0.1 Logic and Proof Methods

1. Let P, Q, and R be propositions.

- (a) Show that the statement $P \land \neg[Q \lor (R \Rightarrow P)]$ is always false.
- (b) Show that the propositions $(P \Rightarrow Q) \Leftrightarrow R$ and $P \Rightarrow (Q \Leftrightarrow R)$ are not logically equivalent.
- (c) Show that the propositions $\neg [Q \land \neg (P \land Q)] \land \neg P$ and $\neg Q \land \neg P$ are logically equivalent.

2. Write a negation for each of the following statements:

(a) ∀x∀y∃z, x + y + z > 5.
(b) Every integer is a rational number.
(c) ∀x ∈ A∀y ∈ B, x ⋅ y ∈ A ∩ B.
(d) There is a perfect square that is not even.
(e) The integer n is a prime number and n < 10.
(f) ∀ε > 0 ∃δ > 0, (|x - a| < δ) ⇒ (|x² - a²| < ε).
(g) For any x ∈ ℝ there exists an n ∈ ℤ such that x < n.
(h) There exist positive integers a and b with 2 = (a/b)³.

3. Find the truth values of the following statements, where the universal set is \mathbb{R} :

(a) $\forall x \forall y, y \neq x$.	(c) $\exists x \forall y, y \neq x.$	(e) $\forall x \forall y, y^2 \ge x$.	(g) $\exists x \forall y, y^2 \ge x$.
(b) $\forall x \exists y, y \neq x.$	(d) $\exists x \exists y, y \neq x$.	(f) $\forall x \exists y, y^2 \ge x.$	(h) $\exists x \exists y, y^2 \ge x$.

4. With universal set \mathbb{Z}_+ , let E(n) be the statement that n is even and let S(n) be the statement that n is a perfect square greater than 1. Consider the statement

$$\forall n \ [E(n) \land (n > 2)] \Rightarrow [\exists m \ S(m) \land m | n].$$

- (a) Show that the statement is false by giving a counterexample.
- (b) Give the negation of this statement, simplified as much as possible.

5. Write, and then prove, the contrapositive of each of these statements (assume n refers to an integer):

- (a) Suppose $a, b \in \mathbb{Z}$. If ab = 1 then $a \leq 1$ or $b \leq 1$.
- (b) If 5n + 1 is even, then n is odd.
- (c) If n^3 is odd, then n is odd.

(d) If n is not a multiple of 3, then n cannot be written as the sum of 3 consecutive integers.

(e) Suppose $a, b \in \mathbb{Z}$. If n does not divide ab, then n does not divide a and n does not divide b.

6. Find a counterexample to each of the following statements:

- (a) For any integers a, b, and c, if a|b and a|c, then b|c.
- (b) If p and q are prime, then p + q is never prime.
- (c) There do not exist integers a and b with $a^2 b^2 = 7$.
- (d) If n > 1 is an integer, then \sqrt{n} is always irrational.
- (e) If $n \neq 3$ then $n^2 \neq 9$.
- (f) There are no integers m, n with $m^2 2n^2 = 1$.
- (g) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^4 = x.$
- (h) Two perfect squares never sum to a perfect cube.

0.2 Sets

In these problems, \emptyset denotes the empty set, $\overline{A} = A^c = \{x : x \notin A\}$ denotes the complement of a set inside a universal set, and $A \setminus B = A - B = \{x \in A : x \notin B\}$ denotes set difference.

- 1. Let A, B, and C be sets. Prove that $(A \setminus B) \cup (B \setminus C) \subseteq (A \cup B) \setminus (B \cap C)$.
- 2. Let A and B be sets. Prove that $A B = \emptyset$ if and only if $A \subseteq B$.
- 3. For any sets A, B, C, prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 4. For any sets A, B inside a universal set U, prove $A \cup B^c = U$ if and only if $A^c \cap B = \emptyset$.
- 5. For any sets A, B, C, prove $A \subseteq B \cup C$ if and only if $A B \subseteq C$.
- 6. Suppose A, B, and C are arbitrary sets contained in a universal set U. Identify which statements are true and which are false. Then prove the true statements and give a counterexample for the false ones.

(a) $(A \cup B) - A = B - A$.	(c) $\overline{A \cap B} \cup B \subseteq \overline{A} \cup B$.
(b) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C).$	(d) $A^c \cap B^c \subseteq (A \setminus B)^c \cap (B \setminus A)^c$.

0.3 Number Theory

- 1. Let m and n be positive integers.
 - (a) Prove that if $m^2 + n^2$ is divisible by 4, then m and n are either both even or both odd.
 - (b) Is the converse of the conditional statement in (a) true? If so prove it, and if not give a counterexample.

2. Recall the Fibonacci numbers F_i are defined by $F_1 = F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for all $n \ge 2$.

- (a) If F_n is the *n*th Fibonacci number, prove that $F_1 + F_3 + F_5 + \cdots + F_{2n+1} = F_{2n+2}$ for every positive integer *n*.
- (b) Suppose $c_1 = c_2 = 2$, and for all $n \ge 3$, $c_n = c_{n-1}c_{n-2}$. Prove that $c_n = 2^{F_n}$ for every positive integer n.
- 3. Suppose $a_1 = 1$ and $a_n = 3a_{n-1} + 4$ for all $n \ge 2$. Prove that $a_n = 3^n 2$ for every positive integer n.
- 4. Suppose $b_1 = 3$ and $b_{n+1} = 2b_n n + 1$ for all $n \ge 2$. Prove that $b_n = 2^n + n$ for every positive integer n.
- 5. A sequence is defined by the recurrence relation $c_n = 4c_{n-1} 4c_{n-2}$ for $n \ge 2$, where $c_0 = 6$ and $c_1 = 8$. Prove that $c_n = (6-2n)2^n$ for all integers $n \ge 0$.
- 6. Suppose $d_1 = 2$, $d_2 = 4$, and for all $n \ge 3$, $d_n = d_{n-1} + 2d_{n-2}$. Prove that $d_n = 2^n$ for every positive integer n.

7. Show that $25^n + 7$ is a multiple of 8 for every positive integer n.

- 8. Prove that $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for every positive integer n.
- 9. Prove that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$ for every positive integer n.
- 10. Calculate the greatest common divisor and least common multiple of each pair of integers:
 - (a) 256 and 520. (b) 921 and 177. (c) 2019 and 5678. (d) $2^3 3^2 5^4 7$ and $2^4 3^3 5^4 11$.
- 11. Decide whether each residue class has a multiplicative inverse modulo m. If so, find it, and if not, explain why not: (a) $\overline{10} \mod 25$. (b) $\overline{11} \mod 25$. (c) $\overline{12} \mod 25$. (d) $\overline{30} \mod 42$. (e) $\overline{31} \mod 42$. (f) $\overline{32} \mod 42$.
- 12. Prove that the sum of any six consecutive integers is congruent to 3 modulo 6.
- 13. Prove that $7^n + 5$ is divisible by 6 for all positive integers n.
- 14. Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Show that $a(b+c) \equiv b(a+d) \pmod{n}$.
- 15. Suppose n is an integer. Prove that 2|n and 3|n if and only if 6|n.
- 16. If $A = \{4a + 6b : a, b \in \mathbb{Z}\}$ and $B = \{2c : c \in \mathbb{Z}\}$, prove that A = B.
- 17. If p is a prime, prove that gcd(n, n + p) > 1 if and only if p|n.
- 18. If $C = \{6c : c \in \mathbb{Z}\}$ and $D = \{10a + 14b : a, b \in \mathbb{Z}\}$, prove that $C \subseteq D$.
- 19. Prove that if a and b are both odd, then $a^2 + b^2 2$ is divisible by 8.
- 20. Prove that the product of two consecutive even integers is always 1 less than a perfect square.
- 21. If n is any positive integer, prove that n-1 is invertible modulo n and its multiplicative inverse is itself.
- 22. Use the Euclidean algorithm to find the multiplicative inverse of $\overline{26}$ in the multiplicative group $(\mathbb{Z}/59\mathbb{Z})^{\times}$ of nonzero integers modulo 59.
- 23. Suppose g and h are elements of a group such that $g^{-1}h^{-1} = h^{-1}g^{-1}$. Prove that gh = hg.

0.4 Relations and Equivalence Relations

- 1. For each of the following relations, decide whether they are (i) reflexive, (ii) symmetric, (iii) transitive, (iv) antisymmetric, (v) irreflexive, (vi) an equivalence relation, (vii) a partial ordering, and (viii) a total ordering.
 - (a) $R = \{(1,1), (2,1), (2,2)\}$ on the set $\{1,2\}$.
 - (b) $R = \{(1,2), (2,1)\}$ on the set $\{1,2\}$.
 - (c) $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$ on the set $\{1,2,3,4\}$.
 - (d) The divisibility relation on the set $\{2, -3, 4, -5, 6\}$.
 - (e) The divisibility relation on the set $\{2, -4, -12, 36\}$.
 - (f) The relation R on Z with a R b precisely when $|a| \equiv |b|$ modulo 5.
 - (g) The relation R on \mathbb{R} with a R b precisely when ab > 0.
- 2. If $R, S: A \to B$ are relations, prove that $R^{-1} \cap S^{-1} = (R \cap S)^{-1}$.
- 3. Identify the ordered pairs in the equivalence relation that corresponds to the partition $\{1, 2, 4\}, \{3, 5\}, \{6\}$ of $\{1, 2, 3, 4, 5, 6\}$.
- 4. Show $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : |x| = |y|\}$ is an equivalence relation on \mathbb{Z} and list the equivalence classes of 0, 2, -2, 4.
- 5. A relation R on integers is defined via x R y when 5|(6x y).
 - (a) Prove that R is an equivalence relation.
 - (b) Describe (as explicitly as possible) the equivalence classes into which \mathbb{Z} is partitioned by R.
- 6. Show that the only equivalence relation R on A that is a function from A to A is the identity relation.
- 7. Suppose R is a reflexive and transitive relation on a set A. Show that $S = R \cap R^{-1}$ is an equivalence relation on A.
- 8. Suppose G is a group and H is a subgroup, and define the relation R on G by saying $g_1 R g_2$ whenever there exists $h \in H$ such that $g_1 = hg_2$. Prove that R is an equivalence relation.

0.5 Functions

- 1. For each of the following functions $f: A \to B$, identify whether (i) f is one-to-one, (ii) f is onto, (iii) f is a bijection.
 - (a) $f = \{(1,2), (2,3), (3,4), (4,1)\}$ from $\{1,2,3,4\}$ to itself.
 - (b) $f = \{(1,3), (2,4), (3,1), (4,4)\}$ from $\{1,2,3,4\}$ to itself.
 - (c) f(x) = 2x from $A = \mathbb{R}$ to $B = \mathbb{R}$.
 - (d) f(n) = 2n from $A = \mathbb{Z}$ to $B = \mathbb{Z}$.
 - (e) $f(x) = \frac{x}{x-1}$ from $A = \mathbb{R} \setminus \{1\}$ to $B = \mathbb{R}$.
 - (f) $f(x) = x^3$ from $A = \mathbb{R}$ to $B = \mathbb{R}$.

- 2. Let $S = \mathbb{Z}/6\mathbb{Z} = \{0, 1, 2, 3, 4, 5\}$ be the additive group of integers modulo 6.
 - (a) Define the function $g: S \to S$ via g(n) = 2n + 3. Find the image of g. Is g one-to-one? Onto?
 - (b) Define the function $h: S \to S$ via g(n) = 5n 3. Prove that h is a bijection and find its inverse function h^{-1} .

3. Suppose $f: A \to B$ is a function.

- (a) If f is one-to-one, show that there is a bijection between A and $\operatorname{im}(f)$. Deduce that $|A| = |\operatorname{im}(f)|$.
- (b) If A and B are both finite and |A| = |B|, show that f is one-to-one implies that f is onto.

4. Define the function $f : \mathbb{Q} \setminus \{\frac{7}{2}\} \to \mathbb{Q}$ via $f(x) = \frac{6x+5}{2x-7}$

- (a) Prove that f is one-to-one.
- (b) Find a formula for the inverse function f^{-1} .
- (c) Verify explicitly that $(f^{-1} \circ f)(x) = x$ for all x in the domain of f.
- (d) Determine the image of f. Is f onto?
- 5. Let F(x, y) = (5x + 4, y 5).
 - (a) Prove that $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is a bijection.
 - (b) Prove that $F : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is not onto by finding an element of $\mathbb{Z} \times \mathbb{Z}$ missing from its image.
- 6. Suppose that $f: A \to A$ is a function. Show that f(f(a)) = a for all $a \in A$ if and only if f^{-1} exists and $f^{-1}(a) = f(a)$ for all $a \in A$.
- 7. Suppose $f: B \to C$ is one-to-one. If $g, h: A \to B$ have $f \circ g = f \circ h$, show that g = h.
- 8. Suppose that $f: B \to C$ and $g: A \to B$ are functions.
 - (a) If f and g are one-to-one, prove that $f \circ g$ is also one-to-one.
 - (b) If f and g are onto, prove that $f \circ g$ is also onto.
- 9. Let S and T be any sets and let $f: S \to T$ be a function. Recall that for a subset A of S, we define $f(A) = \{f(a) : a \in A\}$ and for a subset C of T, we define $f^{-1}(C) = \{a \in A : f(a) \in C\}$.
 - (a) For any subset A of S, show that $A \subseteq f^{-1}(f(A))$.
 - (b) If $f: A \to B$ is one-to-one and A is a subset of S, prove that $A = f^{-1}(f(A))$.
 - (c) For any subset C of T, show that $f(f^{-1}(C)) \subseteq C$.
 - (d) If f is onto and C is a subset of T, prove that $f(f^{-1}(C)) = C$.
 - (e) If f is one-to-one and A and B are subsets of S, prove that $f(A) \cap f(B) \subseteq f(A \cap B)$.
- 10. Suppose $f : A \to B$ is a bijection. Show that $\tilde{f} : \mathcal{P}(A) \to \mathcal{P}(B)$ given by $\tilde{f}(S) = \{f(s) : s \in S\}$ is also a bijection, where $\mathcal{P}(S)$ denotes the power set of S (the set of subsets of S).
- 11. Let S be the set of equivalence classes of an equivalence relation R on A and define the function $f : A \to S$ via f(a) = [a]. Show that f is one-to-one if and only if R is the identity relation.

0.6 Cardinality and Counting

- 1. How many integers less than or equal to 251 are divisible by 4 or by 5 or by 7?
- 2. Suppose that S and T are sets such that |S| = 8 and |T| = 11.
 - (a) How many relations are there from S to T?
 - (b) How many functions are there from S to T?
 - (c) How many functions are there from T to S?
 - (d) How many one-to-one functions are there from S to T?
 - (e) How many one-to-one functions are there from T to S?
- 3. A set S consists of 73 positive integers. What is the minimum number of elements of S that belong to the same remainder class upon division by 8?
- 4. Suppose A and B are sets with |A| = 2 and |B| = 8.
 - (a) How many onto functions are there from A to B?
 - (b) How many onto functions are there from B to A?
- 5. Prove that if A is countable and B is uncountable, then the set difference $B A = B \setminus A$ is uncountable.
- 6. Prove that there exists a bijection between \mathbb{Q} and $\mathbb{Q} \cap (0,1)$, the set of rational numbers strictly between 0 and 1.
- 7. Prove that the set $\mathbb{Q} \times \mathbb{Z}$ is countable and that the set $\mathbb{R} \times \mathbb{Z}$ is uncountable.
- 8. Prove that the set of all finite subsets of \mathbb{Z} is countable.
- 9. Use the Cantor-Schröder-Bernstein theorem to prove that there exists a bijection between the half-closed interval $[1,7) = \{x \in \mathbb{R} : 1 \le x < 7\}$ and the open interval $(2,9) = \{x \in \mathbb{R} : 2 < x < 9\}.$
- 10. Prove that there exists a bijection between (0,1) and [0,1]. [Hint: Cantor-Schröder-Bernstein.]