Math 1365 (Intensive Mathematical Reasoning)

Lecture $#15$ of 35 \sim October 12, 2023

Midterm $#1$ Review

Midterm Topics

The midterm exam covers $\S1.1-\S2.4$ of the course notes, representing the material on homeworks 1-5, and more specifically these topics:

- **•** Propositions, Boolean logic
- **•** Conditionals
- Proof techniques (contrapositive, contradiction, etc.)
- Sets, subsets
- **Q** Union and intersection
- Cartesian products
- Quantifiers and quantifier logic, indexed sets
- **o** Induction
- **•** Divisibility
- **GCDs** and LCMs
- Properties of GCDs
- The Euclidean algorithm
- Primes and unique prime factorization
- Applications of prime factorization

Some notes on the exam format:

- The exam is held in the regular course classroom. There will be a proctor who will distribute and collect exams, and who will be available to answer questions.
- Please try to arrive at least 5 minutes early for the class period, so that you may get settled and have the full 65 minutes to work.
- You are allowed a 1-page note sheet (double-sided, standard 8.5in-by-11in) on which you may write/type/etc. anything you like.
- You are allowed to use a calculator (any kind) on the exam. No problems will require a calculator.

Some notes on the exam format:

- There are approximately 7 pages of material: 1 problem is multiple choice+true/false, and the rest are free response.
- Except when instructed otherwise (e.g., in multiple choice questions), you must show all relevant details and justify all steps with rigorous proofs or clear explicit calculations.
- **•** Correct answers without appropriate work may not receive full credit.

Normally, I would distribute copies of the sheet of review problems in lecture, and then take requests for problems to solve from everyone in attendance at the lecture.

- Here is the link to the review problems, in case you don't have them open already: [https://web.northeastern.edu/dummit/teaching_](https://web.northeastern.edu/dummit/teaching_fa23_1365/1365_midterm_1_review_problems.pdf) [fa23_1365/1365_midterm_1_review_problems.pdf](https://web.northeastern.edu/dummit/teaching_fa23_1365/1365_midterm_1_review_problems.pdf)
- (Note to self: also post this link in the chat!)
- I have randomly selected a few problems that I will go over first, and then I will take requests – please make requests for problems through Zoom chat.

Review Problems, I

[8bei] Find a counterexample to each of the following statements: (b) If p and q are prime, then $p + q$ is never prime. (c) If *n* is an integer, then $n^2 + n + 11$ is always prime. (i) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^4 = x$.

[8bei] Find a counterexample to each of the following statements:

- (b) If p and q are prime, then $p + q$ is never prime.
- (c) If *n* is an integer, then $n^2 + n + 11$ is always prime.
- (i) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^4 = x$.
- (b) The sum of two odd primes will always be even and bigger than 2, so we need to add 2 to some other prime. An easy choice is $2 + 3 = 5$.
- (c) Small *n* actually give primes: for example, $n = 1$ gives the prime 13, while $n = 5$ gives the prime 41. But if we take $n = 11$, then all the terms are multiples of 11, meaning that the expression will factor: $11^2 + 11 + 11 = 11 \cdot 13$.
- (i) This statement says that every real number x has a real number y such that $y^4 = x$. But fourth powers of real numbers are always > 0 , so if we take x to be negative, e.g., $x=-1$, then there is no real y with $y^4=-1$.

Review Problems, II

[9d] For any sets A, B, C , prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Review Problems, II

[9d] For any sets A, B, C , prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Review Problems, II

[9d] For any sets A, B, C, prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

- Remember $S \setminus T = \{x \in S : x \notin T\}$ = elements in S not in T.
- We want to show each set is a subset of the other.
- Suppose $x \in A \setminus (B \cap C)$: then $x \in A$ and $x \notin (B \cap C)$.
- Note $x \notin (B \cap C) = \neg[x \in B \cap C] = \neg[x \in B \land x \in C] =$ $(x \notin B) \vee (x \notin C)$ by de Morgan's laws.
- Now, if $x \notin B$, then since $x \in A$ that means $x \in A \backslash B$. And if $x \notin C$ then since $x \in A$ that means $x \in A \backslash C$.
- So either way we see $x \in (A \ B) \cup (A \ C)$, as desired.
- For the other containment, suppose $y \in (A \ B) \cup (A \ C)$.
- If $y \in A \backslash B$ then $y \in A$ and $y \notin B$, so $y \notin B \cap C$ and thus $v \in A \backslash (B \cap C)$.
- If $y \in A \backslash C$ then $y \in A$ and $y \notin C$, so again $y \notin B \cap C$ and thus $y \in A \setminus (B \cap C)$. Either way, $y \in A \setminus (B \cap C)$.

[9m] Suppose $b_1 = 3$ and $b_{n+1} = 2b_n - n + 1$ for all $n \ge 1$. Prove that $b_n = 2^n + n$ for every positive integer n.

[9m] Suppose $b_1 = 3$ and $b_{n+1} = 2b_n - n + 1$ for all $n \ge 1$. Prove that $b_n = 2^n + n$ for every positive integer n.

Review Problems, III

[9m] Suppose $b_1 = 3$ and $b_{n+1} = 2b_n - n + 1$ for all $n \ge 1$. Prove that $b_n = 2^n + n$ for every positive integer n.

- Use induction on *n*.
- Base case: $n = 1$. We have $b_1 = 3 = 2^1 + 1$ as required.
- Inductive step: Suppose that $b_n = 2^n + n$. [To show: $b_{n+1} = 2^{n+1} + n + 1.$
- We have

$$
b_{n+1} = 2b_n - n + 1
$$

= 2(2ⁿ + n) - n + 1
= 2ⁿ⁺¹ + (n + 1)

as desired. This establishes the inductive step so the result holds for all positive integers n by induction.

[9e] Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that $p|a$.

[9e] Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that $p|a$.

• This is a result involving primes and divisibility. We only have one key fact about primes and divisibility, the prime divisibility property: if p is a prime and $p|ab$, then $p|a$ or $p|b$.

[9e] Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that $p|a$.

- This is a result involving primes and divisibility. We only have one key fact about primes and divisibility, the prime divisibility property: if p is a prime and $p|ab$, then $p|a$ or $p|b$.
- In our problem, we are given $p|a^2$ and want to show $p|a$.
- Since $a^2 = a \cdot a$, we can try taking $b = a$ in the prime divisibility property.
- In that situation, it says "if $p|a^2$ then $p|a$ or $p|a$ ".
- But the two statements in the conclusion ($p|a$ or $p|a$) are the same, so in either case it just says $p|a$.
- So, by the prime divisibility property, if $p|a^2$ then $p|a$. Victory.

[9b] Suppose *n* is an integer. Prove that $2|n$ and $3|n$ if and only if $6|n$.

[9b] Suppose *n* is an integer. Prove that $2|n$ and $3|n$ if and only if $6|n$.

- This is an if-and-only-if statement, so we need to show both implications.
- If 6|n, meaning $n = 6k$ for some k, then certainly 2|n and 3|n, since $n = 2(3k)$ and $n = 3(2k)$.
- Conversely, suppose $2|n$ and $3|n$.
- Since $2|n$, we know $n = 2a$ for some integer a.
- Then 3|n says that 3|(2a). Now use the prime divisibility property: since 3 is prime, either 3 divides 2 or 3 divides a.
- Since 3 definitely doesn't divide 2, that means 3 must divide a, so $a = 3b$ for some integer b.
- Then, finally, we see $n = 2a = 6b$ and so 6|n as required.

[9p] Prove that if a and b are both odd, then $a^2 + b^2 - 2$ is divisible by 8.

[9p] Prove that if a and b are both odd, then $a^2 + b^2 - 2$ is divisible by 8.

- By definition of odd numbers, there exist integers c and d such that $a = 2c + 1$ and $b = 2d + 1$.
- Then $a^2 + b^2 2 = (2c + 1)^2 + (2d + 1)^2 2 =$ $4c^2 + 4c + 4d^2 + 4d = 4(c^2 + c + d^2 + d).$
- From this we see that $a^2 + b^2 2$ is certainly divisible by 4.
- To see the divisibility by 8, notice further that $c^2+c=c(c+1)$ is always even, because either c or $c+1$ must be even (so the product is also even). Likewise, $d^2 + d$ is also even, and so the sum $c^2 + c + d^2 + d$ is even as well.
- Then $a^2 + b^2 2$ is 4 times an even number, meaning that it is divisible by 8, as claimed.

I will now take requests for problems. Please post problem numbers in the Zoom chat (if you haven't already done so) and I will go through as many of them as we have time for.

- I will make a new slide as we go for each problem with the problem text to make it easier for everyone to follow (we will see how fast I can manage this!).
- I will update the posted slides after the lecture is over with the list of additional problems that we went through.

[10r] Show $25ⁿ + 7$ is a multiple of 8 for every positive integer *n*.

[10r] Show $25^n + 7$ is a multiple of 8 for every positive integer n.

- Use induction on *n*.
- Base case: $n = 1$. We have $25^1 + 7 = 32$, which is a multiple of 8.
- Inductive step: suppose that $25ⁿ + 7$ is a multiple of 8. [To show: $25^{n+1} + 7$ is a multiple of 8.
- **•** For this observe that $25^{n+1} + 7 = 25(25^{n} + 7) - 25 \cdot 7 + 7 = 25(25^{n} + 7) - 24 \cdot 7$.
- Both terms $25(25^n + 7)$ and $24 \cdot 7$ are multiples of 8, so their difference is as well.
- This establishes the inductive step, so the result holds by induction.

Find a counterexample for each statement: This a counterexample for each statement.
[8f] If $n > 1$ is an integer, then \sqrt{n} is always irrational. [8e] The sum of two irrational numbers is always irrational. Find a counterexample for each statement: This a counterexample for each statement.
[8f] If $n > 1$ is an integer, then \sqrt{n} is always irrational. [8e] The sum of two irrational numbers is always irrational. Find a counterexample for each statement:

- This a counterexample for each statement.
[8f] If $n > 1$ is an integer, then \sqrt{n} is always irrational.
- [8e] The sum of two irrational numbers is always irrational.
- 1 We want an integer $n > 1$ such that \sqrt{n} is rational. As we we want an integer $n > 1$ such that \sqrt{n} is rational. As we
showed in class, $\sqrt{2}$ is irrational, and a similar proof shows $\sqrt{3}$ showed in class, $\sqrt{2}$ is irrational, and a similar pro
is irrational. But $\sqrt{4} = 2$ is rational, so $n = 4$ is a counterexample.
- [8e] We want two irrational numbers whose sum is rational. We have very few examples of irrational numbers, but as shown in nave very lew examples of irrational numbers, but as show
class, $\sqrt{2}$ is irrational. The same proof also shows $-\sqrt{2}$ is ciass, $\sqrt{2}$ is irrational. The same proof also shows $-\sqrt{2}$ is
irrational. But $\sqrt{2} + (-\sqrt{2}) = 0$ is rational. So these numbers give a counterexample.

[8a] Write, and then prove, the contrapositive of If a and b are integers, then $3a - 9b \neq 2$.

[8a] Write, and then prove, the contrapositive of If a and b are integers, then $3a - 9b \neq 2$.

- The contrapositive is "If $3a 9b = 2$ then it is not true that both a and b are integers". Or equivalently, "If $3a - 9b = 2$ then either a or b is not an integer".
- We can show this by contradiction: suppose $3a 9b = 2$. Then factoring gives $3(a - 3b) = 2$, so if a and b were integers this would say 3 divides 2, but that is impossible.
- \bullet Therefore, at least one of a and b is not an integer, as required.

Requested Problems, 4:35pm Lecture

[6b] Find the gcd of $a = 921$ and $b = 177$ and write $gcd(a, b) = xa + yb$ for some integers x and y.

Requested Problems, 4:35pm Lecture

[6b] Find the gcd of $a = 921$ and $b = 177$ and write $gcd(a, b) = xa + yb$ for some integers x and y.

• First we apply the Euclidean algorithm to find the gcd:

• Since the last nonzero remainder is 3, that is the gcd. Now we solve for the remainders:

$$
36 = 921 - 5 \cdot 177
$$

\n
$$
33 = 177 - 4 \cdot 36 = -4 \cdot 921 + 21 \cdot 177
$$

\n
$$
3 = 36 - 1 \cdot 33 = 5 \cdot 921 - 26 \cdot 177
$$

and so we can take $x = 5$ and $y = -26$.

We discussed exam logistics. We did some review problems.

Next lecture: Midterm 1.