
Math 1365 (Intensive Mathematical
Reasoning)

Lecture #15 of 35 ∼ October 18, 2023

Residue Classes + Modular Arithmetic

Properties of Residue Classes

Modular Arithmetic

This material represents §2.5.2-§2.5.3 from the course notes.

Recall, I

Recall our discussion of congruences last week:

Definition

If m is a modulus, we say a ≡ b (modulo m) when m divides b− a.

Proposition (Properties of Congruences)

For any modulus m > 0 and any integers a, b, c, d, we have

1. a ≡ a (mod m).

2. a ≡ b (mod m) if and only if b ≡ a (mod m).

3. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

4. If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d
(mod m).

5. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod
m).

Recall, II

We also introduced residue classes:

Definition

If a is an integer, the residue class of a modulo m is the set
a = {b ∈ Z : a ≡ b(mod m)} of integers congruent to a modulo m.

More explicitly,
a = {. . . , a−3m, a−2m, a−m, a, a + m, a + 2m, a + 3m, . . . }.
It is very important to remember that residue classes are sets
of integers: they are not themselves numbers.

Residue classes can have many different names.

For instance, the residue class
0 = {. . . ,−3m,−2m,−m, 0,m, 2m, 3m, . . . }
is exactly the same set as the residue class
m = {. . . ,−3m,−2m,−m, 0,m, 2m, 3m, . . . }.

Properties of Residue Classes, I

Let’s prove some properties of residue classes:

Proposition (Properties of Residue Classes)

Let m > 0 be a modulus. Then

1. If a and b are integers with respective residue classes a, b
modulo m, then a ≡ b (mod m) if and only if a = b.

2. Two residue classes modulo m are either disjoint or identical.

3. There are exactly m distinct residue classes modulo m, given
by 0, 1, . . . , m − 1.

Properties of Residue Classes: II

1. If a and b are integers with respective residue classes a, b
modulo m, then a ≡ b (mod m) if and only if a = b.

Let’s strategize first.

Note that this is an if-and-only-if statement, so we need to
prove both directions: “if a ≡ b (mod m) then a = b” and
the converse “if a = b then a ≡ b (mod m)”.

Note also that the statement a = b is an equality of sets.
How do we prove an equality of sets?

We need to show each set is a subset of the other. So in fact
we have a few things to do here.

Properties of Residue Classes: II

1. If a and b are integers with respective residue classes a, b
modulo m, then a ≡ b (mod m) if and only if a = b.

Let’s strategize first.

Note that this is an if-and-only-if statement, so we need to
prove both directions: “if a ≡ b (mod m) then a = b” and
the converse “if a = b then a ≡ b (mod m)”.

Note also that the statement a = b is an equality of sets.
How do we prove an equality of sets?

We need to show each set is a subset of the other. So in fact
we have a few things to do here.

Properties of Residue Classes; III

1. If a and b are integers with respective residue classes a, b
modulo m, then a ≡ b (mod m) if and only if a = b.

Proof: [To show] If a ≡ b (mod m) then a = b.

So, suppose a ≡ b (mod m). Let’s first show that a ⊆ b.

So suppose x ∈ a. [Goal: show that x ∈ b.]

Now, x ∈ a says that x ≡ a (mod m).

Now because x ≡ a (mod m) and a ≡ b (mod m), by our
properties of congruences we can conclude that x ≡ b (mod
m), and therefore x ∈ b as claimed.

We still have to show that b ⊆ a. In fact, the argument is
exactly the same, just with a and b swapped. (Write it out if
you like!)

Properties of Residue Classes; III

1. If a and b are integers with respective residue classes a, b
modulo m, then a ≡ b (mod m) if and only if a = b.

Proof: [To show] If a ≡ b (mod m) then a = b.

So, suppose a ≡ b (mod m). Let’s first show that a ⊆ b.

So suppose x ∈ a. [Goal: show that x ∈ b.]

Now, x ∈ a says that x ≡ a (mod m).

Now because x ≡ a (mod m) and a ≡ b (mod m), by our
properties of congruences we can conclude that x ≡ b (mod
m), and therefore x ∈ b as claimed.

We still have to show that b ⊆ a. In fact, the argument is
exactly the same, just with a and b swapped. (Write it out if
you like!)

Properties of Residue Classes; III

1. If a and b are integers with respective residue classes a, b
modulo m, then a ≡ b (mod m) if and only if a = b.

Proof: [To show] If a ≡ b (mod m) then a = b.

So, suppose a ≡ b (mod m). Let’s first show that a ⊆ b.

So suppose x ∈ a. [Goal: show that x ∈ b.]

Now, x ∈ a says that x ≡ a (mod m).

Now because x ≡ a (mod m) and a ≡ b (mod m), by our
properties of congruences we can conclude that x ≡ b (mod
m), and therefore x ∈ b as claimed.

We still have to show that b ⊆ a. In fact, the argument is
exactly the same, just with a and b swapped. (Write it out if
you like!)

Properties of Residue Classes. IV

1. If a and b are integers with respective residue classes a, b
modulo m, then a ≡ b (mod m) if and only if a = b.

Proof: If a = b then a ≡ b (mod m).

Suppose a = b.

Since a ∈ a, by definition, that means a ∈ b too.

But b is just the set of integers congruent to b modulo m.

So that means a is congruent to b modulo m, as desired.

Properties of Residue Classes. IV

1. If a and b are integers with respective residue classes a, b
modulo m, then a ≡ b (mod m) if and only if a = b.

Proof: If a = b then a ≡ b (mod m).

Suppose a = b.

Since a ∈ a, by definition, that means a ∈ b too.

But b is just the set of integers congruent to b modulo m.

So that means a is congruent to b modulo m, as desired.

Properties of Residue Classes! V

2. Two residue classes modulo m are either disjoint or identical.

Let’s strategize first.

Explicit statement: if a and b are two residue classes modulo
m, then either a ∩ b is empty, or a = b.

How can we prove this?

Well, if a ∩ b is empty then we are immediately done.

So, we only need to worry about the case where a ∩ b is
nonempty: we would need to show that a = b in that
situation.

So to prove the desired statement, we could show that if a ∩ b
is nonempty, then a = b.

Finally, how could we show that a = b? Look back at what
we just proved: a = b is equivalent to a ≡ b (mod m).

Properties of Residue Classes! V

2. Two residue classes modulo m are either disjoint or identical.

Let’s strategize first.

Explicit statement: if a and b are two residue classes modulo
m, then either a ∩ b is empty, or a = b.

How can we prove this?

Well, if a ∩ b is empty then we are immediately done.

So, we only need to worry about the case where a ∩ b is
nonempty: we would need to show that a = b in that
situation.

So to prove the desired statement, we could show that if a ∩ b
is nonempty, then a = b.

Finally, how could we show that a = b?

Look back at what
we just proved: a = b is equivalent to a ≡ b (mod m).

Properties of Residue Classes! V

2. Two residue classes modulo m are either disjoint or identical.

Let’s strategize first.

Explicit statement: if a and b are two residue classes modulo
m, then either a ∩ b is empty, or a = b.

How can we prove this?

Well, if a ∩ b is empty then we are immediately done.

So, we only need to worry about the case where a ∩ b is
nonempty: we would need to show that a = b in that
situation.

So to prove the desired statement, we could show that if a ∩ b
is nonempty, then a = b.

Finally, how could we show that a = b? Look back at what
we just proved: a = b is equivalent to a ≡ b (mod m).

Properties of Residue Classes? VI

2. Two residue classes modulo m are either disjoint or identical.

Proof:

Suppose that a and b are two residue classes modulo m.

If a ∩ b = ∅ then we are immediately done, so suppose a ∩ b is
nonempty. [To show: a = b.]

Since a ∩ b is nonempty, the intersection contains some
element x .

Since x ∈ a that means a ≡ x (mod m), and since x ∈ b that
means b ≡ x (mod m).

So by congruence properties, we see that a ≡ b (mod m).

But now, by (1) from earlier, that implies a = b, as desired.

Properties of Residue Classes? VI

2. Two residue classes modulo m are either disjoint or identical.

Proof:

Suppose that a and b are two residue classes modulo m.

If a ∩ b = ∅ then we are immediately done, so suppose a ∩ b is
nonempty. [To show: a = b.]

Since a ∩ b is nonempty, the intersection contains some
element x .

Since x ∈ a that means a ≡ x (mod m), and since x ∈ b that
means b ≡ x (mod m).

So by congruence properties, we see that a ≡ b (mod m).

But now, by (1) from earlier, that implies a = b, as desired.

Properties of Residue Classes- VII

3. There are exactly m distinct residue classes modulo m, given
by 0, 1, . . . , m − 1.

Proof:

Notice that these are the possible remainders when we divide
an integer by m.

So: by the division algorithm, for any integer a there exists a
unique r with 0 ≤ r < m such that a = qm + r with q ∈ Z.

But now a = qm + r tells us that a ≡ r (mod m), which by
(1) says a = r .

But the possible values of r are the m integers 0, 1, ... ,
m − 1, and r is unique.

Thus, any residue class a modulo m is equal to precisely one
of the residue classes 0, 1, . . . , m − 1, as claimed!

Properties of Residue Classes- VII

3. There are exactly m distinct residue classes modulo m, given
by 0, 1, . . . , m − 1.

Proof:

Notice that these are the possible remainders when we divide
an integer by m.

So: by the division algorithm, for any integer a there exists a
unique r with 0 ≤ r < m such that a = qm + r with q ∈ Z.

But now a = qm + r tells us that a ≡ r (mod m), which by
(1) says a = r .

But the possible values of r are the m integers 0, 1, ... ,
m − 1, and r is unique.

Thus, any residue class a modulo m is equal to precisely one
of the residue classes 0, 1, . . . , m − 1, as claimed!

Properties of Residue Classes/ VIII

Definition

The collection of residue classes modulo m is denoted Z/mZ (read
as “Z modulo mZ”).

Remark: Many other authors denote this collection of residue
classes modulo m as Zm.1 We will avoid this notation and
exclusively use Z/mZ (or its shorthand Z/m), since Zm is used
elsewhere in algebra and number theory for a different object.

By the properties we just proved, Z/mZ contains exactly m
elements: namely, 0, 1, . . . , m − 1.

1You may feel free, if you see other people writing the integers modulo m
this way, that I specifically said you should tell them they’re using the wrong
notation.

Arithmetic With Residue Classes, I

Our goal now is to describe how to define arithmetic operations on
the residue classes modulo m.

Definition

The addition operation in Z/mZ is defined as a + b = a + b, and
the multiplication operation is defined as a · b = ab.

Notationally, the operations look very natural: we just add (or
multiply) the corresponding numbers under the bars.

But the notation is hiding a lot of complexity: remember, a is
a set, not a number.

Arithmetic With Residue Classes, II

Let me illustrate with an example. Let’s take modulus m = 4, so
that our residue classes are 0, 1, 2, and 3.

The definition on the last slide says, for example, that we
should define 1 + 1 = 2. Seems reasonable, right?

Okay, so then what should 1 + 3 be? By definition, that’s... 4.

But 4 isn’t one of our residue classes.

Except, yes, it actually is, because it’s just 0 by another name.
So we have 1 + 3 = 0.

Arithmetic With Residue Classes, II

Let me illustrate with an example. Let’s take modulus m = 4, so
that our residue classes are 0, 1, 2, and 3.

The definition on the last slide says, for example, that we
should define 1 + 1 = 2. Seems reasonable, right?

Okay, so then what should 1 + 3 be? By definition, that’s... 4.

But 4 isn’t one of our residue classes.

Except, yes, it actually is, because it’s just 0 by another name.
So we have 1 + 3 = 0.

Arithmetic With Residue Classes, II

Let me illustrate with an example. Let’s take modulus m = 4, so
that our residue classes are 0, 1, 2, and 3.

The definition on the last slide says, for example, that we
should define 1 + 1 = 2. Seems reasonable, right?

Okay, so then what should 1 + 3 be? By definition, that’s... 4.

But 4 isn’t one of our residue classes.

Except, yes, it actually is, because it’s just 0 by another name.
So we have 1 + 3 = 0.

Arithmetic With Residue Classes, III

Let’s continue with m = 4 and residue classes 0, 1, 2, and 3.

We just decided that 1 + 3 = 0.

Okay, now: what is 5 + 11? (Remember, these are perfectly
good residue classes modulo 4!)

The definition says the sum should be 16.

But wait a minute: 5 is equal to 1, and 3 is equal to 11. So
the sum 5 + 11 is just the sum 1 + 3 in disguise.

But that means the result should come out the same, namely,
0. Does it?

Yes, luckily for us, 16 is also just another name for 0, so
everything is still okay.

Arithmetic With Residue Classes, III

Let’s continue with m = 4 and residue classes 0, 1, 2, and 3.

We just decided that 1 + 3 = 0.

Okay, now: what is 5 + 11? (Remember, these are perfectly
good residue classes modulo 4!)

The definition says the sum should be 16.

But wait a minute: 5 is equal to 1, and 3 is equal to 11. So
the sum 5 + 11 is just the sum 1 + 3 in disguise.

But that means the result should come out the same, namely,
0. Does it?

Yes, luckily for us, 16 is also just another name for 0, so
everything is still okay.

Arithmetic With Residue Classes, III

Let’s continue with m = 4 and residue classes 0, 1, 2, and 3.

We just decided that 1 + 3 = 0.

Okay, now: what is 5 + 11? (Remember, these are perfectly
good residue classes modulo 4!)

The definition says the sum should be 16.

But wait a minute: 5 is equal to 1, and 3 is equal to 11. So
the sum 5 + 11 is just the sum 1 + 3 in disguise.

But that means the result should come out the same, namely,
0. Does it?

Yes, luckily for us, 16 is also just another name for 0, so
everything is still okay.

Arithmetic With Residue Classes, IV

To illustrate, compare to what happens if we just take some
random sets of integers, instead of residue classes.

Suppose for example we have sets
A = {. . . , 1, 3, 5, 6, 9, . . . }
B = {. . . , 0, 4, 7, 10, 12, . . . }
C = {. . . , 2, 8, 11, 13, . . . }
and we define a to be the set (A, B, or C) that a is an
element of. Then for example 1 = A while 2 = C .

Now suppose we try to “define” a + b = a + b.

For example, we would have 1 + 3 = 4, and also 1 + 5 = 6.

But in terms of the sets, these are contradictory statements,
since they say A + A = B and A + A = A respectively.

This is very bad, because it means the operations don’t make
any sense!

Arithmetic With Residue Classes, IV

To illustrate, compare to what happens if we just take some
random sets of integers, instead of residue classes.

Suppose for example we have sets
A = {. . . , 1, 3, 5, 6, 9, . . . }
B = {. . . , 0, 4, 7, 10, 12, . . . }
C = {. . . , 2, 8, 11, 13, . . . }
and we define a to be the set (A, B, or C) that a is an
element of. Then for example 1 = A while 2 = C .

Now suppose we try to “define” a + b = a + b.

For example, we would have 1 + 3 = 4, and also 1 + 5 = 6.

But in terms of the sets, these are contradictory statements,
since they say A + A = B and A + A = A respectively.

This is very bad, because it means the operations don’t make
any sense!

Arithmetic With Residue Classes, V

Luckily for us, we will never run into this problem using the
addition and multiplication operations on residue classes. But we
need to justify that fact!

What we need to show is that our addition and multiplication
operations on residue classes are what we call “well defined”:
that the definitions make sense and are unambiguous.

Otherwise, we haven’t given a valid definition. (Why not?
Because mathematical statements must be propositions that
have an unambiguous truth value.)

The potential ambiguity in our definition comes from the fact that
each residue class has many different names: we need to show that
no matter which name we use, the result comes out the same.

Arithmetic With Residue Classes, VI

The key properties that make everything work are that a ≡ b (mod
m) and c ≡ d (mod m) imply a + c ≡ b + d (mod m) and
ac ≡ bd (mod m).

Why are these properties important?

Imagine we want to compute a + c modulo m.

No matter which element b in the residue class of a and which
element d in the residue class of c we take, the properties
above dictate that the sum b + d will lie in the same residue
class as a + c , and the product bd will lie in the same residue
class as ac .

So we never have to worry about an “inconsistency”.

Let’s formalize all of this.

Arithmetic With Residue Classes, VII

Proposition (Modular Arithmetic, Part 1)

Let m be a modulus. Then the addition and multiplication
operations a + b = a + b and a · b = ab are well defined on the set
Z/mZ of residue classes modulo m.

Proof:

First, consider the task of computing a + c .

If b = a and d = c , then we need to verify b + d has the
same definition as a + c .

By our properties, these say a ≡ b and c ≡ d (mod m) which
imply a + c ≡ b + d (mod m), hence a + c = b + d .

But since a + c = a + c and b + d = b + d , the results agree!

So addition is well defined. The same argument works for
multiplication.

Now we can actually do arithmetic with residue classes!

Arithmetic With Residue Classes, VII

Proposition (Modular Arithmetic, Part 1)

Let m be a modulus. Then the addition and multiplication
operations a + b = a + b and a · b = ab are well defined on the set
Z/mZ of residue classes modulo m.

Proof:

First, consider the task of computing a + c .

If b = a and d = c , then we need to verify b + d has the
same definition as a + c .

By our properties, these say a ≡ b and c ≡ d (mod m) which
imply a + c ≡ b + d (mod m), hence a + c = b + d .

But since a + c = a + c and b + d = b + d , the results agree!

So addition is well defined. The same argument works for
multiplication.

Now we can actually do arithmetic with residue classes!

Arithmetic With Residue Classes, VII

Proposition (Modular Arithmetic, Part 1)

Let m be a modulus. Then the addition and multiplication
operations a + b = a + b and a · b = ab are well defined on the set
Z/mZ of residue classes modulo m.

Proof:

First, consider the task of computing a + c .

If b = a and d = c , then we need to verify b + d has the
same definition as a + c .

By our properties, these say a ≡ b and c ≡ d (mod m) which
imply a + c ≡ b + d (mod m), hence a + c = b + d .

But since a + c = a + c and b + d = b + d , the results agree!

So addition is well defined. The same argument works for
multiplication.

Now we can actually do arithmetic with residue classes!

Modular Arithmetic – I

Let’s do a few examples of calculations modulo 6. Our residue
classes are 0, 1, 2, 3, 4, 5.

What is 2 + 3?

Just add: it’s 5.

What is 2 + 4? Adding gives 2 + 4 = 6. And remember, 6 = 0.

So we have 2 + 4 = 0.

What is 2 · 2? Just multiply: it’s 4.

What is 4 · 5? Multiplying gives 4 · 5 = 20, and remember,
20 = 4, because 4 is the remainder when we divide 20 by 6.

So we have 4 · 5 = 4.

In fact, because there are only six different residue classes to add
and multiply, we can just write out the entire addition and
multiplication tables modulo 6.

Modular Arithmetic – I

Let’s do a few examples of calculations modulo 6. Our residue
classes are 0, 1, 2, 3, 4, 5.

What is 2 + 3? Just add: it’s 5.

What is 2 + 4?

Adding gives 2 + 4 = 6. And remember, 6 = 0.

So we have 2 + 4 = 0.

What is 2 · 2? Just multiply: it’s 4.

What is 4 · 5? Multiplying gives 4 · 5 = 20, and remember,
20 = 4, because 4 is the remainder when we divide 20 by 6.

So we have 4 · 5 = 4.

In fact, because there are only six different residue classes to add
and multiply, we can just write out the entire addition and
multiplication tables modulo 6.

Modular Arithmetic – I

Let’s do a few examples of calculations modulo 6. Our residue
classes are 0, 1, 2, 3, 4, 5.

What is 2 + 3? Just add: it’s 5.

What is 2 + 4? Adding gives 2 + 4 = 6. And remember, 6 = 0.

So we have 2 + 4 = 0.

What is 2 · 2?

Just multiply: it’s 4.

What is 4 · 5? Multiplying gives 4 · 5 = 20, and remember,
20 = 4, because 4 is the remainder when we divide 20 by 6.

So we have 4 · 5 = 4.

In fact, because there are only six different residue classes to add
and multiply, we can just write out the entire addition and
multiplication tables modulo 6.

Modular Arithmetic – I

Let’s do a few examples of calculations modulo 6. Our residue
classes are 0, 1, 2, 3, 4, 5.

What is 2 + 3? Just add: it’s 5.

What is 2 + 4? Adding gives 2 + 4 = 6. And remember, 6 = 0.

So we have 2 + 4 = 0.

What is 2 · 2? Just multiply: it’s 4.

What is 4 · 5?

Multiplying gives 4 · 5 = 20, and remember,
20 = 4, because 4 is the remainder when we divide 20 by 6.

So we have 4 · 5 = 4.

In fact, because there are only six different residue classes to add
and multiply, we can just write out the entire addition and
multiplication tables modulo 6.

Modular Arithmetic – I

Let’s do a few examples of calculations modulo 6. Our residue
classes are 0, 1, 2, 3, 4, 5.

What is 2 + 3? Just add: it’s 5.

What is 2 + 4? Adding gives 2 + 4 = 6. And remember, 6 = 0.

So we have 2 + 4 = 0.

What is 2 · 2? Just multiply: it’s 4.

What is 4 · 5? Multiplying gives 4 · 5 = 20, and remember,
20 = 4, because 4 is the remainder when we divide 20 by 6.

So we have 4 · 5 = 4.

In fact, because there are only six different residue classes to add
and multiply, we can just write out the entire addition and
multiplication tables modulo 6.

Modular Arithmetic — II

Here’s the addition table modulo 6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Modular Arithmetic —– III

Here’s the multiplication table modulo 6:

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Modular Arithmetic —— IV

Here are the two tables modulo 5:

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Modular Arithmetic ——– V

In general, how can we fill in these tables efficiently? (Imagine that
you had some homework problems asking you to fill in these kinds
of tables....)

The idea is just to replace the result of each calculation with
its remainder when we divide by m. (We usually call that
“reducing modulo m”.)

The reason this works is because if a = qm + r then a ≡ r
(mod m) and therefore a = r .

So, for example, to find 7 · 11 (mod 20), we compute
7 · 11 = 77 and then reduce modulo 20: since
77 = 3 · 20 + 17, the remainder is 17, so 7 · 11 = 77 = 17.

Modular Arithmetic ——— VI

In fact, arithmetic modulo m is commonly described by ignoring
residue classes entirely and only working with the integers 0
through m − 1, with the result of every computation “reduced
modulo m” to obtain a result lying in this range.

So why don’t we just do it that way? Many reasons.

First, it’s cumbersome and inelegant.

Second, many basic properties of arithmetic are no longer
true, or (at least) have to be modified substantially.

Third, this approach doesn’t generalize very well to other
settings of interest. And so, once you enter those settings, you
have to redo everything again (properly) with residue classes.

And finally, residue classes extend quite well to more general
settings where we may not have such an obvious set of
“representatives” for the classes like 0, 1, ... , m − 1.

Modular Arithmetic ——— VI

In fact, arithmetic modulo m is commonly described by ignoring
residue classes entirely and only working with the integers 0
through m − 1, with the result of every computation “reduced
modulo m” to obtain a result lying in this range.

So why don’t we just do it that way? Many reasons.

First, it’s cumbersome and inelegant.

Second, many basic properties of arithmetic are no longer
true, or (at least) have to be modified substantially.

Third, this approach doesn’t generalize very well to other
settings of interest. And so, once you enter those settings, you
have to redo everything again (properly) with residue classes.

And finally, residue classes extend quite well to more general
settings where we may not have such an obvious set of
“representatives” for the classes like 0, 1, ... , m − 1.

Modular Arithmetic ———– VII

In many programming languages “a mod m”, frequently denoted
“a%m”, is defined to be a function returning the corresponding
remainder in the interval [0,m − 1].

With this definition, it is not true that
(a + b)%m = (a%m) + (b%m), nor is it true that
ab%m = (a%m) · (b%m).

The reason is that because the sum and product may each
exceed m, we may have to reduce again at the end.

To obtain actually true statements, one needs to write
something like ab%m = [(a%m) · (b%m)]%m. (Ugh.)

That’s why the best viewpoint is to work with residue classes: then
the statement a · b = ab is perfectly acceptable.

It is also good to get used to thinking about equalities of
residue classes directly, rather than falling back to the idea of
reducing all terms to their residues {0, 1, . . . ,m − 1}.

Modular Arithmetic ———– VII

In many programming languages “a mod m”, frequently denoted
“a%m”, is defined to be a function returning the corresponding
remainder in the interval [0,m − 1].

With this definition, it is not true that
(a + b)%m = (a%m) + (b%m), nor is it true that
ab%m = (a%m) · (b%m).

The reason is that because the sum and product may each
exceed m, we may have to reduce again at the end.

To obtain actually true statements, one needs to write
something like ab%m = [(a%m) · (b%m)]%m. (Ugh.)

That’s why the best viewpoint is to work with residue classes: then
the statement a · b = ab is perfectly acceptable.

It is also good to get used to thinking about equalities of
residue classes directly, rather than falling back to the idea of
reducing all terms to their residues {0, 1, . . . ,m − 1}.

Properties of Modular Arithmetic, I

Most laws of arithmetic in Z extend to Z/mZ:

Proposition (Modular Arithmetic, Part 2)

For any modulus m and any residue classes a, b, c, we have

1. + is associative: a + (b + c) = (a + b) + c.

2. + is commutative: a + b = b + a.

3. 0 is an additive identity: a + 0 = a.

4. a has an additive inverse −a with a + (−a) = 0.

5. · is associative: a · (b · c) = (a · b) · c.

6. · is commutative: a · b = b · a.

7. · distributes over +: a · (b + c) = a · b + a · c.

8. 1 is a multiplicative identity: 1 · a = a.

Properties of Modular Arithmetic, II

1. + is associative: a + (b + c) = (a + b) + c .

Proof:

By definition of residue class addition, we have
a + (b + c) = a + b + c = a + (b + c) and also
(a + b) + c = a + b + c = (a + b) + c .

But a + (b + c) = (a + b) + c by the associative property [I1]
of the integers.

Thus, the associated residue classes a + (b + c) and
(a + b) + c are also equal.

The other properties (2)-(8) follow in a very similar way from the
analogous properties [I2]-[I8] of the integers. (You get to do some
of them yourself on Homework 6!)

Properties of Modular Arithmetic, II

1. + is associative: a + (b + c) = (a + b) + c .

Proof:

By definition of residue class addition, we have
a + (b + c) = a + b + c = a + (b + c) and also
(a + b) + c = a + b + c = (a + b) + c .

But a + (b + c) = (a + b) + c by the associative property [I1]
of the integers.

Thus, the associated residue classes a + (b + c) and
(a + b) + c are also equal.

The other properties (2)-(8) follow in a very similar way from the
analogous properties [I2]-[I8] of the integers. (You get to do some
of them yourself on Homework 6!)

Properties of Modular Arithmetic, II

1. + is associative: a + (b + c) = (a + b) + c .

Proof:

By definition of residue class addition, we have
a + (b + c) = a + b + c = a + (b + c) and also
(a + b) + c = a + b + c = (a + b) + c .

But a + (b + c) = (a + b) + c by the associative property [I1]
of the integers.

Thus, the associated residue classes a + (b + c) and
(a + b) + c are also equal.

The other properties (2)-(8) follow in a very similar way from the
analogous properties [I2]-[I8] of the integers. (You get to do some
of them yourself on Homework 6!)

Summary

We established some properties of residue classes modulo m.

We described the addition and multiplication operations on residue
classes, and showed that they are well defined.

We worked through some examples of residue class arithmetic.

Next lecture: Properties of modular arithmetic, inverses.

