Math 1365 (Intensive Mathematical Reasoning)

Lecture #15 of 35 \sim October 12, 2023

Midterm #1 Review

Midterm Topics

The midterm exam covers $\S1.1-\S2.4$ of the course notes, representing the material on homeworks 1-5, and more specifically these topics:

- Propositions, Boolean logic
- Conditionals
- Proof techniques (contrapositive, contradiction, etc.)
- Sets, subsets
- Union and intersection
- Cartesian products
- Quantifiers and quantifier logic, indexed sets

- Induction
- Divisibility
- GCDs and LCMs
- Properties of GCDs
- The Euclidean algorithm
- Primes and unique prime factorization
- Applications of prime factorization

Some notes on the exam format:

- The exam is held in the regular course classroom. There will be a proctor who will distribute and collect exams, and who will be available to answer questions.
- Please try to arrive at least 5 minutes early for the class period, so that you may get settled and have the full 65 minutes to work.
- You are allowed a 1-page note sheet (double-sided, standard 8.5in-by-11in) on which you may write/type/etc. anything you like.
- You are allowed to use a calculator (any kind) on the exam. No problems will require a calculator.

Some notes on the exam format:

- There are approximately 7 pages of material: 1 problem is multiple choice+true/false, and the rest are free response.
- Except when instructed otherwise (e.g., in multiple choice questions), you must show all relevant details and justify all steps with rigorous proofs or clear explicit calculations.
- Correct answers without appropriate work may not receive full credit.

Normally, I would distribute copies of the sheet of review problems in lecture, and then take requests for problems to solve from everyone in attendance at the lecture.

- Here is the link to the review problems, in case you don't have them open already: https://web.northeastern.edu/dummit/teaching_ fa23_1365/1365_midterm_1_review_problems.pdf
- (Note to self: also post this link in the chat!)
- I have randomly selected a few problems that I will go over first, and then I will take requests – please make requests for problems through Zoom chat.

Review Problems, I

[8bei] Find a counterexample to each of the following statements:
(b) If p and q are prime, then p + q is never prime.
(c) If n is an integer, then n² + n + 11 is always prime.
(i) ∀x ∈ ℝ, ∃y ∈ ℝ, y⁴ = x.

[8bei] Find a counterexample to each of the following statements:

- (b) If p and q are prime, then p + q is never prime.
- (c) If *n* is an integer, then $n^2 + n + 11$ is always prime.
- (i) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^4 = x$.
- (b) The sum of two odd primes will always be even and bigger than 2, so we need to add 2 to some other prime. An easy choice is 2 + 3 = 5.
- (c) Small *n* actually give primes: for example, n = 1 gives the prime 13, while n = 5 gives the prime 41. But if we take n = 11, then all the terms are multiples of 11, meaning that the expression will factor: $11^2 + 11 + 11 = 11 \cdot 13$.
- (i) This statement says that every real number x has a real number y such that y⁴ = x. But fourth powers of real numbers are always ≥ 0, so if we take x to be negative, e.g., x = -1, then there is no real y with y⁴ = -1.

Review Problems, II

[9d] For any sets A, B, C, prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Review Problems, II

[9d] For any sets A, B, C, prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Review Problems, II

[9d] For any sets A, B, C, prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

- Remember $S \setminus T = \{x \in S : x \notin T\}$ = elements in S not in T.
- We want to show each set is a subset of the other.
- Suppose $x \in A \setminus (B \cap C)$: then $x \in A$ and $x \notin (B \cap C)$.
- Note $x \notin (B \cap C) = \neg [x \in B \cap C] = \neg [x \in B \land x \in C] = (x \notin B) \lor (x \notin C)$ by de Morgan's laws.
- Now, if $x \notin B$, then since $x \in A$ that means $x \in A \setminus B$. And if $x \notin C$ then since $x \in A$ that means $x \in A \setminus C$.
- So either way we see $x \in (A \setminus B) \cup (A \setminus C)$, as desired.
- For the other containment, suppose $y \in (A \setminus B) \cup (A \setminus C)$.
- If $y \in A \setminus B$ then $y \in A$ and $y \notin B$, so $y \notin B \cap C$ and thus $y \in A \setminus (B \cap C)$.
- If $y \in A \setminus C$ then $y \in A$ and $y \notin C$, so again $y \notin B \cap C$ and thus $y \in A \setminus (B \cap C)$. Either way, $y \in A \setminus (B \cap C)$.

[9m] Suppose $b_1 = 3$ and $b_{n+1} = 2b_n - n + 1$ for all $n \ge 1$. Prove that $b_n = 2^n + n$ for every positive integer n.

[9m] Suppose $b_1 = 3$ and $b_{n+1} = 2b_n - n + 1$ for all $n \ge 1$. Prove that $b_n = 2^n + n$ for every positive integer n.

Review Problems, III

[9m] Suppose $b_1 = 3$ and $b_{n+1} = 2b_n - n + 1$ for all $n \ge 1$. Prove that $b_n = 2^n + n$ for every positive integer n.

- Use induction on *n*.
- Base case: n = 1. We have $b_1 = 3 = 2^1 + 1$ as required.
- Inductive step: Suppose that $b_n = 2^n + n$. [To show: $b_{n+1} = 2^{n+1} + n + 1$.]

We have

$$b_{n+1} = 2b_n - n + 1$$

= $2(2^n + n) - n + 1$
= $2^{n+1} + (n+1)$

as desired. This establishes the inductive step so the result holds for all positive integers n by induction.

[9e] Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that p|a.

[9e] Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that p|a.

 This is a result involving primes and divisibility. We only have one key fact about primes and divisibility, the prime divisibility property: if p is a prime and p|ab, then p|a or p|b. [9e] Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that p|a.

- This is a result involving primes and divisibility. We only have one key fact about primes and divisibility, the prime divisibility property: if p is a prime and p|ab, then p|a or p|b.
- In our problem, we are given $p|a^2$ and want to show p|a.
- Since $a^2 = a \cdot a$, we can try taking b = a in the prime divisibility property.
- In that situation, it says "if $p|a^2$ then p|a or p|a".
- But the two statements in the conclusion (*p*|*a* or *p*|*a*) are the same, so in either case it just says *p*|*a*.
- So, by the prime divisibility property, if $p|a^2$ then p|a. Victory.

[9b] Suppose *n* is an integer. Prove that 2|n and 3|n if and only if 6|n.

[9b] Suppose *n* is an integer. Prove that 2|n and 3|n if and only if 6|n.

- This is an if-and-only-if statement, so we need to show both implications.
- If 6|n, meaning n = 6k for some k, then certainly 2|n and 3|n, since n = 2(3k) and n = 3(2k).
- Conversely, suppose 2|n and 3|n.
- Since 2|n, we know n = 2a for some integer a.
- Then 3|n says that 3|(2a). Now use the prime divisibility property: since 3 is prime, either 3 divides 2 or 3 divides a.
- Since 3 definitely doesn't divide 2, that means 3 must divide *a*, so *a* = 3*b* for some integer *b*.
- Then, finally, we see n = 2a = 6b and so 6|n as required.

[9p] Prove that if a and b are both odd, then $a^2 + b^2 - 2$ is divisible by 8.

[9p] Prove that if a and b are both odd, then $a^2 + b^2 - 2$ is divisible by 8.

- By definition of odd numbers, there exist integers c and d such that a = 2c + 1 and b = 2d + 1.
- Then $a^2 + b^2 2 = (2c + 1)^2 + (2d + 1)^2 2 = 4c^2 + 4c + 4d^2 + 4d = 4(c^2 + c + d^2 + d).$
- From this we see that $a^2 + b^2 2$ is certainly divisible by 4.
- To see the divisibility by 8, notice further that
 c² + c = c(c + 1) is always even, because either c or c + 1
 must be even (so the product is also even). Likewise, d² + d
 is also even, and so the sum c² + c + d² + d is even as well.
- Then $a^2 + b^2 2$ is 4 times an even number, meaning that it is divisible by 8, as claimed.

I will now take requests for problems. Please post problem numbers in the Zoom chat (if you haven't already done so) and I will go through as many of them as we have time for.

- I will make a new slide as we go for each problem with the problem text to make it easier for everyone to follow (we will see how fast I can manage this!).
- I will update the posted slides after the lecture is over with the list of additional problems that we went through.

[10r] Show $25^n + 7$ is a multiple of 8 for every positive integer *n*.

[10r] Show $25^n + 7$ is a multiple of 8 for every positive integer *n*.

- Use induction on n.
- Base case: n = 1. We have $25^1 + 7 = 32$, which is a multiple of 8.
- Inductive step: suppose that 25ⁿ + 7 is a multiple of 8. [To show: 25ⁿ⁺¹ + 7 is a multiple of 8.]
- For this observe that $25^{n+1} + 7 = 25(25^n + 7) 25 \cdot 7 + 7 = 25(25^n + 7) 24 \cdot 7$.
- Both terms $25(25^n + 7)$ and $24 \cdot 7$ are multiples of 8, so their difference is as well.
- This establishes the inductive step, so the result holds by induction.

Find a counterexample for each statement: [8f] If n > 1 is an integer, then \sqrt{n} is always irrational. [8e] The sum of two irrational numbers is always irrational. Find a counterexample for each statement: [8f] If n > 1 is an integer, then \sqrt{n} is always irrational. [8e] The sum of two irrational numbers is always irrational. Find a counterexample for each statement:

- [8f] If n > 1 is an integer, then \sqrt{n} is always irrational.
- [8e] The sum of two irrational numbers is always irrational.
- [8f] We want an integer n > 1 such that \sqrt{n} is rational. As we showed in class, $\sqrt{2}$ is irrational, and a similar proof shows $\sqrt{3}$ is irrational. But $\sqrt{4} = 2$ is rational, so n = 4 is a counterexample.
- [8e] We want two irrational numbers whose sum is rational. We have very few examples of irrational numbers, but as shown in class, $\sqrt{2}$ is irrational. The same proof also shows $-\sqrt{2}$ is irrational. But $\sqrt{2} + (-\sqrt{2}) = 0$ is rational. So these numbers give a counterexample.

[8a] Write, and then prove, the contrapositive of If *a* and *b* are integers, then $3a - 9b \neq 2$.

[8a] Write, and then prove, the contrapositive of If *a* and *b* are integers, then $3a - 9b \neq 2$.

- The contrapositive is "If 3a 9b = 2 then it is not true that both a and b are integers". Or equivalently, "If 3a 9b = 2 then either a or b is not an integer".
- We can show this by contradiction: suppose 3a 9b = 2. Then factoring gives 3(a - 3b) = 2, so if a and b were integers this would say 3 divides 2, but that is impossible.
- Therefore, at least one of *a* and *b* is not an integer, as required.

Requested Problems, 4:35pm Lecture

[6b] Find the gcd of a = 921 and b = 177 and write gcd(a, b) = xa + yb for some integers x and y.

Requested Problems, 4:35pm Lecture

[6b] Find the gcd of a = 921 and b = 177 and write gcd(a, b) = xa + yb for some integers x and y.

• First we apply the Euclidean algorithm to find the gcd:

921	=	$5 \cdot 177 + 36$
177	=	$4\cdot 36+33$
36	=	$1\cdot 33 + 3$
33	=	$11 \cdot 3$

 Since the last nonzero remainder is 3, that is the gcd. Now we solve for the remainders:

$$36 = 921 - 5 \cdot 177$$

$$33 = 177 - 4 \cdot 36 = -4 \cdot 921 + 21 \cdot 177$$

$$3 = 36 - 1 \cdot 33 = 5 \cdot 921 - 26 \cdot 177$$

and so we can take x = 5 and y = -26.

We discussed exam logistics. We did some review problems.

Next lecture: Midterm 1.