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The Euclidean Algorithm (continued)

Primes

Unique Prime Factorization

This material represents §2.3.3-§2.4 from the course notes.



The Euclidean Algorithm, I

Recall the Euclidean algorithm from yesterday:

Theorem (Euclidean Algorithm)

Given integers 0 < b < a, repeatedly apply the division algorithm
as follows, until a remainder of zero is obtained:

a = q1b + r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qk+1rk + rk+1

rk = qk+2rk+1.

Then gcd(a, b) is equal to the last nonzero remainder, rk+1.
Furthermore, by successively solving for the remainders and
plugging in the previous equations, rk+1 can be explicitly written
as a linear combination of a and b.



The Euclidean Algorithm, II

Let’s now show that the Euclidean algorithm works. There are a
few pieces to this:

First, we need to see that the algorithm will always terminate
(i.e., it won’t continue going forever without returning a
result).

That’s not too hard to see, because each remainder is strictly
less than the previous one: b > r1 > r2 > · · · ≥ 0. Then the
well-ordering axiom dictates that we cannot have an infinite
decreasing sequence of nonnegative integers.

So we must eventually get a remainder of zero, and then the
algorithm terminates.
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The Euclidean Algorithm, III

Second: We need to show that if d |a and d |b, then d |rk+1 (the
last nonzero remainder).

We will show more: that if d |a and d |b then in fact d |rn for
all n. We use induction on n.

A cheap way to avoid having to do too much work is to denote
r0 = b and r−1 = a, and then start with these two remainders.

So: we take base cases k = −1 and k = 0: then d |r−1 = a
and d |r0 = b.

For the inductive step suppose d |rk and d |rk−1. Then
rk+1 = rk−1 − qk rk . Since both terms rk−1 and qk rk are
divisible by d , so is their difference rk+1.
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The Euclidean Algorithm, IV

Third: We show that rk+1|a and rk+1|b. Combined with the
previous slide this will show rk+1 is the gcd, since it’s a common
divisor divisible by all the other common divisors.

For this we induct “downwards” by showing rk+1|rn for all n.

For base cases we observe rk+1|rk+1 and rk+1|rk because
rk = qk+1rk+1.

For the inductive step we observe rn−1 = qn+1rn + rn+1, and
by hypothesis the last nonzero remainder divides both rn and
rn+1, so it also divides rn−1.

Moving all the way downward we see that rk+1 divides r0 = b
and then r−1 = a, as desired.
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The Euclidean Algorithm, V

Finally, we need to see that the last nonzero remainder can be
written in terms of the original integers.

It may surprise you, but this follows from another induction
argument!

Explicitly, for base cases we take r−1 = a = 1 · a + 0 · b and
r0 = b = 0 · a + 1 · b.

For the inductive step, if we can write rn−1 and rn in terms of
a, b, then since rn+1 = rn−1 − qn+1rn, plugging in those
expressions will yield rn+1 in terms of a, b as well.

And that establishes the correctness of the Euclidean algorithm!
(Yay.)
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The Euclidean Algorithm, VI

Example: Find gcd(565, 1241) using the Euclidean algorithm, and
write the gcd explicitly as a linear combination of 565 and 1241.

First, we use the Euclidean algorithm:

1241 = 2 · 565 + 111

565 = 5 · 111 + 10

111 = 11 · 10 + 1

10 = 10 · 1

and so the gcd is 1 .

For the linear combination, we solve for the remainders:

111 = 1241− 2 · 565 = 1 · 1241− 2 · 565
10 = 565− 5 · 111 = −5 · 1241 + 11 · 565
1 = 111− 11 · 10 = 56 · 1241− 123 · 565

so we obtain 1 = 56 · 1241− 123 · 565 .
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Primes

Now let’s talk about the other fundamental property of the
integers: the existence and uniqueness of prime factorizations.
Here (again) is the official definition of a prime number:

Definition

If p > 1 is an integer, we say it is prime if there is no integer d
with 1 < d < p such that d |p. An integer n > 1 that is not prime
is called composite, because n = ab for some 1 < a, b < n.

The primes less than 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

The prime numbers are often called the “building blocks
under multiplication”, because every positive integer can be
written as the product of prime numbers in an essentially
unique way. (Analogy: chemical elements.)



Prime Factorizations, I

Let’s start by showing that every positive integer has a prime
factorization:

Proposition (Existence of Prime Factorizations)

Every positive integer n can be written as a product of zero or
more primes (where a “product” is allowed to have only one term,
and the empty product has value 1).

Some examples: 30 = 2 · 3 · 5, 9 = 3 · 3, 17 = 17, 12 = 2 · 2 · 3.

The representation of n as a product of primes is called the
prime factorization of n. Our goal is to show it’s unique, up to
reordering the terms.



Prime Factorizations, II

Proof:

We use strong induction on n. The result clearly holds if
n = 1, since 1 is the empty product.

Now suppose n ≥ 2. If n is prime, we are done: simply take
the product n with one term.

So assume that n is not prime, hence composite since n ≥ 2.

By definition, there exists a d with 1 < d < n such that d |n:
then n/d is an integer satisfying 1 < n/d < n.

By the strong induction hypothesis, both d and n/d can be
written as a product of primes; multiplying these two products
then yields n as a product of primes.



Prime Factorizations, III

To establish the uniqueness of prime factorizations, we require the
following prime divisibility property:

Proposition (Prime Divisibility)

If a and b are integers and p is a prime number with p|ab, then p|a
or p|b.

Example: If 2|ab, then 2|a or 2|b. Or, equivalently, if a product of
two integers is even, then at least one of the integers must have
been even. (True!)



Prime Factorizations, IV

Proof:

Let’s instead prove the contrapositive: For a prime p, if p - a
and p - b then p - ab.

So suppose p - a and p - b.

Consider gcd(a, p): it divides p, hence is either 1 or p since p
is prime. But the gcd cannot be p because p doesn’t divide a.

So gcd(a, p) = 1, meaning a and p are relatively prime.

By the same logic, b and p are relatively prime.

But now recall one of the properties from yesterday: if a and
b are both relatively prime to an integer m, then so is ab.
Applying that here shows immediately that ab is relatively
prime to p.

Finally, that tells us p - ab, because otherwise we would have
gcd(ab, p) = p, but the gcd is 1.



Prime Factorizations, V

Now we can show the uniqueness of prime factorizations:

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer can be factored into a product of primes,
and this factorization is unique up to reordering of the factors.

Note that we already showed that every positive integer has a
prime factorization, so we only need to show that factorizations are
unique up to reordering.



Prime Factorizations, VI

Proof:

Strong induction on the integer n. The base case n = 1 is
immediate, since any nonempty product will be larger than 1.

Now suppose every positive integer less than n has a unique
prime factorization, and suppose we have two prime
factorizations n = p1p2 · · · pk = q1q2 · · · ql .
Since p1 is prime and divides the product q1q2 · · · ql , by the
prime divisibility property applied repeatedly, we see that p1

divides some prime qi . By rearranging, we can assume p1|q1.
But q1 is prime, so its only positive divisors are 1 and itself.
Since p1|q1 and p1 6= 1 (1 is not prime), p1 = q1.
Now, by the induction hypothesis, the prime factorization of
n/p1 = p2 · · · pk = q2 · · · ql is unique, so the primes q2, . . . , ql

are some rearrangement of p2, . . . , pk .
Since p1 = q1 also, that means the two factorizations of n are
just rearrangements! Victory.
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Applications of Factorizations, I

Let’s mention a few applications of prime factorizations.

Proposition (Divisibility and Factorizations)

Suppose that a and b have prime factorizations given by
a =

∏j
i=1 pai

i and b =
∏j

i=1 pbi
i for distinct primes pi . Then

1. We have a|b if and only if ai ≤ bi for each i .

2. We have gcd(a, b) =
∏j

i=1 p
min(ai ,bi )
i and

lcm(a, b) =
∏j

i=1 p
max(ai ,bi )
i .

What this proposition tells us is how to understand divisibility in
terms of prime factorizations: it says a divides b when the power of
each prime in the factorization of a is ≤ the corresponding power
of each prime in b.



Applications of Factorizations, II

Before doing the proof let’s look at a few examples:

Does a = 233251 divide b = 243351?

Yes: just divide to see
(243351)/(233251) = 24−333−251−1 = 213150 = 6, which is an
integer.

Does a = 233251 divide b = 223452? No: if we divide we get
(223452)/(233251) = 22−334−252−1 = 2−13251 = 45/2 which
isn’t an integer. The problem is that a has a higher power of
2 than b does.

The idea is that for a to divide b, each prime must appear in
at least as high a power in b as in a.
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Applications of Factorizations, III

1. For a =
∏j

i=1 pai
i and b =

∏j
i=1 pbi

i , a|b if and only if ai ≤ bi

for each i .

Proof:

Suppose a|b so that b = ak for some integer k .

If k has prime factorization k =
∏j

i=1 pki
i , then ai + ki = bi by

uniqueness of prime factorizations.

Since all exponents are nonnegative, this means ai ≤ bi for
each i .

Conversely, if ai ≤ bi for each i , then taking ki = bi − ai and
k =

∏j
i=1 pki

i yields an integer such that b = ak (as follows by
comparing the factorizations.



Applications of Factorizations, IV

2. For a =
∏j

i=1 pai
i and b =

∏j
i=1 pbi

i , we have

gcd(a, b) =
∏j

i=1 p
min(ai ,bi )
i and lcm(a, b) =

∏j
i=1 p

max(ai ,bi )
i .

Proof:

Consider the prime factorization of a common divisor
d =

∏j
i=1 pdi

i .

By the result we just proved, since d |a and d |b, we must have
di ≤ ai and di ≤ bi for each i .

This means di ≤ min(ai , bi ). But if we take di = min(ai , bi )
then the resulting value of d is a common divisor, and so

gcd(a, b) =
∏j

i=1 p
min(ai ,bi )
i .

A similar argument with a|l and b|l with the lcm yields the
formula for the lcm.



Applications of Factorizations, V

Example: Find the gcd and lcm of 22335271 and 23335172.

The gcd has each prime to the smaller power that appears,
which yields gcd = 22335171.

The lcm has each prime to the larger power that appears,
which yields lcm = 23335272.

Intuitively, the idea is that for the gcd, we want to take as
many factors for each prime as possible, while still making
sure that d |a and d |b. For the lcm, we want to use as few
factors as possible, while still making sure that a|l and b|l .
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Applications of Factorizations, VI

One question we might have is: how many primes are there? The
most basic answer to this question is that there are infinitely many
primes:

Theorem (Euclid’s Theorem)

There are infinitely many prime numbers.

In fact, you already saw this proof on the first day of the course,
but now we have enough tools to understand how it works.



Applications of Factorizations, VII

Proof:

Suppose there are only finitely many primes p1, p2, . . . , pk

and consider n = p1p2 · · · pk + 1.

Since n is greater than each pi , n cannot be prime (since it
would necessarily have to be on the list).

Therefore n is composite. Consider the prime factorization of
n: since n > 1, the factorization has at least one prime, which
must appear on the list. Suppose that pi divides n.

Since pi also divides p1p2 · · · pk , we see that pi therefore
divides n − p1p2 · · · pk = 1.

But this is a contradiction because 1 has no prime divisors.
Hence there are infinitely many primes.



Applications of Factorizations, VIII

Another particularly famous use of prime factorizations is in
proving that

√
2 is irrational:

Proposition (Irrationality of
√

2)

The number
√

2 is irrational, which is to say, there do not exist
integers m and n such that

√
2 = m/n.

Naturally, because we are trying to prove that there do not exist
integers with this claimed property, we need to do a proof by
contradiction.



Applications of Factorizations, IX

Proof:

Suppose by way of contradiction that
√

2 were rational so
that

√
2 = m/n for some integers m and n, which (by

negating if needed) we may assume are positive.

Squaring both sides and clearing denominators yields the
equivalent equation 2n2 = m2.

Now consider the prime factorizations of both sides: say
m = 2m23m3 · · · and n = 2n23n3 · · · .
We obtain the equality 22m2+13m3 · · · = 22n232n3 · · · , and so
by the uniqueness of prime factorizations, all of the
corresponding exponents must be equal.

In particular, 2m2 + 1 = 2n2, so that 2(n2 −m2) = 1. But
this is impossible, because 2 does not divide 1.

Therefore, it could not have been true that
√

2 = m/n, so
√

2
must be irrational as claimed.
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Other Things About Primes, I

Even though the prime numbers appear quite simple, in fact there
are very many difficult problems, and very many more unsolved
problems, in number theory involving primes. Here are a few:



Other Things About Primes, II

Q: How common are primes?

Euclid’s proof shows that there are infinitely many primes, but
that doesn’t say much about how common they are.

Are they as common as even numbers? Or are they more like
squares, which are rarer? Or somewhere in between?

More precisely, consider the function π(n) counting the
number of primes ≤ n: how does π(n) behave as n→∞?

For example, π(100) = 25 since there are 25 primes less than
100, while π(1000) = 168, π(104) = 1229, π(105) = 9592,
π(106) = 78498, and π(107) = 664579.

It seems like π(n) is growing a lot faster than
√

n but slower
than n itself. Any ideas what the growth rate might be?

In fact, the answer is given by the Prime Number Theorem:

π(n) ∼ n

ln n
as n→∞. (Yes, that’s the natural logarithm.)
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Other Things About Primes, III

Q: How close do primes get?

Obviously, 2 and 3 differ by 1, but since 2 is the only even
prime, any other pair of primes must differ by at least 2.

Primes that differ by 2 (like 5 and 7, or 17 and 19) are called
“twin primes”. One can write down many pairs of twin
primes, even very large ones.

For example, 99989 and 99991 are both prime, as are 643301
and 643303, and 1866633479 and 1866633481, just to give
three fairly small random examples.

But are there infinitely many pairs of twin primes?

In fact, we don’t know! There are heuristics suggesting there
should be infinitely many pairs of twin primes (indeed, the
arguments used for the Prime Number Theorem suggest there
should be about n/(ln n)2 of them that are ≤ n), but this
problem is still unsolved.
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Summary

We discussed the Euclidean algorithm and how to use it to
calculate greatest common divisors.

We discussed prime numbers and unique prime factorization.

We discussed some applications of prime factorization, and some
other questions about primes.

Next lecture: Modular congruences and residue classes.


