{im}(f)$, but it is not surjective onto any (strictly) larger set.

Examples:

1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x - 4$ onto?

- 1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x 4$ onto? Yes: for any $b \in \mathbb{R}$, there exists an $a \in \mathbb{R}$ with $f(a) = b$, namely, $a = (b + 4)/3$, as can be found by solving the equation $3a - 4 = b$ for a.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = 2n$ onto?

- 1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x 4$ onto? Yes: for any $b \in \mathbb{R}$, there exists an $a \in \mathbb{R}$ with $f(a) = b$, namely, $a = (b + 4)/3$, as can be found by solving the equation $3a - 4 = b$ for a.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = 2n$ onto? No: for example, there is no a with $g(a) = 1$, since the number $1/2$ is not an integer.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ onto?

- 1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x 4$ onto? Yes: for any $b \in \mathbb{R}$, there exists an $a \in \mathbb{R}$ with $f(a) = b$, namely, $a = (b + 4)/3$, as can be found by solving the equation $3a - 4 = b$ for a.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = 2n$ onto? No: for example, there is no a with $g(a) = 1$, since the number $1/2$ is not an integer.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ onto? No, because for example there is no $a \in \mathbb{R}$ such that $h(a) = -1$.
- 4. Is the function $k : \mathbb{R}_+ \to \mathbb{R}_+$ given by $k(x) = x^2$ onto?

- 1. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 3x 4$ onto? Yes: for any $b \in \mathbb{R}$, there exists an $a \in \mathbb{R}$ with $f(a) = b$, namely, $a = (b + 4)/3$, as can be found by solving the equation $3a - 4 = b$ for a.
- 2. Is the function $g : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = 2n$ onto? No: for example, there is no a with $g(a) = 1$, since the number $1/2$ is not an integer.
- 3. Is the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2$ onto? No, because for example there is no $a \in \mathbb{R}$ such that $h(a) = -1$.
- 4. Is the function $k: \mathbb{R}_+ \to \mathbb{R}_+$ given by $k(x) = x^2$ onto? Yes: for any positive real number *b*, there exists a positive real number a, namely, $a = \sqrt{b}$, with $k(a) = b$. (This value of a is found by solving the equation $a^2 = b$ for a.)

Winding Down

Our goal next time is to connect inverse functions with being one-to-one / onto:

Theorem (Inverse Functions)

Suppose $f : A \rightarrow B$ is a function. The following are equivalent:

- 1. f is one-to-one and onto.
- 2. f^{-1} is a function from B to A.
- 3. There exists a function $g : B \to A$ such that $g \circ f = i_A$ and $f \circ g = i_B$.

When any of the conditions $(1)-(3)$ hold, we say f is a bijection from A to B. ("Bijection" = "injection" + "surjection".)

This result gives us a way to know when f has an inverse function, and (when it does have one) how to calculate it.

We introduced function composition and established some of its properties.

We discussed one-to-one and onto functions and established some of their properties.

We introduced the question of when a function possesses an inverse function.

Next lecture: Inverse functions and bijections.