
E. Dummit's Math 1365 ∼ Intensive Mathematical Reasoning, Fall 2023 ∼ Homework 10, due Thu Nov 30th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Identify whether each of the following sets is �nite, countably in�nite, or uncountably in�nite:

(a) The set of real numbers that can be described using at most 60 characters written in English. (For
example, 1 can be described using the string �one� while π can be described as �the ratio of a circle's
circumference to its diameter�.)

(b) The set of real numbers that can be described using at most 100,000 characters written in English.

(c) The set of real numbers that can be described using a �nite number of characters written in English.

(d) The set of real numbers that cannot be described by any �nite string of characters written in English.

2. Solve the following counting problems:

(a) Find the number of functions f : {a, b, c, d, e} → {1, 2, 3, 4, 5}. How many are one-to-one? How many
are onto?

(b) Find the number of functions f : {1, 2, 3} → {a, b, c, d, e}. How many are one-to-one? How many are
onto?

(c) Find the number of functions f : {a, b, c, d, e} → {1, 2, 3}. How many are one-to-one? How many are
onto? [Hint: For onto functions, try counting how many have each possible image set.]

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

3. Suppose A, B, and C are �nite sets. Recall the union-intersection formula #(A∪B) = #A+#B−#(A∩B).

(a) Show that #(A∪B ∪C) = #A+#B+#C −#(A∩B)−#(A∩C)−#(B ∩C)+#(A∩B ∩C). [Hint:
Apply the union-intersection formula to (A ∪B) ∪ C.]

(b) Find the number of integers in the set {1, 2, 3, . . . , 2023} that are divisible by 2 or by 3 or by 5.

Remark: There is a natural generalization of (a), the inclusion-exclusion formula, for #(A1∪A2∪· · ·∪An) in
terms of the cardinalities of the various possible intersections of A1, A2, ... , An, which can be obtained
using an induction argument.

4. Suppose f : Z→ Z is a function such that f(f(f(n)) = n for all n ∈ Z.

(a) Show that f is a bijection.

(b) Give an example of such a function f that is NOT equal to the identity function. (You don't need to
give an explicit formula, but at least describe how to �nd the values of f .)

5. The goal of this problem is to give another proof that R is uncountable. Let f : P(Z+)→ R be the function
de�ned as follows: f(A) is the decimal whose nth decimal place is 1 if n ∈ A, and is 2 if n 6∈ A.

(a) Find the decimal expansion to 10 digits of the value of f on each of these sets: (i) the set of even integers,
(ii) the set of odd integers, and (iii) the set of prime numbers.

(b) Prove that f is one-to-one. [Hint: Use the fact that f(A) has a unique decimal expansion for any set A.]

(c) Using the fact that P(Z+) is uncountable, show that R is uncountable.
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6. Let A = (0, 1) = {x ∈ R : 0 < x < 1}, B = [3, 5] = {x ∈ R : 3 ≤ x ≤ 5}, and C = [1, 6) = {x ∈ R : 1 ≤ x < 6}.

(a) Show that there exists a bijection between A and B.

(b) Show that there exists a bijection between A and C.

(c) Show that there exists a bijection between B and C.

7. The goal of this problem is to give yet another proof that Q is countable.

(a) Let f : Q→ Z+ be the map de�ned by f((−1)ka/b) = 2k3a5b, where a ≥ 0, b > 0, a/b is in lowest terms,
and k ∈ {0, 1}. Show that f is one-to-one.

(b) Show that there exists a bijection between Q and Z+. [Hint: Use Cantor-Schröder-Bernstein with
g : Z+ → Q de�ned by g(n) = n.]

8. The goal of this problem is to show that there exists a bijection between R and R× R.

(a) Show that there exists a one-to-one function f : [0, 1]→ [0, 1]× [0, 1].

(b) Consider the function g : [0, 1]×[0, 1]→ [0, 1] where g(0.d1d2d3 . . . , 0.e1e2e3 . . . ) = 0.1d1e11d2e21d3e3 . . . ,
where we always choose the decimal expansion ending in a string of 9s if there is a choice. Show that g
is one-to-one.

(c) Deduce that there exists a bijection between [0, 1] and [0, 1]× [0, 1].

(d) Show that there exists a bijection between [0, 1] and R. [Hint: Use f(x) = x and g(x) = 1
2 + arctan(x)

π .]

(e) Deduce that there exists a bijection between R and R×R. [Hint: Apply (d) to each copy of [0, 1] in (c).]

Remark: Some other results related to these are (i) there exists a continuous onto function f : [0, 1] →
[0, 1] × [0, 1] (such functions are called �space-�lling curves�), but (ii) there does not exist a continuous
bijection f : [0, 1] → [0, 1]× [0, 1]. Also, (iii) there exists an additive bijection f : R → R× R such that
f(a+ b) = f(a) + f(b) for all a, b ∈ R.

9. A real number r is algebraic if it is a root of a nonzero polynomial with integer coe�cients, meaning that
p(r) = 0 for some polynomial p(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 where an, an−1, . . . , a0 are integers

with an 6= 0. We say r is transcendental if it is not algebraic. For example, 3/4 is algebraic because it is a
root of p(x) = 3x− 4, and

√
2 is algebraic because it is a root of p(x) = x2 − 2.

(a) Let Pn be the set of nonzero polynomials of degree at most n whose coe�cients are integers that are at
most n in absolute value. Show that the cardinality of Pn is (2n+ 1)n+1 − 1.

(b) Let Sn be the set of roots of the polynomials in the set Pn de�ned in part (a). Show that Sn is �nite and
that the set A of algebraic numbers is the union ∪n≥1Sn. [Hint: Use the fact that a nonzero polynomial
of degree n has at most n di�erent roots.]

(c) Show that the set of algebraic numbers is countable. Deduce that there are uncountably many transcen-
dental numbers.

Remark: The result of (c) is what is termed �non-constructive�: it proves that transcendental numbers exist
without actually giving any examples. In fact, it is usually quite di�cult to prove that any speci�c real
number r actually is transcendental.

Remark: The ideas from this problem can be adapted to show that the cardinality of the �computable
numbers� (real numbers that can be computed to arbitrarily good accuracy by a �nite, terminating
algorithm) is countable, and thus that there are uncountably many uncomputable numbers.
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