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Recall

Recall the definition of a relation and what it means for a relation
to be reflexive, symmetric, and transitive.

Definition

For sets A and B, we say R is a relation from A to B, written
R : A→ B, when R is a subset of the Cartesian product A× B.

When (a, b) ∈ R, we write a R b.

Additionally, we say that
R is reflexive when a R a for all a ∈ A.
R is symmetric when a R b implies b R a for all a, b ∈ A.
R is transitive when a R b and b R c imply a R c for all a, b, c ∈ A.



Equivalence Relations, I

We now define the general notion of an equivalence relation:

Definition

If R is a relation on the set A, we say R is an equivalence relation
when it is reflexive, symmetric, and transitive.

The prototypical example of an equivalence relation is equality of
elements in a set.

It is not hard to see that the identity relation on any set A is
an equivalence relation.

In particular, equality of integers, equality of rational numbers,
equality of real numbers, and equality of sets are all
equivalence relations.
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Equivalence Relations, II

Examples:

If m is any positive integer, the mod-m congruence relation
≡m on integers is an equivalence relation.

The biconditional relation ⇔ on logical propositions is an
equivalence relation. (That justifies why we also call it
“logical equivalence”!)

The relation of having the same birthday (on the set of
people) is an equivalence relation: everyone has the same
birthday as themselves, if P has the same birthday as Q then
Q has the same birthday as P, and if P,Q and Q,R have the
same birthday, then P,R also have the same birthday.
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Equivalence Relations, III

Non-Examples:

The subset relation ⊆ on sets is not an equivalence relation:
although it is reflexive and transitive, it is not symmetric.

The relation R = {(1, 1), (2, 3), (3, 2)} on A = {1, 2, 3, 4} is
not an equivalence relation: although it is symmetric, it is
neither reflexive nor transitive.

The empty relation on A = {1, 2, 3, 4} is not an equivalence
relation: although it is symmetric and transitive, it is not
reflexive.

The “differs by at most 1” relation
R = {(a, b) ∈ Z× Z : |b − a| ≤ 1} on integers is not an
equivalence relation: it is reflexive and symmetric, but it is not
transitive.
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Equivalence Relations, IV

In most settings, it is very common to use a symbol like ∼ to
represent an equivalence relation rather than the letter R, because
the letter R produces expressions that are harder to parse.

In our discussion, we will continue to use the letter R because
we are still examining basic properties of equivalence relations.



Equivalence Classes, I

We saw previously that the residue classes a modulo m had a
number of very useful properties. There is a natural extension of
this concept to a general equivalence relation:

Definition

If R is an equivalence relation on the set A, we define the
equivalence class of a as [a] = {b ∈ A : a R b}, the set of all
elements b ∈ A that are related to a via R.

Notice that when R is the mod-m congruence relation on integers,
the equivalence class [a] of the element a is the residue class
a = {b ∈ Z : a ≡ b (mod m)}. So the definition above generalizes
our earlier notion of a residue class.
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Equivalence Classes, II

Example: Let R be the equivalence relation
R = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4)} on
A = {1, 2, 3, 4}. Find the equivalence classes [1], [2], [3], and [4].

The equivalence classes are [1] = {1, 4}, [2] = {2, 3},
[3] = {2, 3}, and [4] = {1, 4}.
Notice that there are two different equivalence classes, namely
[1] = [4] = {1, 4} and [2] = [3] = {2, 3}, and also notice that
every element of A lies in exactly one of these equivalence
classes.
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Equivalence Classes, III

Example: Let R be the equivalence relation
R = {(1, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)} on
A = {1, 2, 3, 4, 5}. Find the equivalence classes [1], [2], [3], [4], [5].

The equivalence classes are [1] = {1}, [2] = {2},
[3] = {3, 4} = [4], and [5] = {5}.
Notice that there are four different equivalence classes and
that every element of A lies in exactly one of these
equivalence classes.



Equivalence Classes, III

Example: Let R be the equivalence relation
R = {(1, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)} on
A = {1, 2, 3, 4, 5}. Find the equivalence classes [1], [2], [3], [4], [5].

The equivalence classes are [1] = {1}, [2] = {2},
[3] = {3, 4} = [4], and [5] = {5}.
Notice that there are four different equivalence classes and
that every element of A lies in exactly one of these
equivalence classes.



Equivalence Classes, IV

Example: If R is the identity relation on the set A, describe the
equivalence class [a].

This is a bit of a trick, because the equivalence class [a] of the
element a is simply the set {a} containing a by itself.

That’s because since no other elements of A are related to a
except for a itself.
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Equivalence Classes, V

Example: Under the equivalence relation “having the same
birthday” on the set of people, what is the equivalence class [P] of
a person P? How many different equivalence classes are there?

Again by definition, the equivalence class [P] is the set of
everyone who has the same birthday as P.

Notice that we may label these equivalence classes by the
shared birthday (e.g., January 1, January 2, ... , up through
December 31).

From this description, we can see that there are exactly 366
equivalence classes (one for each possible birthday, including
February 29) and every person lies in exactly one of these
equivalence classes (namely, the one labeled with their
birthday).
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Properties of Equivalence Classes, I

Let’s show that some of the properties we saw in the examples
hold for general equivalence classes:

Proposition (Properties of Equivalence Classes)

Suppose R is an equivalence relation on the set A. Then

1. For any a ∈ A, a is an element of [a].

2. If a, b ∈ A, then [a] = [b] if and only if a R b.

3. Two equivalence classes of R on A are either disjoint or
identical.

4. There is a unique equivalence class of R on A containing a,
namely, [a].



Properties of Equivalence Classes, II

1. For any a ∈ A, a is an element of [a].

Proof:

Since R is reflexive, a R a, so by definition, a ∈ [a].

2. If a, b ∈ A, then [a] = [b] if and only if a R b.

Proof:

First suppose that [a] = [b].

By (1), since b ∈ [b], we see that b ∈ [a].

But then by definition of the equivalence class [a], that means
a R b, as desired.
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Properties of Equivalence Classes, III

2. If a, b ∈ A, then [a] = [b] if and only if a R b.

Proof (continued):

Now suppose a R b. We must show [a] ⊆ [b] and [b] ⊆ [a].

For the first one, suppose c ∈ [a].

Then by definition a R c , so by symmetry c R a.

Now apply transitivity to c R a and a R b to see that c R b,
and so by symmetry again, we see b R c.

Hence by definition, c ∈ [b], so we conclude [a] ⊆ [b].

A very similar argument shows the other containment
[b] ⊆ [a], and so [a] = [b].
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Properties of Equivalence Classes, IV

3. Two equivalence classes of R on A are either disjoint or
identical.

Proof:

Suppose that [a] and [b] are two equivalence classes of R.

If they are disjoint, we are done, so suppose there is some c
contained in both: then a R c and also b R c .

By symmetry, b R c implies c R b, and then by transitivity, we
conclude that a R b.

Then by property (2), we conclude [a] = [b].

Hence the two equivalence classes [a] and [b] are either
disjoint or identical, as claimed.
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class containing a must equal [a], so in fact, [a] is the unique
equivalence class of R containing a.
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Partitions and Equivalence Relations, I

From the results in the proposition, we can see that the
equivalence classes are nonempty, pairwise disjoint subsets of A
whose union is A. This particular situation is given a name:

Definition

If A is a set, a partition P of A is a family of nonempty, pairwise
disjoint sets whose union is A. The sets in P are called parts of the
partition.

The idea of a partition is simply that it breaks up the set A into
smaller nonoverlapping parts.



Partitions and Equivalence Relations, II

Examples:

The sets {1, 5} and {2, 3, 4} yield a partition of {1, 2, 3, 4, 5};
explicitly, we could write P = {{1, 5}, {2, 3, 4}}.

The sets {1}, {2, 3}, {4, 5} yield a different partition of
{1, 2, 3, 4, 5}.
The sets {1}, {2}, {3}, {4, 5} yield a third partition of
{1, 2, 3, 4, 5}.
The sets Z+ = {1, 2, 3, . . . }, {0}, and
Z− = {−1,−2,−3, . . . } yield a partition of the integers.

The sets E = {. . . ,−4,−2, 0, 2, 4, . . . } and
O = {. . . ,−5,−3,−1, 1, 3, 5, . . . } of even and odd numbers
yield a different partition of the integers.
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Partitions and Equivalence Relations, III

Non-Examples:

The sets {1, 2}, {3, 4}, and {4, 5} do not form a partition of
{1, 2, 3, 4, 5} because the sets are not pairwise disjoint:
specifically, {3, 4} and {4, 5} have the element 4 in common.

The sets {1, 2, 3} and {5} do not form a partition of
{1, 2, 3, 4, 5} because the union of the sets is not all of
{1, 2, 3, 4, 5}: the element 4 is missing.



Partitions and Equivalence Relations, IV

Our results above show that if R is any equivalence relation on a
set A, then the equivalence classes of R yield a partition of A.
Let’s verify this explicitly:

The union of the equivalence classes is A, because every
element of A lies in a residue class.

Equivalence classes are nonempty, because a ∈ [a] for any
a ∈ A.

And finally, equivalence classes are pairwise disjoint, because
different equivalence classes are disjoint.

In fact, the converse of the result above is also true!

In other words, if we have a partition of A, then it arises as the
family of equivalence classes of an equivalence relation on A.
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Partitions and Equivalence Relations, V

To illustrate the idea, consider the partition P = {{1, 5}, {2, 3, 4}}
of {1, 2, 3, 4, 5}. Let’s try to write down an equivalence relation R
with those equivalence classes: {1, 5} and {2, 3, 4}.

First, R must contain the ordered pairs (1, 1), (2, 2), (3, 3),
(4, 4), and (5, 5) since it is reflexive.

Also, R must also contain the pairs (1, 5) and (5, 1) because 1
and 5 are supposed to lie in the same equivalence class {1, 5}.
Likewise, R must contain all of the pairs (2, 3), (2, 4), (3, 2),
(3, 4), (4, 2), and (4, 3) because 2, 3, and 4 all lie in the same
equivalence class.

Can R contain any other pairs? No, because the only pairs
left will mix elements from different parts of the partition, and
those elements aren’t supposed to be related to each other.

So the only choice is R = {(1, 1), (1, 5), (5, 1), (5, 5),
(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}.
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Partitions and Equivalence Relations, VI

We showed R = {(1, 1), (1, 5), (5, 1), (5, 5), (2, 2), (2, 3), (2, 4),
(3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)} was the only possible
relation whose equivalence classes are the parts {1, 5} and {2, 3, 4}
of the partition P = {{1, 5}, {2, 3, 4}} of {1, 2, 3, 4, 5}.

Is this R actually an equivalence relation?

Yes:

Observe a R b when both a, b are both in {1, 5} or in {2, 3, 4}.
So then a R a because a, a are both in the same part.

Also, if a R b then a, b are in the same part, but then so are
b, a, meaning b R a.

And finally, if a R b and b R c then a, b and b, c are in the
same part, meaning all three of a, b, c are in the same part, so
in particular so are a, c , and that means a R c .

Notice R is the union of the Cartesian products {1, 5} × {1, 5} and
{2, 3, 4} × {2, 3, 4} of the underlying parts of the partition.



Partitions and Equivalence Relations, VI

We showed R = {(1, 1), (1, 5), (5, 1), (5, 5), (2, 2), (2, 3), (2, 4),
(3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)} was the only possible
relation whose equivalence classes are the parts {1, 5} and {2, 3, 4}
of the partition P = {{1, 5}, {2, 3, 4}} of {1, 2, 3, 4, 5}.

Is this R actually an equivalence relation? Yes:

Observe a R b when both a, b are both in {1, 5} or in {2, 3, 4}.
So then a R a because a, a are both in the same part.

Also, if a R b then a, b are in the same part, but then so are
b, a, meaning b R a.

And finally, if a R b and b R c then a, b and b, c are in the
same part, meaning all three of a, b, c are in the same part, so
in particular so are a, c , and that means a R c .

Notice R is the union of the Cartesian products {1, 5} × {1, 5} and
{2, 3, 4} × {2, 3, 4} of the underlying parts of the partition.



Partitions and Equivalence Relations, VII

In fact, we can use the same construction idea as in the example to
prove the result in general:

Theorem (Equivalence Relations and Partitions)

Let A be a set. If R is any equivalence relation on A, then the
equivalence classes of R form a partition P of A.

Conversely, if P is a partition of A, then there exists a unique
equivalence relation R on A whose equivalence classes are the sets
in P, namely, the equivalence relation R =

⋃
X∈P(X × X )

consisting of all ordered pairs of elements that are in the same part
X of the partition P.

The notation may look a little scary, but it’s just a formal way to
say that the relation R simply says a R b precisely when a and b
are elements of the same part of the partition P.
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Partitions and Equivalence Relations, VIII

Proof (preamble):

We showed earlier that the equivalence classes of an
equivalence relation form a partition.

Now suppose P is a partition and consider the relation
R =

⋃
X∈P X × X consisting of all ordered pairs of elements

that are in the same part X of the partition P.

We need to show the following things:

1. The relation R is reflexive.
2. The relation R is symmetric.
3. The relation R is transitive.
4. The equivalence classes of R are the parts of the

partition P.
5. R is the unique equivalence relation whose equivalence

classes are the parts of P.



Partitions and Equivalence Relations, IX

Let P be a partition of A, and define R =
⋃

X∈P X × X .

1. The relation R is reflexive.

Proof:

For any a ∈ A, by the definition of a partition we must have
a ∈ X for some X ∈ P.

But then (a, a) is an element of X × X , as required.

2. The relation R is symmetric.

Proof:

Suppose (a, b) ∈ R.

By the definition of R as a union, we must have
(a, b) ∈ X × X for some X ∈ P.

This means a ∈ X and b ∈ X .

But then (b, a) ∈ X × X also, so (b, a) ∈ R.
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Partitions and Equivalence Relations, X

Let P be a partition of A, and define R =
⋃

X∈P X × X .

3. The relation R is transitive.

Proof:

Suppose (a, b) ∈ R and (b, c) ∈ R.

Then we must have (a, b) ∈ X × X and (b, c) ∈ Y × Y for
some X ,Y ∈ P.

This means a ∈ X and b ∈ X , and also b ∈ Y and c ∈ Y .

But because P is a partition, since b ∈ X and b ∈ Y we must
have X = Y .

Then a ∈ X and also c ∈ X , so (a, c) ∈ X × X and so
(a, c) ∈ R.

So now we have shown R is an equivalence relation.



Partitions and Equivalence Relations, X
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Partitions and Equivalence Relations, XI

Let P be a partition of A, and define R =
⋃

X∈P X × X .

4. The equivalence classes of R are the parts of the partition P.

Proof:

Let a ∈ A and consider the equivalence class [a] of a.

Since P is a partition, a ∈ X for a unique X ∈ P. We claim
that [a] = X .

To see this, if b ∈ X , we have (a, b) ∈ X × X hence
(a, b) ∈ R hence a R b hence b ∈ [a]. This shows X ⊆ [a].

For the other containment, if b ∈ [a] then a R b so that
(a, b) ∈ R.

By the definition of R as a union, this requires (a, b) ∈ Y × Y
for some y ∈ P where a ∈ Y and b ∈ Y .

Since a ∈ X we must have Y = X , so we see b ∈ X . This
shows [a] ⊆ X , so [a] = X as claimed. We win.
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Partitions and Equivalence Relations, XII

Let P be a partition of A, and define R =
⋃

X∈P X × X .

5. R is the unique equivalence relation whose equivalence classes
are the parts of P.

Proof:

Suppose the equivalence classes of S are the parts of P.

Then for each X ∈ P, the relation S must contain X × X ,
since for any a, b ∈ X , (a, b) ∈ S because a and b are in the
same part of P, hence have the same equivalence class.

Thus S must contain R =
⋃

X∈P X × X .

If S contained any additional ordered pairs, then such an
ordered pair would contain elements from two different parts
X and Y of the partition.

But then X ∪ Y would be contained in an equivalence class of
S , contrary to hypothesis.

Hence we must have S = R, so R is unique as claimed.
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Partitions and Equivalence Relations, XIII

The theorem we just proved gives us another way to show that a
relation is an equivalence relation: namely, we can check whether
it is obtained from a partition.

This might not sound so useful, but actually, it can save a lot
of time.

All we have to do is identify what the parts of the partition
would be, and then we can check to see that all of the
necessary pairs are included in the relation R.

For example R = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)} is an
equivalence relation on {1, 2, 3} because it corresponds to the
partition {1, 3}, {2}.



Summary

We introduced equivalence relations and gave some examples.

We discussed equivalence classes and proved some of their
properties.

We discussed the relationship between partitions and equivalence
relations.

Next lecture: Construction of Q, partial and total orderings.


