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Recall

Recall the definition of a partial ordering from last class:

Definition

Suppose R is a relation on a set A.

R is reflexive when a R a for all a ∈ A.

R is antisymmetric when a R b and b R a imply that a = b.

R is transitive when a R b and b R c imply that a R c.

When is R is reflexive, antisymmetric, and transitive, we say R is a
partial ordering of A (or partial order on A).

If it is also true that for any a, b ∈ A at least one of a R b and
b R a is true, we say R is a total ordering (or linear ordering).



Recall, II

Some common examples of partial and total orderings are as
follows:

The relation ≤ on real numbers is a total ordering.

The relation ≥ on real numbers is also a total ordering.

The divisibility relation | on positive integers is a partial
ordering, but not a total ordering.

The subset relation on sets (inside a universal set U) is a
partial ordering, but not a total ordering.

The alphabetical dictionary ordering on the set of English
words is a total ordering.
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follows:
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Discussion, I

A partial ordering formalizes the idea of comparing the “size” of
two elements in a set.

When R is a partial ordering on A, we can think of the
statement a R b as saying “a is at most as big as b”, or the
reverse “b is at least as big as a”.

This is precisely the meaning of the statement a ≤ b, and in
fact, partial orderings in general are often written using the
symbol ≤ or something that looks like it, even in general
contexts (much like how equivalence relations are often
written as ∼).

For instance, that is why we use the symbol ⊆ for the subset
relation: to remind you that ⊆ has similar properties to ≤.
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Discussion, II

In a total ordering, the additional condition that for any a, b in A
at least one of a R b and b R a is true says that any two elements
are always comparable.

In other words, among the two elements a and b, one of them
is always bigger than the other with respect to the ordering R
(or possibly, they are equal).

Precisely: when a R b is true then b is bigger, while when
b R a is true then a is bigger. (When both a R b and b R a
are true, then by antisymmetry, a = b.)

In many contexts when we are working with partial and total
orderings, important properties are often attached to extremal
elements: elements that are the smallest or the largest with respect
to the ordering.
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Smallest and Largest, I

We formalize these notions as follows:

Definition

Suppose R is a partial ordering on a set A.

We say that an element x ∈ A is a smallest element (or
least element) of A with respect to R when x R a for all a ∈ A.

We say x ∈ R is a largest element (or greatest element) of A with
respect to R if a R x for all a ∈ A.

Smallest and largest elements need not exist, as you will see in the
examples on the next slides. But when they do exist, they are
unique (as we will show very soon): thus we may refer to the
smallest element rather than merely a smallest element.
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Smallest and Largest, II

Reminders:
x is smallest when x R a for all a ∈ A.
x is largest when a R x for all a ∈ A.

Examples: For each partial ordering on each set, identify the
smallest and largest elements, if they exist.

1. The set {1, 2, 3, 6, 10} with ordering ≤.

2. The set {1, 2, 3, 5, 6} with the divisibility ordering |.

3. The set {3, 4, 5, 6, 7, 8} with the divisibility ordering |.

4. The subsets of {1, 2, 3, 4, 5} with the subset ordering ⊆.
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Reminders:
x is smallest when x R a for all a ∈ A.
x is largest when a R x for all a ∈ A.

Examples: For each partial ordering on each set, identify the
smallest and largest elements, if they exist.

1. The set {1, 2, 3, 6, 10} with ordering ≤.

Smallest: 1. Largest: 10.

2. The set {1, 2, 3, 5, 6} with the divisibility ordering |.
Smallest: 1. Largest: does not exist.

3. The set {3, 4, 5, 6, 7, 8} with the divisibility ordering |.
Smallest: does not exist. Largest: does not exist.

4. The subsets of {1, 2, 3, 4, 5} with the subset ordering ⊆.

Smallest: {} = ∅. Largest: {1, 2, 3, 4, 5}.



Smallest and Largest, III

Reminders:
x is smallest when x R a for all a ∈ A.
x is largest when a R x for all a ∈ A.

Examples: For each partial ordering on each set, identify the
smallest and largest elements, if they exist.

5. Nonempty subsets of {1, 2, 3, 4, 5} with the subset ordering ⊆.

6. The set of positive integers with ordering ≤.

7. The set of positive real numbers with ordering ≤.

8. The set Z of integers with ordering ≤.
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Reminders:
x is smallest when x R a for all a ∈ A.
x is largest when a R x for all a ∈ A.

Examples: For each partial ordering on each set, identify the
smallest and largest elements, if they exist.

5. Nonempty subsets of {1, 2, 3, 4, 5} with the subset ordering ⊆.

Smallest: does not exist. Largest: {1, 2, 3, 4, 5}.
6. The set of positive integers with ordering ≤.

Smallest: 1. Largest: does not exist.

7. The set of positive real numbers with ordering ≤.

Smallest: does not exist. Largest: does not exist.

8. The set Z of integers with ordering ≤.

Smallest: does not exist. Largest: does not exist.



Smallest and Largest, IV

Let’s now prove that there is always at most one smallest and at
most one largest element:

Proposition (Smallest and Largest)

Let A be a set.

1. If R is a partial ordering on A, then there is at most one
smallest element of A and at most one largest element of A.

2. If R is a total ordering on A, and A is finite and nonempty,
then there is exactly one smallest and exactly one largest
element.

You get to prove (2) yourself on Homework 8. (A good approach is
to use induction on the number of elements in the set.)



Smallest and Largest, IV

Let’s now prove that there is always at most one smallest and at
most one largest element:

Proposition (Smallest and Largest)

Let A be a set.

1. If R is a partial ordering on A, then there is at most one
smallest element of A and at most one largest element of A.

2. If R is a total ordering on A, and A is finite and nonempty,
then there is exactly one smallest and exactly one largest
element.

You get to prove (2) yourself on Homework 8. (A good approach is
to use induction on the number of elements in the set.)



Smallest and Largest, V

1. If R is a partial ordering on A, then there is at most one
smallest element of A and at most one largest element of A.

Proof:

First suppose x and y are both smallest elements of A.

Then x R y since x is smallest.

Also, y R x since y is smallest.

But then by antisymmetry, x = y .

A very similar argument works for largest elements.
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Minimal and Maximal, I

Closely related to smallest and largest elements are minimal and
maximal elements:

Definition

Suppose R is a partial ordering on a set A.

We say that an element x ∈ A is a minimal element of A with
respect to R (or just minimal) when y R x implies y = x.

We say x ∈ A is a maximal element of A with respect to R (or just
maximal) when x R y implies y = x.

The intuition for these definitions is as follows:

An element x is minimal when there is nothing strictly below
it: i.e., there is no y with y R x and y 6= x .

An element x is maximal when there is nothing strictly above
it: i.e., there is no y with x R y and y 6= x .
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Minimal and Maximal, II

Reminders:
x is minimal when y R x implies y = x .
x is maximal when x R y implies y = x .

Examples: For each partial ordering on each set, identify all
minimal and maximal elements, if they exist.

1. The set {1, 2, 3, 6, 10} with ordering ≤.

2. The set {1, 2, 3, 5, 6} with the divisibility ordering |.

3. The set {3, 4, 5, 6, 7, 8} with the divisibility ordering |.

4. The subsets of {1, 2, 3, 4, 5} with the subset ordering ⊆.
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Reminders:
x is minimal when y R x implies y = x .
x is maximal when x R y implies y = x .

Examples: For each partial ordering on each set, identify all
minimal and maximal elements, if they exist.

1. The set {1, 2, 3, 6, 10} with ordering ≤.

Minimal: 1. Maximal: 10.

2. The set {1, 2, 3, 5, 6} with the divisibility ordering |.
Minimal: 1. Maximal: 5, 6.

3. The set {3, 4, 5, 6, 7, 8} with the divisibility ordering |.
Minimal: 3, 4, 5, 7. Maximal: 5, 6, 7, 8.

4. The subsets of {1, 2, 3, 4, 5} with the subset ordering ⊆.

Minimal: {} = ∅. Maximal: {1, 2, 3, 4, 5}.



Minimal and Maximal, III

Reminders:
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Minimal and Maximal, III

Reminders:
x is minimal when y R x implies y = x .
x is maximal when x R y implies y = x .

Examples: For each partial ordering on each set, identify all
minimal and maximal elements, if they exist.

5. Nonempty subsets of {1, 2, 3, 4, 5} with the subset ordering ⊆.

Minimal: {1}, {2}, {3}, {4}, {5}. Maximal: {1, 2, 3, 4, 5}.
6. The set of positive integers with ordering ≤.

Minimal: 1. Maximal: does not exist.

7. The set of positive real numbers with ordering ≤.

Minimal: does not exist. Maximal: does not exist.

8. The set Z of integers with ordering ≤.

Minimal: does not exist. Maximal: does not exist.



Minimal and Maximal, IV

The notions of minimal element (“nothing is smaller than x”) and
smallest element (“everything is greater than x”) capture very
similar ideas, although as we can see from the examples, they are
not the same.

For instance, with the divisibility relation on {1, 2, 3, 5, 6}, we
saw that 1 was the smallest element and also the only
minimal element.

But for the divisibility relation on {3, 4, 5, 6, 7, 8}, there was
no smallest element, yet 3, 4, 5, and 7 were all minimal.

Likewise, being maximal is very similar to being greatest, though
again, they’re not always the same.
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Minimal and Maximal, V

In fact, if there is a smallest element then it will be the unique
minimal element, and if there is a largest element then it will be
the unique maximal element:

Proposition (Minimal and Maximal Properties)

3. Let R be a partial ordering on a set A. If x ∈ A is smallest
then x is the unique minimal element of A, and if x ∈ A is
largest then x is the unique maximal element of A.

4. If R is a total ordering and x ∈ A is a minimal element of A,
then x is the smallest element of A. Likewise, if x ∈ A is a
maximal element of A, then x is the largest element of A. In
particular, a total ordering has at most one minimal element
and one maximal element.

Item (4) says that we have an even closer connection between
minimal and smallest elements under a total ordering.



Minimal and Maximal, VI

3. Let R be a partial ordering on a set A. If x ∈ A is smallest
then x is the unique minimal element of A, and if x ∈ A is
largest then x is the unique maximal element of A.

Proof:

Recall x is smallest when x R a for all a ∈ A, and
x is minimal when y R x implies y = x .

First suppose x is a smallest element of A.

Then x is minimal: if y R x then since x is smallest we also
have x R y , so by antisymmetry we see that y = x .

Additionally, if z is some other minimal element, then since x
is smallest we have x R z , but since z is minimal this implies
z = x : thus, x is the unique minimal element.

A similar argument (with all of the directions reversed)
establishes the corresponding result for largest elements.
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Minimal and Maximal, VII

4. If R is a total ordering and x ∈ A is a minimal element of A,
then x is the smallest element of A. Likewise, if x ∈ A is a
maximal element of A, then x is the largest element of A. In
particular, a total ordering has at most one minimal element
and one maximal element.

Proof:

Suppose R is a total ordering and x is minimal.

Then for any y ∈ A we either have y R x or x R y .

But since x is minimal, y R x can only happen when y = x .
So, if y 6= x we must have x R y , meaning that x is the
smallest element of A.

A similar argument works for maximal and largest elements.

The last statement then follows immediately from (1): there
can be at most one smallest and at most one largest element.
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Minimal and Maximal, VIII

We remark that item (4) in the proposition is essentially the
converse of item (3) – if x is a unique minimal element of A then x
is the smallest element of A – but it has an extra hypothesis:
namely, that R is a total ordering.

In fact this extra hypothesis is necessary, although it is not so
easy to write down a counterexample: i.e., a set with a unique
minimal element but no smallest element.

One reason for this is that in any finite set with a unique
minimal element, that unique minimal element is actually
smallest. (This can be shown by induction on the number of
elements in the set – see the notes for the details.)

Thus, any possible counterexample must involve an infinite
set.
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We remark that item (4) in the proposition is essentially the
converse of item (3) – if x is a unique minimal element of A then x
is the smallest element of A – but it has an extra hypothesis:
namely, that R is a total ordering.

In fact this extra hypothesis is necessary, although it is not so
easy to write down a counterexample: i.e., a set with a unique
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Minimal and Maximal, IX

Here is a partial ordering on a set that has a unique minimal
element but no smallest element:

Take A to be the set of positive real numbers along with an
extra number ? under the usual ordering ≤, where we also
declare ? ≤ ? but otherwise ? is not comparable to any of the
positive real numbers.

You can check that this actually is a partial ordering, if you
like.

Then ? is the unique minimal element of A (since y ≤ ? is
only true when y = ?).

But ? is not the smallest element of A, since for example
? 6≤ 1.
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Minimal and Maximal, X

To finish our discussion, here are some examples of smallest,
largest, minimal, and maximal elements that are of concrete
interest.

1. If A is the set of positive common divisors of two positive
integers a and b and R is the divisibility relation, the largest
element of A under R is the greatest common divisor
gcd(a, b).

2. If A is the set of positive common multiples of two positive
integers a and b and R is the divisibility relation, the smallest
element of A under R is the least common multiple lcm(a, b).
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Minimal and Maximal, XI

3. If F is the collection of sets that are simultaneously subsets of
the sets B and C , and R is the subset relation, the largest
element of F under R is the intersection B ∩ C .

4. If F is the collection of sets each containing all of the
elements of the two sets B and C , and R is the subset
relation, the smallest element of F under R is the union
B ∪ C .

5. If A is the set of real numbers of the form x2 for some x ∈ R,
and R is the relation ≤, then the smallest element of A is the
number 0.

We usually express this statement in this simpler form: if
x ∈ R then x2 ≥ 0. This seemingly trivial inequality has very
many applications in establishing other inequalities.
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Upcoming: Functions

Next class, we start the third major topic in this chapter: functions.

Our first goal is to explain how to give a formal definition for
a function using the language of relations.

We will then establish some very basic properties of functions
that can be interpreted in terms of relations.

Next, we discuss function composition, which we can pose
again in the language of relations, and establish some basic
algebraic properties of composition.

Then, we will discuss the question of when functions possess
an inverse function, along with the closely related notions of
when a function is one-to-one and when a function is onto.

Finally, we will discuss bijections – these are functions that are
both one-to-one and onto. This discussion lead us quite
naturally into the last major topic in the chapter: cardinality.
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Summary

We discussed smallest, largest, minimal, and maximal elements,
and gave some examples.

We established some properties of smallest, largest, minimal, and
maximal elements.

Next lecture: Functions, properties of functions.


