
Math 1365 (Intensive), Fall 2023 ∼ Dummit/Lang ∼ Final Exam Review Problems

0.1 Logic and Proof Methods

1. Let P , Q, and R be propositions.

(a) Show that the statement P ∧ ¬[Q ∨ (R⇒ P )] is always false.

(b) Show that the propositions (P ⇒ Q)⇔ R and P ⇒ (Q⇔ R) are not logically equivalent.

(c) Show that the propositions ¬[Q ∧ ¬(P ∧Q)] ∧ ¬P and ¬Q ∧ ¬P are logically equivalent.

2. Write a negation for each of the following statements:

(a) ∀x∀y∃z, x+ y + z > 5.

(b) Every integer is a rational number.

(c) ∀x ∈ A ∀y ∈ B, x · y ∈ A ∩B.
(d) There is a perfect square that is not even.

(e) The integer n is a prime number and n < 10.

(f) ∀ε > 0∃δ > 0, (|x− a| < δ)⇒ (|x2 − a2| < ε).

(g) For any x ∈ R there exists an n ∈ Z such that x < n.

(h) There exist positive integers a and b with 2 = (a/b)3.

3. Find the truth values of the following statements, where the universal set is R:

(a) ∀x∀y, y 6= x.

(b) ∀x∃y, y 6= x.

(c) ∃x∀y, y 6= x.

(d) ∃x∃y, y 6= x.

(e) ∀x∀y, y2 ≥ x.
(f) ∀x∃y, y2 ≥ x.

(g) ∃x∀y, y2 ≥ x.
(h) ∃x∃y, y2 ≥ x.

4. With universal set Z+, let E(n) be the statement that n is even and let S(n) be the statement that n is a perfect
square greater than 1. Consider the statement

∀n [E(n) ∧ (n > 2)]⇒ [∃mS(m) ∧m|n].

(a) Show that the statement is false by giving a counterexample.

(b) Give the negation of this statement, simpli�ed as much as possible.

5. Write, and then prove, the contrapositive of each of these statements (assume n refers to an integer):

(a) Suppose a, b ∈ Z. If ab = 1 then a ≤ 1 or b ≤ 1.

(b) If 5n+ 1 is even, then n is odd.

(c) If n3 is odd, then n is odd.

(d) If n is not a multiple of 3, then n cannot be written as the sum of 3 consecutive integers.

(e) Suppose a, b ∈ Z. If n does not divide ab, then n does not divide a and n does not divide b.

6. Find a counterexample to each of the following statements:

(a) For any integers a, b, and c, if a|b and a|c, then b|c.
(b) If p and q are prime, then p+ q is never prime.

(c) There do not exist integers a and b with a2−b2 = 7.

(d) If n > 1 is an integer, then
√
n is always irrational.

(e) If n 6= 3 then n2 6= 9.

(f) There are no integers m,n with m2 − 2n2 = 1.

(g) ∀x ∈ R, ∃y ∈ R, y4 = x.

(h) Two perfect squares never sum to a perfect cube.
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0.2 Sets

In these problems, ∅ denotes the empty set, A = Ac = {x : x 6∈ A} denotes the complement of a set inside a universal set,
and A\B = A−B = {x ∈ A : x 6∈ B} denotes set di�erence.

1. Let A, B, and C be sets. Prove that (A\B) ∪ (B\C) ⊆ (A ∪B)\(B ∩ C).

2. Let A and B be sets. Prove that A−B = ∅ if and only if A ⊆ B.

3. For any sets A,B,C, prove A\(B ∩ C) = (A\B) ∪ (A\C).

4. For any sets A,B inside a universal set U , prove A ∪Bc = U if and only if Ac ∩B = ∅.

5. For any sets A,B,C, prove A ⊆ B ∪ C if and only if A−B ⊆ C.

6. Suppose A, B, and C are arbitrary sets contained in a universal set U . Identify which statements are true and which
are false. Then prove the true statements and give a counterexample for the false ones.

(a) (A ∪B)−A = B −A.
(b) A\(B ∩ C) = (A\B) ∩ (A\C).

(c) A ∩B ∪B ⊆ A ∪B.
(d) Ac ∩Bc ⊆ (A\B)c ∩ (B\A)c.

0.3 Number Theory

1. Let m and n be positive integers.

(a) Prove that if m2 + n2 is divisible by 4, then m and n are either both even or both odd.

(b) Is the converse of the conditional statement in (a) true? If so prove it, and if not give a counterexample.

2. Recall the Fibonacci numbers Fi are de�ned by F1 = F2 = 1 and Fn+1 = Fn + Fn−1 for all n ≥ 2.

(a) If Fn is the nth Fibonacci number, prove that F1 +F3 +F5 + · · ·+F2n+1 = F2n+2 for every positive integer n.

(b) Suppose c1 = c2 = 2, and for all n ≥ 3, cn = cn−1cn−2. Prove that cn = 2Fn for every positive integer n.

3. Suppose a1 = 1 and an = 3an−1 + 4 for all n ≥ 2. Prove that an = 3n − 2 for every positive integer n.

4. Suppose b1 = 3 and bn+1 = 2bn − n+ 1 for all n ≥ 2. Prove that bn = 2n + n for every positive integer n.

5. A sequence is de�ned by the recurrence relation cn = 4cn−1 − 4cn−2 for n ≥ 2, where c0 = 6 and c1 = 8. Prove that
cn = (6− 2n)2n for all integers n ≥ 0.

6. Suppose d1 = 2, d2 = 4, and for all n ≥ 3, dn = dn−1 + 2dn−2. Prove that dn = 2n for every positive integer n.

7. Show that 25n + 7 is a multiple of 8 for every positive integer n.
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8. Prove that 1 +
1

2
+

1

4
+ · · ·+ 1

2n
= 2− 1

2n
for every positive integer n.

9. Prove that
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
=

n

n+ 1
for every positive integer n.

10. Calculate the greatest common divisor and least common multiple of each pair of integers:

(a) 256 and 520. (b) 921 and 177. (c) 2019 and 5678. (d) 2332547 and 24335411.

11. Decide whether each residue class has a multiplicative inverse modulo m. If so, �nd it, and if not, explain why not:

(a) 10 mod 25. (b) 11 mod 25. (c) 12 mod 25. (d) 30 mod 42. (e) 31 mod 42. (f) 32 mod 42.

12. Prove that the sum of any six consecutive integers is congruent to 3 modulo 6.

13. Prove that 7n + 5 is divisible by 6 for all positive integers n.

14. Suppose a ≡ b (mod n) and c ≡ d (mod n). Show that a(b+ c) ≡ b(a+ d) (mod n).

15. Suppose n is an integer. Prove that 2|n and 3|n if and only if 6|n.

16. If A = {4a+ 6b : a, b ∈ Z} and B = {2c : c ∈ Z}, prove that A = B.

17. If p is a prime, prove that gcd(n, n+ p) > 1 if and only if p|n.

18. If C = {6c : c ∈ Z} and D = {10a+ 14b : a, b ∈ Z}, prove that C ⊆ D.

19. Prove that if a and b are both odd, then a2 + b2 − 2 is divisible by 8.

20. Prove that the product of two consecutive even integers is always 1 less than a perfect square.

21. If n is any positive integer, prove that n− 1 is invertible modulo n and its multiplicative inverse is itself.

22. Use the Euclidean algorithm to �nd the multiplicative inverse of 26 in the multiplicative group (Z/59Z)× of nonzero
integers modulo 59.

23. Suppose g and h are elements of a group such that g−1h−1 = h−1g−1. Prove that gh = hg.
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0.4 Relations and Equivalence Relations

1. For each of the following relations, decide whether they are (i) re�exive, (ii) symmetric, (iii) transitive, (iv) antisym-
metric, (v) irre�exive, (vi) an equivalence relation, (vii) a partial ordering, and (viii) a total ordering.

(a) R = {(1, 1), (2, 1), (2, 2)} on the set {1, 2}.
(b) R = {(1, 2), (2, 1)} on the set {1, 2}.
(c) R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)} on the set {1, 2, 3, 4}.
(d) The divisibility relation on the set {2,−3, 4,−5, 6}.
(e) The divisibility relation on the set {2,−4,−12, 36}.
(f) The relation R on Z with a R b precisely when |a| ≡ |b| modulo 5.

(g) The relation R on R with a R b precisely when ab > 0.

2. If R,S : A→ B are relations, prove that R−1 ∩ S−1 = (R ∩ S)−1.

3. Identify the ordered pairs in the equivalence relation that corresponds to the partition {1, 2, 4}, {3, 5}, {6} of
{1, 2, 3, 4, 5, 6}.

4. Show R = {(x, y) ∈ Z× Z : |x| = |y|} is an equivalence relation on Z and list the equivalence classes of 0, 2, −2, 4.

5. A relation R on integers is de�ned via xR y when 5|(6x− y).

(a) Prove that R is an equivalence relation.

(b) Describe (as explicitly as possible) the equivalence classes into which Z is partitioned by R.

6. Show that the only equivalence relation R on A that is a function from A to A is the identity relation.

7. Suppose R is a re�exive and transitive relation on a set A. Show that S = R ∩R−1 is an equivalence relation on A.

8. Suppose G is a group and H is a subgroup, and de�ne the relation R on G by saying g1Rg2 whenever there exists
h ∈ H such that g1 = hg2. Prove that R is an equivalence relation.

0.5 Functions

1. For each of the following functions f : A→ B, identify whether (i) f is one-to-one, (ii) f is onto, (iii) f is a bijection.

(a) f = {(1, 2), (2, 3), (3, 4), (4, 1)} from {1, 2, 3, 4} to itself.

(b) f = {(1, 3), (2, 4), (3, 1), (4, 4)} from {1, 2, 3, 4} to itself.

(c) f(x) = 2x from A = R to B = R.
(d) f(n) = 2n from A = Z to B = Z.

(e) f(x) =
x

x− 1
from A = R\{1} to B = R.

(f) f(x) = x3 from A = R to B = R.
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2. Let S = Z/6Z = {0, 1, 2, 3, 4, 5} be the additive group of integers modulo 6.

(a) De�ne the function g : S → S via g(n) = 2n+ 3. Find the image of g. Is g one-to-one? Onto?

(b) De�ne the function h : S → S via g(n) = 5n− 3. Prove that h is a bijection and �nd its inverse function h−1.

3. Suppose f : A→ B is a function.

(a) If f is one-to-one, show that there is a bijection between A and im(f). Deduce that |A| = |im(f)|.
(b) If A and B are both �nite and |A| = |B|, show that f is one-to-one implies that f is onto.

4. De�ne the function f : Q\{ 72} → Q via f(x) =
6x+ 5

2x− 7
.

(a) Prove that f is one-to-one.

(b) Find a formula for the inverse function f−1.

(c) Verify explicitly that (f−1 ◦ f)(x) = x for all x in the domain of f .

(d) Determine the image of f . Is f onto?

5. Let F (x, y) = (5x+ 4, y − 5).

(a) Prove that F : R× R→ R× R is a bijection.

(b) Prove that F : Z× Z→ Z× Z is not onto by �nding an element of Z× Z missing from its image.

6. Suppose that f : A→ A is a function. Show that f(f(a)) = a for all a ∈ A if and only if f−1 exists and f−1(a) = f(a)
for all a ∈ A.

7. Suppose f : B → C is one-to-one. If g, h : A→ B have f ◦ g = f ◦ h, show that g = h.

8. Suppose that f : B → C and g : A→ B are functions.

(a) If f and g are one-to-one, prove that f ◦ g is also one-to-one.

(b) If f and g are onto, prove that f ◦ g is also onto.

9. Let S and T be any sets and let f : S → T be a function. Recall that for a subset A of S, we de�ne f(A) = {f(a) :
a ∈ A} and for a subset C of T , we de�ne f−1(C) = {a ∈ A : f(a) ∈ C}.

(a) For any subset A of S, show that A ⊆ f−1(f(A)).

(b) If f : A→ B is one-to-one and A is a subset of S, prove that A = f−1(f(A)).

(c) For any subset C of T , show that f(f−1(C)) ⊆ C.
(d) If f is onto and C is a subset of T , prove that f(f−1(C)) = C.

(e) If f is one-to-one and A and B are subsets of S, prove that f(A) ∩ f(B) ⊆ f(A ∩B).

10. Suppose f : A → B is a bijection. Show that f̃ : P(A) → P(B) given by f̃(S) = {f(s) : s ∈ S} is also a bijection,
where P(S) denotes the power set of S (the set of subsets of S).

11. Let S be the set of equivalence classes of an equivalence relation R on A and de�ne the function f : A → S via
f(a) = [a]. Show that f is one-to-one if and only if R is the identity relation.
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0.6 Cardinality and Counting

1. How many integers less than or equal to 251 are divisible by 4 or by 5 or by 7?

2. Suppose that S and T are sets such that |S| = 8 and |T | = 11.

(a) How many relations are there from S to T?

(b) How many functions are there from S to T?

(c) How many functions are there from T to S?

(d) How many one-to-one functions are there from S to T?

(e) How many one-to-one functions are there from T to S?

3. A set S consists of 73 positive integers. What is the minimum number of elements of S that belong to the same
remainder class upon division by 8?

4. Suppose A and B are sets with |A| = 2 and |B| = 8.

(a) How many onto functions are there from A to B?

(b) How many onto functions are there from B to A?

5. Prove that if A is countable and B is uncountable, then the set di�erence B −A = B\A is uncountable.

6. Prove that there exists a bijection between Q and Q ∩ (0, 1), the set of rational numbers strictly between 0 and 1.

7. Prove that the set Q× Z is countable and that the set R× Z is uncountable.

8. Prove that the set of all �nite subsets of Z is countable.

9. Use the Cantor-Schröder-Bernstein theorem to prove that there exists a bijection between the half-closed interval
[1, 7) = {x ∈ R : 1 ≤ x < 7} and the open interval (2, 9) = {x ∈ R : 2 < x < 9}.

10. Prove that there exists a bijection between (0, 1) and [0, 1]. [Hint: Cantor-Schröder-Bernstein.]
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