
Math 1365 (Intensive), Fall 2023 ∼ Dummit/Lang ∼ Final Exam Review Answers

Note: These outline answers do not contain full details of all solutions, and would in some cases lack enough detail and
justi�cation to receive full credit as actual exam responses. The intention is to use these outline responses as a guide for
the major pieces in the solution to each problem: if you have previously made an e�ort to solve a problem, the outline
answer should provide enough information to help you complete your solution.

0.1 Logic and Proof Methods

1. Each of these can be solved by drawing a truth table. We give alternative approaches.

(a) P ∧ ¬[Q ∨ (R⇒ P )] = P ∧ ¬[Q ∨ ¬R ∨ P ] = P ∧ ¬Q ∧R ∧ ¬P which is false due to the P ∧ ¬P .
(b) When P is true, Q is false, R is true, then (P ⇒ Q)⇔ R is false while P ⇒ (Q⇔ R) is true.

(c) ¬[Q ∧ ¬(P ∧Q)] ∧ ¬P = [¬Q ∨ (P ∧Q)] ∧ ¬P = (¬Q ∧ ¬P ) ∨ (P ∧Q ∧ ¬P ) = (¬Q ∧ ¬P ) ∨ False = ¬Q ∧ ¬P .

2. (a) ∃x∃y∀z, x+ y + z ≤ 5

(b) There exists an integer that is not rational.

(c) ∃x ∈ A ∃y ∈ B, x · y 6∈ A ∩B.
(d) Every perfect square is even.

(e) The integer n is either not prime or n ≥ 10.

(f) ∃ε > 0∀δ > 0, (|x− a| < δ) ∧ (|x2 − a2| ≥ ε).
(g) There exists an x ∈ R such that for all n ∈ Z, x ≥ n.
(h) For all positive integers a and b, 2 6= (a/b)3.

3. (a) False (b) True (c) False (d) True (e) False (f) True (g) True (h) True

4. (a) In words, any even integer n > 2 has some perfect square m > 1 that divides n. So n = 6 is a counterexample
since there is no square other than 1 that divides 6.

(b) ∃n E(n) ∧ (n > 2) ∧ [∀mS(m)⇒ m - n]: there exists an even integer n > 2 such that for all squares m > 1, m
does not divide n.

5. (a) If a > 1 and b > 1, then ab 6= 1. Proof: If a > 1 and b > 1 then multiplying a > b by b yields ab > b > 1 so
ab > 1. In particular ab 6= 1.

(b) If n is even, then 5n+ 1 is odd. Proof: If n = 2k then 5n+ 1 = 10k + 1 = 2(5k) + 1 is odd by de�nition.

(c) If n is even then n3 is even. Proof: If n = 2k then n3 = 8k3 = 2(4k3) is even by de�nition.

(d) If n is the sum of 3 consecutive integers, then n is a multiple of 3. Proof: If n = a + (a + 1) + (a + 2) then
n = 3a+ 3 = 3(a+ 1) is a multiple of 3.

(e) If n divides a or n divides b then n divides ab. Proof: If n|a then a = kn so ab = (kb)n, and if n|b then b = ln
so ab = (al)n. In either case, n|ab.

6. There are many examples for each part. Here is one for each:

(a) Example: a = 2, b = 4, c = 6.

(b) Example: p = 2, q = 3, then p+ q = 5 is prime.

(c) Example: a = 4, b = 3, then a2 − b2 = 16− 9 = 7.

(d) Example:
√
4 = 2 is rational.

(e) Example: n = −3, then n 6= 3 but n2 = 9.

(f) Example: m = 3, n = 2, then m2 − 2n2 = 9− 8 = 1.

(g) Example: x = −1, then there is no possible y with y4 = x.

(h) Examples: 22 + 22 = 23, or 52 + 102 = 53.

1



0.2 Sets

1. Let x ∈ (A\B) ∪ (B\C). Then x ∈ A\B or x ∈ B\C. If x ∈ A\B then x ∈ A and x 6∈ B so x ∈ A ∪ B and
x 6∈ B ∩C, meaning x ∈ (A∪B)\(B ∩C). If x ∈ B\C then x ∈ B and x 6∈ C so x ∈ A∪B and x 6∈ B ∩C, so again
x ∈ (A ∪B)\(B ∩ C).

2. First suppose A−B = ∅. If x ∈ A then since A−B is empty, x must be in B (otherwise x would be in A−B), so
A ⊆ B. Conversely, if A ⊆ B, then there are no elements of A not in B, so A−B = ∅.

3. Note x ∈ A\(B ∩ C) ⇐⇒ x ∈ A and x 6∈ (B ∩ C) ⇐⇒ x ∈ A and (x 6∈ B or x 6∈ C) ⇐⇒ (x ∈ A and x 6∈ B) or
(x ∈ A and x 6∈ C) ⇐⇒ x ∈ A\B or x ∈ A\C ⇐⇒ x ∈ (A\B) ∪ (A\C).

4. Observe (A ∪ Bc)c = Ac ∩ (Bc)c = Ac ∩ B by de Morgan's laws, so A ∪ Bc and Ac ∩ B are complements. Thus, if
A ∪Bc = U then Ac ∩B = U c = ∅ and conversely if Ac ∩B = ∅ then A ∪Bc = ∅c = U .

5. First suppose A ⊆ B ∪C. If x ∈ A−B then x ∈ A and x 6∈ B. Since A ⊆ B ∪C, x ∈ B ∪C so x ∈ B or x ∈ C but
since x 6∈ B we must have x ∈ C: thus A − B ⊆ C. Conversely suppose A − B ⊆ C and let x ∈ A. If x ∈ B then
clearly x ∈ B ∪C and otherwise if x 6∈ B then x ∈ A−B hence x ∈ C and once again x ∈ B ∪C: thus A ⊆ B ∪C.

6. (a) True. Note x ∈ (A ∪B)−A i� x ∈ (A ∪B) ∩Ac i� x ∈ B ∩Ac i� x ∈ B −A.
(b) False. Counterexample: A = {1, 2}, B = {1}, C = {2}. Then A\(B ∩ C) = {1, 2} while (A\B) ∩ (A\C) = ∅.

(c) False. Counterexample: A = {1}, B = {1, 2} with U = {1, 2}. Then A ∩B ∪B = {1, 2} while A ∪B = {1}.
(d) True. Note (A\B)c = (A ∩ Bc)c = Ac ∪ B, and similarly (B\A)c = A ∪ Bc. If x ∈ Ac ∩ Bc then x ∈ Ac ∪ B

and also x ∈ A ∪Bc.

0.3 Number Theory

1. (a) Since a, a2 have the same parity, m2 +n2 has the same parity as m+n. So if m2 +n2 is even then m+n must
be even, meaning m,n have the same parity.

(b) It is false: if m = n = 1 then m2 + n2 = 2 is not divisible by 4.

2. (a) Induct on n. Base case n = 1 has F1 + F3 = 3 = F4. Inductive step: if F1 + · · · + F2n+1 = F2n+2 then
F1 + · · ·+ F2n+1 + F2n+3 = [F1 + · · ·+ F2n+1] + F2n+3 = F2n+2 + F2n+3 = F2n+4 as required.

(b) Induct on n. Base cases n = 1 and n = 2 have c1 = 2F1 and c2 = 2F2 . Inductive step: if cn = 2Fn and
cn−1 = 2Fn−1 then cn+1 = cncn−1 = 2Fn2Fn−1 = 2Fn+Fn−1 = 2Fn+1 as required.

3. Induct on n. Base case n = 1 has a1 = 31 − 2. Inductive step: if an = 3n − 2 then an+1 = 3(3n − 2) + 4 = 3n+1 − 2.

4. Induct on n. Base case n = 1 has b1 = 21 + 1. Inductive step: if bn = 2n + n then bn+1 = 2(2n + n) − n + 1 =
2n+1 + (n+ 1).

5. Induct on n. Base cases n = 0 and n = 1 have c0 = 6 · 20 and c1 = 4 · 21. Inductive step: if cn = (6 − 2n)2n and
cn = (6− 2(n− 1))2n−1 = (4− n)2n then cn+1 = 4(6− 2n)2n − 4(4− n)2n = (24− 8n− 16 + 4n)2n = (8− 4n)2n =
(6− 2(n+ 1))2n+1 as required.

6. Induct on n . Base cases n = 1 and n = 2 have d1 = 21 and d2 = 22. Inductive step: if dn = 2n and dn−1 = 2n−1

then dn+1 = 2n + 2(2n−1) = 2n + 2n = 2n+1 as required.

7. Induct on n. Base case n = 1 has 251 + 7 = 32 a multiple of 8. Inductive step: if 8 divides 25n + 7, then 8 divides
25 · (25n + 7)− 24 · 7 = 25n+1 + 7. (Reducing modulo 8 also works.)
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8. Induct on n. Base case n = 1 has 1 = 2 − 1/20. Inductive step: If 1 +
1

2
+

1

4
+ · · · + 1

2n
= 2 − 1

2n
, then

1 +
1

2
+

1

4
+ · · ·+ 1

2n
+

1

2n+1
= 2− 1

2n
+

1

2n+1
= 2− 1

2n+1
as required.

9. Induct on n. Base case n = 1 has
1

1 · 2
=

1

2
. Inductive step: if

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
=

n

n+ 1
then

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
+

1

(n+ 1) · (n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)
=
n+ 1

n+ 2
as required.

10. In (a)-(c), the Euclidean algorithm allows for a quick calculation of the gcd, and then lcm(a, b) = ab/ gcd(a, b).

(a) 520 = 2 · 256 + 8, 256 = 32 · 8, so gcd is 8, and lcm is 256 · 520/8.
(b) 921 = 5 · 177 + 36, 177 = 4 · 36 + 33, 36 = 1 · 33 + 3, 33 = 11 · 3 so gcd is 3, and lcm is 921 · 177/3.
(c) 5678 = 2 ·2019+1640, 2019 = 1 ·1640+379, 1640 = 4 ·379+124, 379 = 3 ·124+7, 124 = 17 ·7+5, 7 = 1 ·5+2,

5 = 2 · 2 + 1, 2 = 2 · 1, so gcd is 1 and lcm is 2019 · 5678.
(d) Taking the smallest exponents of each prime yields gcd 233254, and the largest exponents yield lcm 2433547 ·11.

11. (a) Not invertible, gcd(10, 25) = 5 > 1.

(b) Invertible, gcd(11, 25) = 1. By Euclid −9 · 11 + 4 · 25 = 1 so −9 · 11 ≡ 1 (mod 25) so 11−1 ≡ −9.
(c) Invertible, gcd(12, 25) = 1. By Euclid −2 · 12 + 1 · 25 = 1 so −2 · 12 ≡ 1 (mod 25) so 12−1 ≡ −2.
(d) Not invertible, gcd(30, 42) = 6 > 1.

(e) Invertible, gcd(31, 42) = 1. By Euclid 19 · 31− 14 · 42 = 1 so 19 · 31 ≡ 1 (mod 42) so 31−1 ≡ 19.

(f) Not invertible, gcd(32, 42) = 2 > 1.

12. If n is the sum of k, k+1, k+2, k+3, k+4, k+5 then n = 6k+15 ≡ 3 (mod 6). Conversely if n ≡ 3 mod 6 so that
n = 3 + 6a, then n is the sum of a− 2, a− 1, a, a+ 1, a+ 2, a+ 3.

13. Modulo 6 we have 7n + 5 ≡ 1n + 5 ≡ 1 + 5 ≡ 0 (mod 6), which means 7n + 5 is divisible by 6.

14. Since a ≡ b (mod n) and c ≡ d (mod n) we see b+ c ≡ a+ d (mod n). Then a(b+ c) ≡ b(b+ c) ≡ b(a+ d) (mod n)
so a(b+ c) ≡ b(a+ d) (mod n).

15. Clearly, if 6|n then 2|n and 3|n. For the other direction, if 2|n then n = 2k. Then if 3|2k we must have 3|k since
3 - 2 and 3 is prime. So k = 3a, and thus n = 6a, meaning 6|n.

16. First, A ⊆ B because if n = 4a + 6b then n = 2(2a + 3c) ∈ B. Also, B ⊆ A because if n = 2c then we would have
n = 4(2c) + 6(−c) ∈ A via Euclidean algorithm calculation.

17. Note gcd(n, n+ p) = gcd(n, p) by gcd properties. Then gcd(n, p) divides p so is either 1 or p, and it is equal to p if
and only if p|n (by de�nition of gcd).

18. If n ∈ C, then n = 6c for some c. Then n = 10(2c) + 14(−c) ∈ D as required.

19. If a = 2c+ 1 and b = 2d+ 1 then a2 + b2 − 2 = 4(c2 + c+ d2 + d), which is divisible by 8 since c2 + c = c(c+ 1) is
always even as is d2 + d.

20. Note (2n)(2n+ 2) = 4n2 + 4n is 1 less than (2n+ 1)2 = 4n2 + 4n+ 1.

21. Note n− 1 ≡ −1 (mod n) so (n− 1)−1 ≡ (−1)−1 ≡ −1 ≡ n− 1 (mod n). Or, (n− 1)2 = n2 − 2n+ 1 ≡ 1 (mod n).

22. We have 59 = 2 ·26+7, 26 = 3 ·7+5, 7 = 1 ·5+2, 5 = 2 ·2+1, 2 = 2 ·1. Solving for remainders gives 7 = 59−2 ·26,
5 = −3 · 59 + 7 · 26, 2 = 4 · 59− 9 · 26, 1 = −11 · 59 + 25 · 26. So 25 · 26 ≡ 1 (mod 59) so 26

−1
= 25.

23. Note (g−1h−1)−1 = (h−1)−1(g−1)−1 = hg and (h−1g−1)−1 = (g−1)−1(h−1)−1 = gh. So taking the inverse of
g−1h−1 = h−1g−1 yields gh = hg.
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0.4 Relations and Equivalence Relations

1.

# Re�exive Symmetric Transitive Antisymmetric Irre�exive Equiv Rel Partial Total

(a) Yes No Yes Yes No No Yes Yes
(b) No Yes No No Yes No No No
(c) Yes Yes Yes No No Yes No No
(d) Yes No Yes Yes No No Yes No
(e) Yes No Yes Yes No No Yes Yes
(f) Yes Yes Yes No No Yes No No
(g) No (0) Yes Yes No No No No No

2. Note (a, b) ∈ R−1 ∩ S−1 ⇐⇒ (a, b) ∈ R−1 and (a, b) ∈ S−1 ⇐⇒ (b, a) ∈ R and (b, a) ∈ S ⇐⇒ (b, a) ∈ R ∩ S ⇐⇒
(a, b) ∈ (R ∩ S)−1.

3. R = [{1, 2, 4} × {1, 2, 4}] ∪ [{3, 5} × {3, 5}] ∪ [{6} × {6}]
= {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4), (3, 3), (3, 5), (5, 3), (5, 5), (6, 6)}.

4. R is re�exive since |x| = |x|, R is symmetric since |x| = |y| implies |y| = |x|, and R is transitive since |x| = |y| and
|y| = |z| imply |x| = |z|. Also, [0] = {0}, [2] = [−2] = {2,−2}, [4] = {4,−4}.

5. (a) This relation says xR y when 6x ≡ y (mod 5), or equivalently when x ≡ y (mod 5). So this relation is just
congruence modulo 5, which we already know is an equivalence relation.

(b) The equivalence classes are simply the congruence classes modulo 5: [n] = {. . . , n − 10, n − 5, n, n + 5, n +
10, . . . } = {n+ 5k : k ∈ Z}.

6. If R is re�exive and a function, then R(a) = a for all a ∈ A, so the only possibility is to have R(a) = a for all a ∈ A.
But clearly the identity function is also an equivalence relation, so it is the only one that works.

7. Re�exive: For each a ∈ A we have (a, a) ∈ R and so (a, a) ∈ R−1 hence (a, a) ∈ S. Symmetric: if (a, b) ∈ S
then (a, b) ∈ R and (a, b) ∈ R−1 so (b, a) ∈ R−1 and (b, a) ∈ R so (b, a) ∈ S. Transitive: if (a, b), (b, c) ∈ S then
(a, b), (b, c) ∈ R so (a, c) ∈ R and also (c, b), (b, a) ∈ R so (c, a) ∈ R so (a, c) ∈ R−1 so (a, c) ∈ S.

8. Re�extive: e ∈ H and g1 = eg1 so g1Rg1. Symmetric: If g1Rg2 so that g1 = hg2 with h ∈ H then h−1g1 = g2
and h−1 ∈ H, so g2Rg1. Transitive: If g1Rg2 and g2Rg3 so that g1 = hg2 and g2 = kg3 with h, k ∈ H then
g1 = hg2 = hkg3 and hk ∈ H so g1Rg3.

0.5 Functions

1. (a) f is one-to-one, onto, and a bijection since its inverse is also a function.

(b) f is not one-to-one since f(2) = f(4) and f is not onto since im(f) misses 2.

(c) f is one-to-one, onto, and a bijection since it has an inverse f−1(x) = x/2.

(d) f is one-to-one but not onto since im(f) is only the even integers.

(e) f is one-to-one but not onto since its image misses 1.

(f) f is one-to-one, onto, and a bijection since it has an inverse f−1(x) = x1/3.
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2. (a) Note g(0) = g(3) = 3, g(1) = g(4) = 5, g(2) = g(5) = 1 so im(g) = {1, 3, 5}. Then g is not one-to-one since
g(0) = g(3) and g is not onto since 0, 2, 4 are not in im(g).

(b) We have h−1(n) = 5−1(n+ 3) = 5(n+ 3) = 5n+ 3 since 5−1 ≡ 5 modulo 6. Since h−1 exists, h is a bijection.

3. (a) The function g : A → im(f) with g(a) = f(a) for all a ∈ A is one-to-one and onto hence a bijection. Then
|A| = |im(f)| by the de�nition of cardinality.

(b) If f is one-to-one then by (a), |A| = |im(f)|. Since |A| = |B| and A and B are �nite, this means im(f) is a
subset of the �nite set B having the same cardinality as B: thus im(f) = B so f is onto.

4. (a) If f(a) = f(b) then
6a+ 5

2a− 7
=

6b+ 5

2b− 7
so (6a + 5)(2b − 7) = (2a − 7)(6b + 5) so 12ab + 10b − 42a − 35 =

12ab− 42b+ 10a− 45 so 52a = 52b so a = b.

(b) Solving y =
6x+ 5

2x− 7
for x yields y(2x− 7) = 6x+ 5 so 2xy − 7y = 6x+ 5 so x =

7y + 5

2y − 6
. So f−1(y) =

7y + 5

2y − 6
.

(c) (f−1 ◦ f)(x) = f−1(f(x)) = f−1(
6x+ 5

2x− 7
) =

7 6x+5
2x−7 + 5

2 6x+5
2x−7 − 7

=
7(6x+ 5) + 5(2x− 7)

2(6x+ 5)− 7(2x− 7)
=

52x

52
= x as claimed.

(d) The image of f is the domain of f−1, which is Q\{3} from (b). So f is not onto as the image omits 3.

5. (a) F is a bijection as it has an inverse function G(x, y) = (x−45 , y + 5): note F (G(x, y)) = F (x−45 , y + 5) = (x, y)
and G(F (x, y)) = G(5x+ 4, y − 5) = (x, y).

(b) There is no (a, b) ∈ Z× Z with F (a, b) = (0, 0) since this would require a = −4/5 which is not an integer.

6. Note f(f(a)) = a for all a ∈ A ⇐⇒ f ◦f = iA ⇐⇒ f−1 = f as functions on A ⇐⇒ f−1 exists and f−1(a) = f(a)
for all a ∈ A.

7. Let x ∈ A. Then by hypothesis (f ◦ g)(x) = (f ◦ h)(x) which means f(g(x)) = f(h(x)). But f is one-to-one, so this
implies g(x) = h(x). Since g and h agree on all elements in A, that means g = h.

8. (a) Suppose (f ◦ g)(a1) = (f ◦ g)(a2) for some a1, a2 ∈ A, so that f(g(a1)) = f(g(a2)). Since f is one-to-one,
f(g(a1)) = f(g(a2)) implies g(a1) = g(a2), and then since g is one-to-one, we have a1 = a2.

(b) Let c ∈ C be arbitrary. Since f is onto, there exists b ∈ B such that f(b) = c. Then since g is onto, there exists
a ∈ A such that g(a) = b. Then f(g(a)) = f(b) = c, so f ◦ g is onto.

9. (a) Suppose a ∈ A. Then f(a) ∈ f(A), so by de�nition we have a ∈ f−1(f(A)).
(b) From (a), A ⊆ f−1(f(A)). For the reverse, suppose a ∈ f−1(f(A)), so that f(a) ∈ f(A). Since f is one-to-one,

f(a) = f(b) implies a = b, so f(a) ∈ f(A) implies a ∈ A.
(c) Suppose a ∈ f−1(C). Then f(a) ∈ C by de�nition. This holds for all a ∈ f−1(C), so f(f−1(C)) ⊆ C.
(d) From (c), f(f−1(C)) ⊆ C. For the reverse, suppose c ∈ C. Since f is onto, there exists a ∈ A with f(a) = c, so

a ∈ f−1(C). Hence c ∈ f(f−1(C)).
(e) Suppose x ∈ f(A) ∩ f(B), meaning that x = f(a) = f(b) for some a ∈ A and b ∈ B. But since f is one-to-one

this means a = b, and so this element a is in both A and B: thus x = f(a) for some a ∈ A∩B so x ∈ f(A∩B).

10. Note f has an inverse g. Then in fact f̃ has an inverse g̃ : P(B) → P(A) with g̃(T ) = {g(t) : t ∈ T}. Explicitly,
for S ⊆ A, g̃(f̃(S)) = g̃({f(s) : s ∈ S} = {g(f(s)) : s ∈ S} = {s : s ∈ S} = S and f̃(g̃(T )) = f̃({g(t) : t ∈ T}) =
{f(g(t)) : t ∈ T} = {t : t ∈ T} = T .

11. All equivalence relations contain the identity relation. So f is one-to-one ⇐⇒ [a] = [b] is equivalent to a = b ⇐⇒
aR b is equivalent to a = b ⇐⇒ R equals the identity relation.
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0.6 Cardinality and Counting

1. Inside U = {1, 2, . . . , 251}, if A is the set of multiples of 4, B is the set of multiples of 5, and C is the set of multiples
of 7, then by inclusion-exclusion, |A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|. Since
A ∩ B is the multiples of 20, A ∩ C is the multiples of 28, B ∩ C is the multiples of 35, and A ∩ B ∩ C is the
multiples of 140, and the number of multiples of n in U is 251/n rounded down to the nearest integer, the total is
62 + 50 + 35− 12− 8− 7 + 1 = 121.

2. (a) Each of the 88 elements of S × T can be included or not, so there are 288 total.

(b) Each of the 8 elements of S has 11 possible images in T , so there are 118 total.

(c) Each of the 11 elements of T has 8 possible images in S, so there are 811 total.

(d) There are 11 choices for the �rst value, 10 for the second, ... , and 4 for the eighth, giving 11 ·10 · · · · ·4 = 11!/3!.

(e) A function from a set of size 11 to a set of size 8 cannot be one-to-one (pigeonhole), so there are 0.

3. If there are at most n elements in each residue class modulo 8, then there are at most 8n total elements. So we need
8n ≥ 73 yielding n ≥ 9.125, so since n is an integer, that means some residue class must have at least 10 elements.
Since 10 is clearly achievable (e.g., with the integers 1, 2, ... , 73) the minimum is 10.

4. (a) There are no onto functions from A to B since the cardinality of B is larger than that of A.

(b) If A = {x, y} there are 28 functions from B to A. One has image {x} and one has image {y} and the other
28 − 2 have image {x, y} hence are onto.

5. Note that B is a subset of A ∪ (B\A). If A and B\A are countable then their union is also countable, hence any
subset is countable. If B is uncountable then this is a contradiction, so B\A is uncountable.

6. Both Q and Q∩(0, 1) are countably in�nite, so there is a bijection between these sets since they are both in bijection
with the positive integers.

7. The Cartesian product of two countable sets is countable, so Q× Z is countable since both Q and Z are countable.
But R× Z contains R× {1} which is in bijection with R, so R× Z has an uncountable subset hence is uncountable
itself.

8. If Sn is the set of n-element subsets of Z then Sn is countable since it is a subset of Z× Z× · · · × Z (with n terms)
and this set is countable. Then the set of �nite subsets of Z is ∪∞n=0Sn which is a countable union of countable sets,
hence countable.

9. The functions f : [1, 7) → (2, 9) with f(x) = 2 + (x/2) and g : (2, 9) → [1, 7) with g(x) = 1 + (x/2) are both
one-to-one, so by Cantor-Schröder-Bernstein there exists a bijection between [1, 7) and (2, 9).

10. The functions f : (0, 1) → [0, 1] with f(x) = x and g : [0, 1] → (0, 1) with g(x) = (x + 1)/3 are both one-to-one, so
by Cantor-Schröder-Bernstein there exists a bijection between (0, 1) and [0, 1].
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