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GCDs and the Euclidean Algorithm

GCDs

Properties of GCDs

The Euclidean Algorithm

This material represents §2.3.2-§2.3.3 from the course notes.



Reminder

Recall our result about division with remainder from last week:

Theorem (Division With Remainder)

If a and b are positive integers, then there exist unique integers q
and r such that a = qb + r with 0 ≤ r < b. Furthermore, r = 0 if
and only if b|a.



GCDs, I

Our main goal today is to discuss the notion of the greatest
common divisor of two integers:

Definition

If d |a and d |b, then d is a common divisor of a and b.

Examples:

2 is a common divisor of 6 and 10, since 2|6 and 2|10. So are
1 and −2.

The diviisors of 15 are −15,−5,−3,−1, 1, 3, 5, 15 and the
divisors of 12 are −12,−6,−4,−3,−2,−1, 1, 2, 3, 4, 6, 12.
The common divisors are −3,−1, 1, 3.



GCDs, I

Our main goal today is to discuss the notion of the greatest
common divisor of two integers:

Definition

If d |a and d |b, then d is a common divisor of a and b.

Examples:

2 is a common divisor of 6 and 10, since 2|6 and 2|10. So are
1 and −2.

The diviisors of 15 are −15,−5,−3,−1, 1, 3, 5, 15 and the
divisors of 12 are −12,−6,−4,−3,−2,−1, 1, 2, 3, 4, 6, 12.
The common divisors are −3,−1, 1, 3.



GCDs, II

If a and b are not both zero, then there are only a finite number of
common divisors of a and b.

Definition

If a and b are integers, not both zero, then the
greatest common divisor (GCD) of a and b is the greatest common
divisor of a and b.

Okay, yes, when written out like this, it sounds circular, but that’s
just because the term defines itself! The GCD is just the largest of
the common divisors.
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GCDs, III

Example: Find the greatest common divisor of 30 and 42.

The positive divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30.

The positive divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42.

The common (positive) divisors are 1, 2, 3, and 6.

The greatest of these is 6, so gcd(30, 42) = 6.

Finding the GCD this way is pretty inefficient, because we have to
write out all the divisors (which can be difficult with large
numbers). We’ll develop a better method later.



GCDs, III

Example: Find the greatest common divisor of 30 and 42.

The positive divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30.

The positive divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42.

The common (positive) divisors are 1, 2, 3, and 6.

The greatest of these is 6, so gcd(30, 42) = 6.

Finding the GCD this way is pretty inefficient, because we have to
write out all the divisors (which can be difficult with large
numbers). We’ll develop a better method later.



GCDs as Linear Combinations, I

Our first main result about greatest common divisors is that we
can write them in terms of the original integers:

Theorem (GCD as Linear Combination)

If a and b are integers, not both zero, and d = gcd(a, b), then
there exist integers x and y with d = ax + by. In fact, the gcd is
the smallest positive such linear combination.

This theorem says that the greatest common divisor of two
integers is an integral linear combination of those integers.

Example: We saw on the last slide that gcd(30, 42) = 6. You
can check that we can write 6 = 3 · 30− 2 · 42.



GCDs as Linear Combinations, II

Before we get going on the proof, let me point out a simplifying
assumption we can make.

We are given two integers a and b, not both zero.

The details of the argument will depend a bit on which one is
nonzero.

We could write two separate arguments, one for each case.

But the statement of our result is symmetric in a and b.

So we can do the following trick: if a = 0, just swap a and b,
so that now a 6= 0.

There is a quick phrase for this sort of thing: “Without loss of
generality, ...”.



GCDs as Linear Combinations, III

Proof:

Without loss of generality assume a 6= 0.

Define the set S = {sa + tb : s, t ∈ Z} ∩Z+ to be all positive
integers of the form sa + tb for some integers s, t.

Because either −a or a is in S , we see S is nonempty.

Therefore, by the well-ordering axiom of the integers, S
contains a smallest element: let’s call it l .

We claim that l is actually the greatest common divisor of a
and b.
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GCDs as Linear Combinations, IV

Claim 1: The integer l (the smallest positive integer of the form
sa + tb) is a common divisor of a and b. Let’s say l = sa + tb.

First let’s show l |a. So divide a by l to write a = ql + r for
some 0 ≤ r < l . [Goal: Show r = 0.]

Rearrange to see that
r = a− ql = a− q(sa + tb) = (1− qs)a + (−qt)b.

But look at this statement: it says r is some integer times a
plus some other integer times b.

If r were positive, then we’d have a contradiction to the
assumption that l is the smallest positive integer of that form.

So we must have r = 0! And so that means l |a.

By the same exact argument, just with a, b swapped, we also see
that l |b. So l is in fact a common divisor!
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GCDs as Linear Combinations, V

Claim 2: The integer l (the smallest positive integer of the form
sa + tb) is the greatest common divisor of a and b.

We just saw that l is a common divisor, so now we only have
to show it’s the biggest.

So suppose d is some other common divisor of a and b: then
d |a and d |b.

But now since l = sa + tb for some integers s and t, by our
divisibility properties (or if you like, problem 4b of homework
4), that means d |l too.

If d < 0, then certainly d < l since l is positive.

Otherwise, if d > 0 then d |l implies d ≤ l , by another of our
divisibility properties.

That means every other common divisor of a, b is ≤ l : in
other words, l is the greatest.
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GCDs as Linear Combinations, VI

So, now we know that for any integers a, b not both zero, there
exist integers x and y such that gcd(a, b) = xa + yb.

Corollary

Every common divisor of a and b divides their gcd. More explicitly,
if e|a and e|b, then e| gcd(a, b).

Proof:

By our result, there exist integers x and y such that
gcd(a, b) = xa + yb.

But now if e|a and e|b, then e also divides xa + yb (divisibility
properties), and xa + yb is the gcd!

So, not only is the gcd the biggest of the common divisors, all
other common divisors actually divide it!
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GCDs as Linear Combinations, VII

Here are some more examples of these ideas:

1. We have gcd(5, 12) = 1 and we can also write
5 · 5− 2 · 12 = 1. In fact, this relation proves the gcd must be
1, because any common divisor of 5 and 12 would also have
to divide 5 · 5− 2 · 12 = 1.

2. We have gcd(8, 26) = 2 since the positive divisors of 8 are
1,2,4,8 and the biggest that also divides 26 is 2. We can write
(−3) · 8 + 1 · 26 = 2.

3. You can check for yourself that 44 · 102− 13 · 345 = 3, so any
common divisor of 102 and 345 must divide 3. But since 3 is
a common divisor (note 102 = 34 · 3 and 345 = 105 · 3), 3
must be the gcd.
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GCDs as Linear Combinations, VIII

The situation where two integers have gcd 1 comes up often, so we
give it a name:

Definition

When gcd(a, b) = 1, we say a and b are relatively prime.

Examples:

5 and 12 are relatively prime, since gcd(5, 12) = 1.

2 and 13 are relatively prime, since gcd(2, 13) = 1.

14 and 15 are relatively prime, since gcd(14, 15) = 1.

30 and 66 are not relatively prime, since they have a common
divisor 2 > 1. (In fact their gcd is 6.)

If you are wondering why we call this “relatively prime”, later we’ll
show that integers are relatively prime precisely when they have no
prime factors in common.
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Properties of GCDs, I

Let’s establish a few more properties of GCDs:

Proposition

The following hold for integers m, a, b, d:

1. If m > 0, then gcd(ma,mb) = m · gcd(a, b).

2. If d > 0 divides both a and b, then
gcd(a/d , b/d) = gcd(a, b)/d.

3. There exist integers x and y with xa + yb = 1 if and only if
gcd(a, b) = 1. (i.e., if and only if a and b are relatively prime).

4. If a and b are both relatively prime to m, then so is ab.

5. For any integer x, gcd(a, b) = gcd(a, b + xa).

6. If a|bc and a and b are are relatively prime, then a|c.



Properties of GCDs, II

1. If m > 0, then gcd(ma,mb) = m · gcd(a, b).

Proof:

From our results on gcds as linear combinations, gcd(ma,mb)
is the smallest positive element of the set
S = {mxa + myb : x , y ∈ Z}, while gcd(a, b) is the smallest
positive element of the set T = {xa + yb : x , y ∈ Z}.
But because mxa + myb = m(xa + yb), multiplying all of the
elements of T by m yields the set S .

In particular, if we take the smallest positive element of T and
multiply it by m, this must give the smallest positive element
of S .

In other words, gcd(ma,mb) = m · gcd(a, b), as claimed.
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Properties of GCDs, III

2. If d > 0 divides both a and b, then
gcd(a/d , b/d) = gcd(a, b)/d .

Proof:

Remember that we just proved gcd(mp,mq) = m · gcd(p, q).

Now apply this fact when p = a/d , q = b/d , and m = d .

It yields gcd(a, b) = d · gcd(a/d , b/d).

Now just divide both sides by d to get
gcd(a, b)/d = gcd(a/d , b/d), as desired.
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Properties of GCDs, IV

3. There exist integers x and y with xa + yb = 1 if and only if
gcd(a, b) = 1 (i.e., if and only if a and b are relatively prime).

Proof:

If gcd(a, b) = 1 then our result on the GCD as a linear
combination tells us there exist integers x and y with
xa + yb = 1.

For the other direction, any common divisor (in particular, the
gcd) of a and b must divide xa + yb = 1.

But that means the gcd must divide 1, which since the gcd is
positive, means the gcd must equal 1.
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Properties of GCDs, V

4. If a and b are both relatively prime to m, then so is ab.

Proof:

By the linear combination property of the gcd, there exist
x1, y1, x2, y2 with ax1 + my1 = 1 and bx2 + my2 = 1.

Multiplying these two equations together and rearranging the
results yields ab(x1x2) + m(y1bx2 + y2ax1 + my1y2) = 1.

This last fact implies that ab is relatively prime to m, because
it is a relation of the form 4 · ab + � ·m = 1, and as we just
showed on the last slide, this particular relation implies
gcd(ab,m) = 1.
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Properties of GCDs, VI

5. For any integer x , gcd(a, b) = gcd(a, b + xa).

Proof:

We show a, b and a, b + xa have the same common divisors:
that [ d |a and d |b ] if and only if [ d |a and d |(b + xa) ].

First suppose d |a and d |b.

Then d |a and d |(b + ax), so d is also a common divisor of a
and b + ax .

Conversely, now suppose e|a and e|(b + ax).

Then e|a and e|[(b + ax)− x · a], which is to say, e|a and e|b,
so e is a common divisor of a and b.

This shows both implications, so we are done. Since a, b and
a, b + xa have the same common divisors, their greatest
common divisors are also the same.
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Properties of GCDs, VIII: The Last Jedi

6. If a|bc and a and b are are relatively prime, then a|c.

Proof 1:

From property (1) at the beginning, we have
gcd(ac, bc) = c · gcd(a, b) = c .

Now because a|bc and a|ac, we see that a is a common
divisor of ac and bc.

Since every common divisor divides the gcd, that means a
divides gcd(ac , bc) = c . So a|c , as claimed.

This proof is nice, but let me give you another one just for fun.
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Properties of GCDs, IX: The Reprovening

6. If a|bc and a and b are are relatively prime, then a|c.

Proof 2:

Since a and b are relatively prime, by (3) from earlier, there
exist integers x and y with ax + by = 1.

Multiplying both sides by c yields acx + bcy = c .

Now observe that a divides both acx and bcy , so it divides
their sum c .

These proofs look very different, but they actually use the same
idea in the middle. Can you see what it is?
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LCMs, I

Before we talk about how to calculate gcds, let’s take a few
minutes to mention a concept that’s very similar to the gcd: the
least common multiple.

Definition

If a|l and b|l , we say l is a common multiple of a and b. Among
all (nonnegative) common multiples of a and b, the smallest such l
is the least common multiple of a and b, denoted lcm(a, b).

Example: The least common multiple of 30 and 42 is 210, as
follows by noting that 210 = 7 · 30 = 5 · 42 and that none of
1 · 42, 2 · 42, 3 · 42, and 4 · 42 is divisible by 30.

Least common multiples often show up in elementary school for
finding the “least common denominator” when adding fractions.
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LCMs, II

The lcm has fewer nice properties than the gcd, but it turns out
that we can obtain either one from the other:

Proposition

For any positive integers m, a, b, the following hold:

1. We have lcm(ma,mb) = m · lcm(a, b).

2. We have gcd(a, b) · lcm(a, b) = ab.

So for example, because we calculated earlier that
gcd(30, 42) = 6, item (2) says that
lcm(30, 42) = 30 · 42/6 = 210, exactly as calculated on the
previous slide.
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The lcm has fewer nice properties than the gcd, but it turns out
that we can obtain either one from the other:
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LCMs, III

1. We have lcm(ma,mb) = m · lcm(a, b).

Proof:

Since ma divides lcm(ma,mb), the lcm is a multiple of ma
hence of m, so lcm(ma,mb) = mk for some integer k.

Then ma|mk and mb|mk, so a and b both divide k. Thus
k ≥ l , where l = lcm(a, b).

On the other hand, since a|l and b|l we see ma|ml and mb|ml ,
so ml is a common multiple, hence ml ≥ mk and so l ≥ k .

But k ≥ l and l ≥ k imply l = k , and this means
lcm(ma,mb) = m · lcm(a, b) as claimed.
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LCMs, IV

2. We have gcd(a, b) · lcm(a, b) = ab.

Proof:

First we show the result when a, b are relatively prime, in
which case we need to show lcm(a, b) = ab. Since ab is
clearly a common multiple of a and b, we just want to show
it’s the smallest.

So suppose l is a common multiple. Then since a|l we can
write l = ak for some integer k.

But because b|ak and gcd(a, b) = 1, by the relatively-prime
divisibility property from earlier we deduce that b|k , meaning
that k ≥ b and thus l ≥ ab as desired.

In the general case, let d = gcd(a, b). Then
gcd(a/d , b/d) = gcd(a, b)/d = 1, so by the above we have
lcm(a/d , b/d) = (a/d) · (b/d) = ab/d2. Then by (1),
gcd(a, b) · lcm(a, b) = d · d lcm(a/d , b/d) = ab, as claimed.
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The Euclidean Algorithm, I

Now, at last, we can actually talk about how to calculate GCDs.

Theorem (Euclidean Algorithm)

Given integers 0 < b < a, repeatedly apply the division algorithm
as follows, until a remainder of zero is obtained:

a = q1b + r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qk+1rk + rk+1

rk = qk+2rk+1.

Then gcd(a, b) is equal to the last nonzero remainder, rk+1.
Furthermore, by successively solving for the remainders and
plugging in the previous equations, rk+1 can be explicitly written
as a linear combination of a and b.



The Euclidean Algorithm, II

Example: Find gcd(30, 42) using the Euclidean algorithm, and
write the gcd explicitly as a linear combination of 30 and 42.

First, we use the Euclidean algorithm:

42 = 1 · 30 + 12

30 = 2 · 12 + 6

12 = 2 · 6

so the gcd is the last nonzero remainder 6 .

For the linear combination, we solve for the remainders:

12 = 42− 1 · 30 = 1 · 42− 1 · 30
6 = 30− 2 · 12 = 30− 2(42− 1 · 30) = −2 · 42 + 3 · 30

so we obtain 6 = −2 · 42 + 3 · 30 .
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The Euclidean Algorithm, III

Example: Find gcd(133, 98) using the Euclidean algorithm, and
write the gcd explicitly as a linear combination of 133 and 98.

First, we use the Euclidean algorithm:

133 = 1 · 98 + 35

98 = 2 · 35 + 28

35 = 1 · 28 + 7

28 = 4 · 7

and so the gcd is 7 .

For the linear combination, we solve for the remainders:

35 = 133− 1 · 98 = 1 · 133− 1 · 98
28 = 98− 2 · 35 = −2 · 133 + 3 · 98
7 = 35− 1 · 28 = 3 · 133− 4 · 98

so we obtain 7 = 3 · 133− 4 · 98 .
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The Euclidean Algorithm, IV

Let’s now show that the Euclidean algorithm works. There are a
few pieces to this:

First, we need to see that the algorithm will always terminate
(i.e., it won’t continue going forever without returning a
result).

That’s not too hard to see, because each remainder is strictly
less than the previous one: b > r1 > r2 > · · · ≥ 0. Then the
well-ordering axiom dictates that we cannot have an infinite
decreasing sequence of nonnegative integers.

So we must eventually get a remainder of zero, and then the
algorithm terminates.



The Euclidean Algorithm, V

Second: We need to show that if d |a and d |b, then d |rk+1 (the
last nonzero remainder).

We will show more: that if d |a and d |b then in fact d |rn for
all n. We use induction on n.

A cheap way to avoid having to do too much work is to denote
r0 = b and r−1 = a, and then start with these two remainders.

So: we take base cases k = −1 and k = 0: then d |r−1 = a
and d |r0 = b.

For the inductive step suppose d |rk and d |rk−1. Then
rk+1 = rk−1 − qk rk . Since both terms rk−1 and qk rk are
divisible by d , so is their difference rk+1.



The Euclidean Algorithm, VI

Third: We show that rk+1|a and rk+1|b. Combined with the
previous slide this will show rk+1 is the gcd, since it’s a common
divisor divisible by all the other common divisors.

For this we induct “downwards” by showing rk+1|rn for all n.

For base cases we observe rk+1|rk+1 and rk+1|rk because
rk = qk+1rk+1.

For the inductive step we observe rn−1 = qn+1rn + rn+1, and
by hypothesis the last nonzero remainder divides both rn and
rn+1, so it also divides rn−1.

Moving all the way downward we see that rk+1 divides r0 = b
and then r−1 = a, as desired.
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The Euclidean Algorithm, VII

Finally, we need to see that the last nonzero remainder can be
written in terms of the original integers.

It may not surprise you, but this follows from another
induction argument!

Explicitly, for base cases we take r−1 = a = 1 · a + 0 · b and
r0 = b = 0 · a + 1 · b.

For the inductive step, if we can write rn−1 and rn in terms of
a, b, then since rn+1 = rn−1 − qn+1rn, plugging in those
expressions will yield rn+1 in terms of a, b as well.

And that establishes the correctness of the Euclidean algorithm!
(Yay.)



Summary

We discussed greatest common divisors and some of their
properties.

We discussed the Euclidean algorithm and how to use it to
calculate greatest common divisors.

Next lecture: Primes and unique prime factorization.


