
Math 1365 (Intensive Mathematical
Reasoning)

Lecture #15 of 35 ∼ October 12, 2023

Midterm #1 Review



Midterm Topics

The midterm exam covers §1.1-§2.4 of the course notes,
representing the material on homeworks 1-5, and more specifically
these topics:

Propositions, Boolean logic

Conditionals

Proof techniques
(contrapositive,
contradiction, etc.)

Sets, subsets

Union and intersection

Cartesian products

Quantifiers and quantifier
logic, indexed sets

Induction

Divisibility

GCDs and LCMs

Properties of GCDs

The Euclidean algorithm

Primes and unique prime
factorization

Applications of prime
factorization



Exam Information, I

Some notes on the exam format:

The exam is held in the regular course classroom. There will
be a proctor who will distribute and collect exams, and who
will be available to answer questions.

Please try to arrive at least 5 minutes early for the class
period, so that you may get settled and have the full 65
minutes to work.

You are allowed a 1-page note sheet (double-sided, standard
8.5in-by-11in) on which you may write/type/etc. anything
you like.

You are allowed to use a calculator (any kind) on the exam.
No problems will require a calculator.



Exam Information, II

Some notes on the exam format:

There are approximately 7 pages of material: 1 problem is
multiple choice+true/false, and the rest are free response.

Except when instructed otherwise (e.g., in multiple choice
questions), you must show all relevant details and justify all
steps with rigorous proofs or clear explicit calculations.

Correct answers without appropriate work may not receive full
credit.



Review Problems

Normally, I would distribute copies of the sheet of review problems
in lecture, and then take requests for problems to solve from
everyone in attendance at the lecture.

Here is the link to the review problems, in case you don’t have
them open already:
https://web.northeastern.edu/dummit/teaching_

fa23_1365/1365_midterm_1_review_problems.pdf

(Note to self: also post this link in the chat!)

I have randomly selected a few problems that I will go over
first, and then I will take requests – please make requests for
problems through Zoom chat.

https://web.northeastern.edu/dummit/teaching_fa23_1365/1365_midterm_1_review_problems.pdf
https://web.northeastern.edu/dummit/teaching_fa23_1365/1365_midterm_1_review_problems.pdf


Review Problems, I

[8bei] Find a counterexample to each of the following statements:

(b) If p and q are prime, then p + q is never prime.

(c) If n is an integer, then n2 + n + 11 is always prime.

(i) ∀x ∈ R, ∃y ∈ R, y4 = x .

(b) The sum of two odd primes will always be even and bigger
than 2, so we need to add 2 to some other prime. An easy
choice is 2 + 3 = 5.

(c) Small n actually give primes: for example, n = 1 gives the
prime 13, while n = 5 gives the prime 41. But if we take
n = 11, then all the terms are multiples of 11, meaning that
the expression will factor: 112 + 11 + 11 = 11 · 13.

(i) This statement says that every real number x has a real
number y such that y4 = x . But fourth powers of real
numbers are always ≥ 0, so if we take x to be negative, e.g.,
x = −1, then there is no real y with y4 = −1.
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Review Problems, II

[9d] For any sets A,B,C , prove A\(B ∩ C ) = (A\B) ∪ (A\C ).

Remember S\T = {x ∈ S : x 6∈ T} = elements in S not in T .

We want to show each set is a subset of the other.

Suppose x ∈ A\(B ∩ C ): then x ∈ A and x 6∈ (B ∩ C ).

Note x 6∈ (B ∩ C ) = ¬[x ∈ B ∩ C ] = ¬[x ∈ B ∧ x ∈ C ] =
(x 6∈ B) ∨ (x 6∈ C ) by de Morgan’s laws.

Now, if x 6∈ B, then since x ∈ A that means x ∈ A\B. And if
x 6∈ C then since x ∈ A that means x ∈ A\C .

So either way we see x ∈ (A\B) ∪ (A\C ), as desired.

For the other containment, suppose y ∈ (A\B) ∪ (A\C ).

If y ∈ A\B then y ∈ A and y 6∈ B, so y 6∈ B ∩ C and thus
y ∈ A\(B ∩ C ).

If y ∈ A\C then y ∈ A and y 6∈ C , so again y 6∈ B ∩ C and
thus y ∈ A\(B ∩ C ). Either way, y ∈ A\(B ∩ C ).
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Review Problems, III

[9m] Suppose b1 = 3 and bn+1 = 2bn − n + 1 for all n ≥ 1. Prove
that bn = 2n + n for every positive integer n.

Use induction on n.

Base case: n = 1. We have b1 = 3 = 21 + 1 as required.

Inductive step: Suppose that bn = 2n + n. [To show:
bn+1 = 2n+1 + n + 1.]

We have

bn+1 = 2bn − n + 1

= 2(2n + n)− n + 1

= 2n+1 + (n + 1)

as desired. This establishes the inductive step so the result holds
for all positive integers n by induction.
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Review Problems, IV

[9e] Suppose p is a prime and a is a positive integer. If p|a2, prove
that p|a.

This is a result involving primes and divisibility. We only have
one key fact about primes and divisibility, the prime divisibility
property: if p is a prime and p|ab, then p|a or p|b.

In our problem, we are given p|a2 and want to show p|a.

Since a2 = a · a, we can try taking b = a in the prime
divisibility property.

In that situation, it says “if p|a2 then p|a or p|a”.

But the two statements in the conclusion (p|a or p|a) are the
same, so in either case it just says p|a.

So, by the prime divisibility property, if p|a2 then p|a. Victory.
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Review Problems, V

[9b] Suppose n is an integer. Prove that 2|n and 3|n if and only if
6|n.

This is an if-and-only-if statement, so we need to show both
implications.

If 6|n, meaning n = 6k for some k , then certainly 2|n and 3|n,
since n = 2(3k) and n = 3(2k).

Conversely, suppose 2|n and 3|n.

Since 2|n, we know n = 2a for some integer a.

Then 3|n says that 3|(2a). Now use the prime divisibility
property: since 3 is prime, either 3 divides 2 or 3 divides a.

Since 3 definitely doesn’t divide 2, that means 3 must divide
a, so a = 3b for some integer b.

Then, finally, we see n = 2a = 6b and so 6|n as required.
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Review Problems, VI

[9p] Prove that if a and b are both odd, then a2 + b2 − 2 is
divisible by 8.

By definition of odd numbers, there exist integers c and d
such that a = 2c + 1 and b = 2d + 1.

Then a2 + b2 − 2 = (2c + 1)2 + (2d + 1)2 − 2 =
4c2 + 4c + 4d2 + 4d = 4(c2 + c + d2 + d).

From this we see that a2 + b2 − 2 is certainly divisible by 4.

To see the divisibility by 8, notice further that
c2 + c = c(c + 1) is always even, because either c or c + 1
must be even (so the product is also even). Likewise, d2 + d
is also even, and so the sum c2 + c + d2 + d is even as well.

Then a2 + b2 − 2 is 4 times an even number, meaning that it
is divisible by 8, as claimed.
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Requests for Problems

I will now take requests for problems. Please post problem
numbers in the Zoom chat (if you haven’t already done so) and I
will go through as many of them as we have time for.

I will make a new slide as we go for each problem with the
problem text to make it easier for everyone to follow (we will
see how fast I can manage this!).

I will update the posted slides after the lecture is over with
the list of additional problems that we went through.



Requested Problems, 1:35pm Lecture

[10r] Show 25n + 7 is a multiple of 8 for every positive integer n.

Use induction on n.

Base case: n = 1. We have 251 + 7 = 32, which is a multiple
of 8.

Inductive step: suppose that 25n + 7 is a multiple of 8. [To
show: 25n+1 + 7 is a multiple of 8.]

For this observe that
25n+1 + 7 = 25(25n + 7)− 25 · 7 + 7 = 25(25n + 7)− 24 · 7.

Both terms 25(25n + 7) and 24 · 7 are multiples of 8, so their
difference is as well.

This establishes the inductive step, so the result holds by
induction.
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Requested Problems, 1:35pm Lecture

Find a counterexample for each statement:
[8f] If n > 1 is an integer, then

√
n is always irrational.

[8e] The sum of two irrational numbers is always irrational.

[8f] We want an integer n > 1 such that
√
n is rational. As we

showed in class,
√

2 is irrational, and a similar proof shows
√

3
is irrational. But

√
4 = 2 is rational, so n = 4 is a

counterexample.

[8e] We want two irrational numbers whose sum is rational. We
have very few examples of irrational numbers, but as shown in
class,

√
2 is irrational. The same proof also shows −

√
2 is

irrational. But
√

2 + (−
√

2) = 0 is rational. So these numbers
give a counterexample.
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Requested Problems, 4:35pm Lecture

[8a] Write, and then prove, the contrapositive of
If a and b are integers, then 3a− 9b 6= 2.

The contrapositive is “If 3a− 9b = 2 then it is not true that
both a and b are integers”. Or equivalently, “If 3a− 9b = 2
then either a or b is not an integer”.

We can show this by contradiction: suppose 3a− 9b = 2.
Then factoring gives 3(a− 3b) = 2, so if a and b were
integers this would say 3 divides 2, but that is impossible.

Therefore, at least one of a and b is not an integer, as
required.
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Requested Problems, 4:35pm Lecture

[6b] Find the gcd of a = 921 and b = 177 and write
gcd(a, b) = xa + yb for some integers x and y .

First we apply the Euclidean algorithm to find the gcd:

921 = 5 · 177 + 36

177 = 4 · 36 + 33

36 = 1 · 33 + 3

33 = 11 · 3

Since the last nonzero remainder is 3, that is the gcd. Now we
solve for the remainders:

36 = 921− 5 · 177

33 = 177− 4 · 36 = −4 · 921 + 21 · 177

3 = 36− 1 · 33 = 5 · 921− 26 · 177

and so we can take x = 5 and y = −26.
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Summary

We discussed exam logistics.

We did some review problems.

Next lecture: Midterm 1.


