Math 1365 (Intensive), Fall 2023 ~ Dummit/Lang ~ Final Exam Review Answers

Note: These outline answers do not contain full details of all solutions, and would in some cases lack enough detail and
justification to receive full credit as actual exam responses. The intention is to use these outline responses as a guide for
the major pieces in the solution to each problem: if you have previously made an effort to solve a problem, the outline
answer should provide enough information to help you complete your solution.
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Logic and Proof Methods

. Each of these can be solved by drawing a truth table. We give alternative approaches.

(a) PA-[QV(R= P)]=PA-[QV-RVP]=PA-QARA~-P which is false due to the P A =P.
(b) When P is true, @ is false, R is true, then (P = Q) < R is false while P = (Q < R) is true.
() "[QA-(PAQ)IAN-P=[-QVPAQIAN-P=(-QAN-P)V(PANQA-P)=(-QA-P)VFalse = -Q A—P.

2. (a) JaxFyvVz,x+y+2<5 (e) The integer n is either not prime or n > 10.
(b) There exists an integer that is not rational. (f) 3¢ >0V >0, (|]z — a| < &) A (|2% — a?| > ).
(c) Ixe AJyeB,x-y¢ ANB. (g) There exists an « € R such that for all n € Z, z > n.
(d) Every perfect square is even. (h) For all positive integers a and b, 2 # (a/b)>.
3. (a) False (b) True (c) False (d) True (e) False (f) True (g) True (h) True
4. (a) In words, any even integer n > 2 has some perfect square m > 1 that divides n. So n = 6 is a counterexample
since there is no square other than 1 that divides 6.
(b) In E(n) A (n > 2) A[¥YmS(m) = m {n]: there exists an even integer n > 2 such that for all squares m > 1, m
does not divide n.
5. (a) If a > 1 and b > 1, then ab # 1. Proof: If a > 1 and b > 1 then multiplying a > b by b yields ab > b > 1 so

ab > 1. In particular ab # 1.
(b) If n is even, then 5n + 1 is odd. Proof: If n = 2k then 5n + 1 = 10k + 1 = 2(5k) + 1 is odd by definition.
(c) If n is even then n? is even. Proof: If n = 2k then n® = 8k3 = 2(4k3) is even by definition.

(d) If n is the sum of 3 consecutive integers, then n is a multiple of 3. Proof: If n = a + (a + 1) + (a + 2) then
n=3a+ 3 =3(a+ 1) is a multiple of 3.

(e) If n divides a or n divides b then n divides ab. Proof: If n|a then a = kn so ab = (kb)n, and if n|b then b = In
50 ab = (al)n. In either case, n|ab.

6. There are many examples for each part. Here is one for each:

(a) Example:

Example:
Example:
Examples: 22 422 =23, or 52 4+ 102 = 53.

a=2,b=4,c=6.

: p=2,q=3, then p+ q =5 is prime.
ta=4,b=3,thena®>-02=16—-9=".
: v/4 = 2 is rational.

:n = —3, then n # 3 but n? = 9.

m=3,n=2 then m? —2n?2 =9 -8 =1.

x = —1, then there is no possible y with y* = z.
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Sets

. Let € (A\B) U (B\C). Then ¢ € A\Borz € B\C. If € A\Bthenx € Aand z € Bsoxz € AUB and

x ¢ BNC, meaning x € (AUB)\(BNC). Ifx € B\Cthenz € Bandx ¢ Csoxz € AUB and = € BNC, so again
x € (AUB)\(BNCO).

First suppose A — B = (). If z € A then since A — B is empty, x must be in B (otherwise 2 would be in A — B), so
A C B. Conversely, if A C B, then there are no elements of A not in B, so A — B = ().

Note x € A\(BNC) < z€Aandx ¢ (BNC) < zc€Aand (e g Borx¢(C) < (r€ Aandx ¢ B) or
(zeAandx ¢ C) < ze€ A\BorzecA\C < zc (A\B)U(A\C).

. Observe (AU B€)¢ = A°N (B°)¢ = A°N B by de Morgan’s laws, so AU B° and A°N B are complements. Thus, if

AUB®="U then A°N B =U* =0 and conversely if AN B =0 then AUB®=0°=1U.

First suppose AC BUC. If r€ A—Bthenz € Aand z ¢ B. Since AC BUC,x € BUC soxz € Borz € C but
since x ¢ B we must have z € C: thus A — B C C. Conversely suppose A — B C C and let x € A. If x € B then
clearly x € BU C and otherwise if z ¢ B then z € A — B hence x € C and once again z € BUC: thus A C BUC.

(a) True. Notex € (AUB)—Aiffz € (AUB)NA®iffz e BN A®iff z € B — A.

(b) False. Counterexample: A = {1,2}, B = {1}, C = {2}. Then A\(BNC) = {1,2} while (A\B) N (A\C) = 0.
)
)

(c) False. Counterexample: A = {1}, B = {1,2} with U = {1,2}. Then AN BU B = {1,2} while AU B = {1}.
(d) True. Note (A\B)¢ = (AN B°)¢ = A°U B, and similarly (B\A)* = AU B°. If z € A°N B® then x € A°UB
and also x € AU B°.

Number Theory

(a) Since a,a? have the same parity, m? +n? has the same parity as m +n. So if m? +n? is even then m +n must
be even, meaning m, n have the same parity.

(b) Tt is false: if m = n = 1 then m? 4+ n? = 2 is not divisible by 4.

(a) Induct on n. Base case n = 1 has Fy + F3 = 3 = F,. Inductive step: if Fy + --- + Fyp41 = Fay,yo then
Fi+ -+ Fopy1 + Fopys = [F1 + -+ Fopga] + Fonyz = Fopyo + Fonyz = Fanya as required.

(b) Induct on n. Base cases n = 1 and n = 2 have ¢; = 2% and ¢y = 22, Inductive step: if ¢, = 2 and
Cn_1 = 2Fn—1 then Cnt+l = CpCp—1 = 2FnQFn—1 = 9FntFr-1 — 9Fni1 35 required.

Induct on n. Base case n =1 has a; = 3' — 2. Inductive step: if a,, = 3" — 2 then an+1 =3(3"=2)+4= 3ntl 2,

. Induct on n. Base case n = 1 has b; = 2! + 1. Inductive step: if b, = 2" +n then b, 1 = 22" +n) —n+1 =

2 4 (n 4 1).

Induct on n. Base cases n = 0 and n = 1 have ¢y = 6 - 2" and ¢; = 4 - 2!. Inductive step: if ¢, = (6 — 2n)2" and
en = (6—2(n—1))271 = (4 — n)2" then cpsy = 4(6 — 2n)2" — 4(4 — n)2" = (24 — 8n — 16 + 4n)2" = (8 — 4n)2"
(6 —2(n + 1))2"*1 as required.

Induct on n . Base cases n = 1 and n = 2 have d; = 2! and dy = 22. Inductive step: if d, = 2" and d,,_; = 2"~ !
then d,, 1 = 2" +2(2"7 1) = 27 + 2" = 27F! as required.

Induct on n. Base case n = 1 has 25! + 7 = 32 a multiple of 8. Inductive step: if 8 divides 25" + 7, then 8 divides
25 (25" +7) — 24 -7 =25""1 + 7. (Reducing modulo 8 also works.)
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Induct on n. Base case n = 1 has 1 = 2 — 1/2°. Inductive step: If 1 + = + =~ +--- + — = 2 — — then

2 4 2 on’
1 1 1 1 1 1 1 .
1+§+Z+-~-+27+W=2—27+2n+1 =2~ on i1 as required.
1 1 1 1 1 1

Induct on n. Base case n = 1 has T35=73 Inductive step: if 135 + 53 + 34 + -+ o Y = nil then

1+1+1++ 1 n 1 n+ 1 n—f—lase,ed

- RN .o = = T red.

1-2 2.3 3-4 n-(n+1) (m+1)-n+2) n+l1 nW+DHN+2) n+2 qau
In (a)-(c), the Euclidean algorithm allows for a quick calculation of the ged, and then lem(a,b) = ab/ ged(a, b).

(a) 520 =2-256 + 8, 256 = 32 - 8, so ged is 8, and lem is 256 - 520/8.

(b) 921 =5-1774 36,177 =4-36+33,36 =1-33+ 3,33 =11-3 so ged is 3, and lem is 921 - 177/3.

(c) 5678 = 2-2019+ 1640, 2019 = 1-1640+379, 1640 = 4-379+124,379 =3-124+7,124 =17-74+5,7=1-5+2,

5=2-241,2=2-1,s0 ged is 1 and lecm is 2019 - 5678.

(d) Taking the smallest exponents of each prime yields ged 233254, and the largest exponents yield lem 2433547 11.
(a) Not invertible, ged(10,25) =5 > 1.

(b) Invertible, ged(11,25) = 1. By Euclid —9-11+4-25=1s0 —9-11 =1 (mod 25) so 117} = —9.

(c) Invertible, ged(12,25) = 1. By Euclid —2-12+1-25 =150 —2-12 =1 (mod 25) so 127} = —2.

(d) Not invertible, gcd(30,42) =6 > 1.

(e) Invertible, gcd(31,42) = 1. By Euclid 19-31 —14-42 =150 19-31 = 1 (mod 42) so 317! = 19.

(f) Not invertible, ged(32,42) =2 > 1.
Ifnisthesumof k,k+1,k+2k+3,k+4,k+5 then n = 6k + 15 = 3 (mod 6). Conversely if n = 3 mod 6 so that

n = 3 + 6a, then n is the sum of a — 2,a — 1,a,a+ 1,a + 2,a + 3.

Modulo 6 we have 7" +5=1"+5=145 = 0 (mod 6), which means 7" + 5 is divisible by 6.

Since a = b (mod n) and ¢ = d (mod n) we see b+ ¢ = a +d (mod n). Then a(b+ ¢) =b(b+ ¢) = b(a + d) (mod n)
so a(b+ ¢) = b(a + d) (mod n).

Clearly, if 6|n then 2|n and 3|n. For the other direction, if 2|n then n = 2k. Then if 3|2k we must have 3|k since
312 and 3 is prime. So k = 3a, and thus n = 6a, meaning 6|n.

First, A C B because if n = 4a + 6b then n = 2(2a + 3¢) € B. Also, B C A because if n = 2¢ then we would have
n = 4(2c¢) + 6(—c) € A via Euclidean algorithm calculation.

Note ged(n,n + p) = ged(n, p) by ged properties. Then ged(n, p) divides p so is either 1 or p, and it is equal to p if
and only if p|n (by definition of ged).

If n € C, then n = 6¢ for some c. Then n = 10(2¢) + 14(—c) € D as required.

If a =2c+1and b=2d + 1 then a® + b* — 2 = 4(c? + ¢ + d* + d), which is divisible by 8 since ¢ + ¢ = c(c + 1) is
always even as is d? + d.

Note (2n)(2n + 2) = 4n? + 4n is 1 less than (2n + 1)2 = 4n? + 4n + 1.

Noten—1=—1(modn)so(n—1)"t=(-1)"t=-1=n—-1(mod n). Or, (n—1)2=n?-2n+1=1 (mod n).

We have 59 =2-264+7,26=3-T+5,7=1-5+2,5=2-241,2 = 2-1. Solving for remainders gives 7 = 59 — 2 - 26,
5=-3-5947-26,2=4-59—-9-26,1=—11-59425-26. So 25-26 =1 (mod 59) s026 " = 5.

Note (¢7th= 1)t = (W)Y g™t = hg and (h~tg7 1)t = (¢71) (A1)~ = gh. So taking the inverse of
g 'h™! = h7lg7! yields gh = hg.
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Relations and Equivalence Relations

’ # \ Reflexive \ Symmetric \ Transitive \ Antisymmetric \ Irreflexive \ Equiv Rel \ Partial \ Total ‘

(a) Yes No Yes Yes No No Yes Yes
(b) No Yes No No Yes No No No
(c) Yes Yes Yes No No Yes No No
(d) Yes No Yes Yes No No Yes No
(e) Yes No Yes Yes No No Yes Yes
() Yes Yes Yes No No Yes No No
(g) | No (0) Yes Yes No No No No No

Note (a, )GR_ NS™! < (a,b) € R7! and (a,b) € S™! <= (b,a) € Rand (b,a) € S <= (b,a) € RNS <=
(a,b) € (RN S)~1

R=[{1,2,4} x{1,2,4}]JU[{3,5} x {3,5}] U [{6} x {6}]
={(1,1),(1,2),(1,4),(2,1),(2,2),(2,4), (4, 1), (4,2), (4,4), (3,3), (3,5), (5,3), (5,5), (6,6) }.

R is reflexive since |z| = |z|, R is symmetric since |z| = |y| implies |y| = |z|, and R is transitive since |z| = |y| and
lyl = || imply |z = |z|. Also, [0] = {0}, [2] = [-2] = {2, -2}, [4] = {4, —4}.

(a) This relation says Ry when 6x = y (mod 5), or equivalently when x = y (mod 5). So this relation is just
congruence modulo 5, which we already know is an equivalence relation.

(b) The equivalence classes are simply the congruence classes modulo 5: [n] = {...,n —10,n — 5,n,n + 5,n +
10,...} ={n+5k: k € Z}.

If R is reflexive and a function, then R(a) = a for all a € A, so the only possibility is to have R(a) = a for all a € A.
But clearly the identity function is also an equivalence relation, so it is the only one that works.

Reflexive: For each a € A we have (a,a) € R and so (a,a) € R~! hence (a,a) € S. Symmetric: if (a,b) € S
then (a,b) € R and (a,b) € R™! so (b,a) € R™! and (b,a) € R so (b,a) € S. Transitive: if (a,b), (b,c) € S then
(a,b),(b,c) € R so (a,c) € R and also (c,b), (b,a) € Rso (c,a) € Rso (a,c) € R7! so (a,c) € S.

Reflextive: e € H and g1 = eg; so gy Rg1. Symmetric: If g; Rgy so that g = hgs with h € H then h™'g; = ¢
and h=! € H, so go Rg;. Transitive: If g; Rgo and go Rg3 so that g = hgs and go = kg3 with h,k € H then
g1 = hgo = hkgs and hk € H so g1 R gs.

Functions

(a) f is one-to-one, onto, and a bijection since its inverse is also a function.

(b) f is not one-to-one since f(2) = f(4) and f is not onto since im(f) misses 2.
(c) f is one-to-one, onto, and a bijection since it has an inverse f~!(z) = x/2.
(d) f is one-to-one but not onto since im(f) is only the even integers.

(e) f is one-to-one but not onto since its image misses 1.

(f) f is one-to-one, onto, and a bijection since it has an inverse f~!(z) = x!/3.




2. (a) Note g(0) = g(3) =3, g(1) = g(4) =5, g(2) = g(5) = 1 so im(g) = {1,3,5}. Then g is not one-to-one since
g(0) = ¢g(3) and g is not onto since 0,2,4 are not in im(g).
(b) We have h=1(n) =5"1(n +3) =5(n +3) = 5n + 3 since 5! = 5 modulo 6. Since h~! exists, h is a bijection.

3. (a) The function g : A — im(f) with g(a) = f(a) for all a € A is one-to-one and onto hence a bijection. Then
|A| = |im(f)| by the definition of cardinality.
(b) If f is one-to-one then by (a), |A| = |[im(f)|. Since |A| = |B| and A and B are finite, this means im(f) is a
subset of the finite set B having the same cardinality as B: thus im(f) = B so f is onto.

b
4. (a) Tf f(a) = f(b) then SC”? _ g;i 50 (60 + 5)(2b — 7) = (2a — 7)(6b + 5) so 12ab + 10b — 42a — 35 =
12ab — 42b + 10a — 45 so 52a = 52b so a = b.
6z + 5 Ty+5 Ty+5
(b) Solving y = 2ii7 for z yields y(2¢ —7) =6z + 580 22y — Ty =62+ 5 s0 x = 23—1—6' So f~(y) = 221—6'
6r+5, TSEEZ A5 7(6x+5)+5(20—7) 52

© (o @) = U@ =1 G ) = B = s T T~

(d) The image of f is the domain of f~!, which is Q\{3} from (b). So f is not onto as the image omits 3.

= z as claimed.

5. (a) F is a bijection as it has an inverse function G(z,y) = (5,5 + 5): note F(G(z,y)) = F(%*,y +5) = (z,y)
and G(F(z,y)) =GOz +4,y —5) = (z,y).
(b) There is no (a,b) € Z x Z with F(a,b) = (0,0) since this would require a = —4/5 which is not an integer.

[«

. Note f(f(a)) =aforalla € A < fof=1i4 <= f~!= fasfunctionson A <= f~!exists and f~!(a) = f(a)
for all a € A.

7. Let x € A. Then by hypothesis (f o g)(x) = (f o h)(z) which means f(g(x)) = f(h(x)). But f is one-to-one, so this
implies g(z) = h(x). Since g and h agree on all elements in A, that means g = h.

®

(a) Suppose (f o g)(a1) = (f o g)(az) for some ay,as € A, so that f(g(a1)) = f(g(az)). Since f is one-to-one,
flg(a1)) = f(g(az)) implies g(a1) = g(az), and then since g is one-to-one, we have a; = as.

(b) Let ¢ € C be arbitrary. Since f is onto, there exists b € B such that f(b) = c¢. Then since g is onto, there exists
a € A such that g(a) =b. Then f(g(a)) = f(b) = ¢, so f o g is onto.

9. (a) Suppose a € A. Then f(a) € f(A), so by definition we have a € f=1(f(4)).

(b) From (a), A C f~1(f(A)). For the reverse, suppose a € f~1(f(A)), so that f(a) € f(A). Since f is one-to-one,
f(a) = f(b) implies a = b, so f(a) € f(A) implies a € A.

(c) Suppose a € f~1(C). Then f(a) € C by definition. This holds for all a € f~1(C), so f(f~1(C)) C C.

(d) From (c), f(f~*(C)) C C. For the reverse, suppose ¢ € C. Since f is onto, there exists a € A with f(a) = ¢, so
a € f~1C). Hence c € f(f~1(C)).

(e) Suppose z € f(A) N f(B), meaning that = f(a) = f(b) for some a € A and b € B. But since f is one-to-one
this means a = b, and so this element « is in both A and B: thus z = f(a) for some a € ANBso xz € f(ANDB).

10. Note f has an inverse g. Then in fact f has an inverse j : P(B) — P(A) with g(T) = {g(t) : t € T}. Explicitly,
for S C A, g(f(5)) = g({f(s) : s € S} = {g(f(s)) : s € S} = {s:s € S} =S and f(g(T)) = f({g(t) : t € T}) =

{flgt)):teT}={t:teT}=T.

11. All equivalence relations contain the identity relation. So f is one-to-one <= [a] = [b] is equivalent to ¢ = b <>
a Rb is equivalent to a = b <= R equals the identity relation.
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10.

Cardinality and Counting

. Inside U = {1,2,...,251}, if A is the set of multiples of 4, B is the set of multiples of 5, and C' is the set of multiples

of 7, then by inclusion-exclusion, |[AUBUC| = |A|+ |B|+|C| - |ANB|-|ANC|—|BNC|+|ANBNC|. Since
AN B is the multiples of 20, A N C is the multiples of 28, B N C is the multiples of 35, and AN BN C is the
multiples of 140, and the number of multiples of n in U is 251/n rounded down to the nearest integer, the total is
62+50+35—-12—-8—-7T+1=121.

(a) Each of the 88 elements of S x T can be included or not, so there are 258 total.
(

)
b) Each of the 8 elements of S has 11 possible images in T, so there are 11 total.
(c) Each of the 11 elements of T has 8 possible images in S, so there are 8! total.
)
)

(d) There are 11 choices for the first value, 10 for the second, ... , and 4 for the eighth, giving 11-10----- 4 =11!/3\

(e) A function from a set of size 11 to a set of size 8 cannot be one-to-one (pigeonhole), so there are 0.

If there are at most n elements in each residue class modulo 8, then there are at most 8n total elements. So we need
8n > 73 yielding n > 9.125, so since n is an integer, that means some residue class must have at least 10 elements.
Since 10 is clearly achievable (e.g., with the integers 1, 2, ... , 73) the minimum is 10.

(a) There are no onto functions from A to B since the cardinality of B is larger than that of A.

(b) If A = {x,y} there are 2® functions from B to A. One has image {z} and one has image {y} and the other
28 — 2 have image {z,y} hence are onto.

Note that B is a subset of AU (B\A). If A and B\ A are countable then their union is also countable, hence any
subset is countable. If B is uncountable then this is a contradiction, so B\ A is uncountable.

Both Q and QN (0, 1) are countably infinite, so there is a bijection between these sets since they are both in bijection
with the positive integers.

The Cartesian product of two countable sets is countable, so Q x Z is countable since both Q and Z are countable.
But R x Z contains R x {1} which is in bijection with R, so R x Z has an uncountable subset hence is uncountable
itself.

If S, is the set of n-element subsets of Z then S, is countable since it is a subset of Z x Z x - -+ x Z (with n terms)
and this set is countable. Then the set of finite subsets of Z is U2, S,, which is a countable union of countable sets,
hence countable.

The functions f : [1,7) — (2,9) with f(z) = 2+ (z/2) and ¢ : (2,9) — [1,7) with g(z) = 1 + (2/2) are both
one-to-one, so by Cantor-Schréder-Bernstein there exists a bijection between [1,7) and (2,9).

The functions f : (0,1) — [0,1] with f(x) =z and ¢ : [0,1] — (0,1) with g(z) = (z + 1)/3 are both one-to-one, so
by Cantor-Schroder-Bernstein there exists a bijection between (0, 1) and [0, 1].




