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10 Analytic Number Theory

In this chapter, we discuss some fundamental results in analytic number theory. We begin by introducing the
Riemann zeta function and establishing some of its properties, with the main goal being to establish Dirichlet's
theorem on primes in arithmetic progressions, which along the way requires a fairly involved discussion of Dirichlet
series, group characters, and Dirichlet L-series. We then construct the Dedekind zeta function of a quadratic integer
ring and derive the analytic class number formula, which provides an analytic formula for the class number of a
quadratic integer ring.

10.1 The Riemann Zeta Function and Dirichlet's Theorem on Primes in Arithmetic

Progessions

• We begin our motivation for the use of analytic techniques in number theory by studying some basic properties
of the Riemann zeta function.

10.1.1 The Riemann Zeta Function

• Here is the Riemann zeta function:

• De�nition: If s is a complex number with Re(s) > 1, the Riemann zeta function is de�ned as ζ(s) =
∑∞
n=1 n

−s.

◦ Remark: By tradition dating back to Dirichlet, the complex variable used in discussions of the zeta
function is denoted s = σ + it where σ = Re(s) and t = Im(t). (Supposedly, a printer's error changed it
from the intended s = σ + iτ .)

◦ Explicitly, we have ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · · .

◦ Observe in particular that ζ(1) =
∑∞
n=1

1

n
is the harmonic series, which famously diverges to ∞. This

is the reason for our requirement that Re(s) > 1, to ensure the series actually converges.
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◦ Indeed, for Re(s) = α > 1 we have |n−s| = n−α: thus |
∑∞
n=1 n

−s| ≤
∑∞
n=1 n

−α, and the latter series

converges by comparison to the integral
´∞

1
x−α dx =

x1−α

1− α
|∞x=1 =

1

α− 1
.

◦ Thus we see that the series for ζ(s) in fact converges absolutely whenever Re(s) > 1.

• One of the fundamental properties of the zeta function is that it can also be expressed as an in�nite product.

◦ The idea is quite simple and is simply an encapsulation of the unique prime factorization of positive
integers.

◦ As motivation, observe that (1+
1

2s
+

1

4s
)(1+

1

3s
) = 1+

1

2s
+

1

4s
+

1

3s
+

1

6s
+

1

12s
= 1+

1

2s
+

1

3s
+

1

4s
+

1

6s
+

1

12s
.

◦ We can see that the product contains the terms n−s for all n that are a product of one of {1, 2, 4} with
one of {1, 3}.

◦ For the same reason, if we multiply out the product (1 +
1

2s
+

1

4s
+

1

8s
)(1 +

1

3s
+

1

9s
)(1 +

1

5s
)(1 +

1

7s
)

we will obtain terms n−s for all n that are a product of one of {1, 2, 4, 8} with one of {1, 3, 9} and one of
{1, 5} and one of {1, 7}, which in particular includes all terms n−s with 1 ≤ n ≤ 10 along with a number
of others that are larger.

◦ Euler's observation is that if we extend this product to include all necessary terms: namely, 1 +
1

ps
+

1

p2s
+ · · · + 1

pks
+ · · · for each prime p, then the resulting distributed product over all primes p will be

the sum over all terms n−s for every positive integer n.

◦ We can further condense the expansion by observing that 1 +
1

ps
+

1

p2s
+ · · ·+ 1

pks
+ · · · is a geometric

series with sum
1

1− p−s
= (1− p−s)−1.

◦ Putting all of this together yields the following:

• Proposition (Euler Product for ζ): If s is a complex number with Re(s) > 1, then ζ(s) =
∏
p prime(1−p−s)−1.

◦ Proof: We only need to show that the partial products Pd =
∏
p prime≤n(1 − p−s)−1 converge to the

series for the zeta function as d→∞.

◦ Each of the geometric series (1 − p−s)−1 =
∑∞
k=0 p

−ks converges absolutely for Re(s) > 1, so we may
arbitrarily rearrange the terms without changing the sum.

◦ Therefore, if Sd represents the set of positive integers whose prime factors are all ≤ n, by expanding the
product we have

∏
p prime≤d(1− p−s)−1 =

∏
p prime≤d(1 + p−s + p−2s + · · · ) =

∑
n∈Sd

n−s.

◦ Then
∣∣∣ζ(s)−

∏
p prime≤d(1− p−s)−1

∣∣∣ =
∣∣∣∑n 6∈Sd

n−s
∣∣∣ ≤∑∞n=d+1 |n−s| and the latter sum is a tail of the

zeta function's expansion, hence tends to zero as d→∞.

◦ We conclude that limd→∞

∣∣∣ζ(s)−
∏
p prime≤d(1− p−s)−1

∣∣∣ = 0, meaning that ζ(s) = limd→∞
∏
p prime≤d(1−

p−s)−1 =
∏
p prime(1− p−s)−1, as claimed.

• By using suitably clever manipulations of the zeta function and its Euler product expansion, we can obtain
some quite interesting results.

◦ For example, as we have already noted above, ζ(1) diverges to in�nity, in the sense that lims→1+ ζ(s) =∞.

◦ As an immediate and trivial consequence, we see that because
∏
p prime(1−p−1)−1 is in�nite, the product

must have in�nitely many terms: thus, there are in�nitely many primes.

◦ By making slightly better estimates we can derive more interesting divergence results, such as the fol-
lowing:

• Proposition (Divergence of Prime Sum): The sum
∑
p prime 1/p diverges to ∞.

◦ Proof: Taking the logarithm of product formula for the zeta function yields log(ζ(s)) =
∑
p prime− log(1−

p−s).
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◦ Now, for 0 < x < 1/2 we have the estimate − log(1− x) =
∑∞
n=1

xn

n
<
∑∞
n=1 x

n =
x

1− x
≤ 2x.

◦ For s > 1 real we have p−s < 1/2 for all primes p, so the estimate above yields log(ζ(s)) =
∑
p prime− log(1−

p−s) ≤
∑
p prime 2p−s.

◦ Now taking s→ 1+ shows that log(ζ(1)) <
∑
p prime 2p−1 and so the sum

∑
p prime 2p−1 must diverge to

∞. The desired result follows immediately.

• So far, we have not really exploited our construction of the zeta function as a function of a complex variable:
but viewing ζ(s) as a function of a complex variable s is where the truly interesting results lie. Here are some
basic properties of ζ(s) viewed as a function of a complex variable:

• Theorem (Complex-Analytic Properties of ζ): The zeta function ζ(s) admits an analytic continuation to the
region Re(s) > 0, and it is holomorphic on this region except for a simple pole with residue 1 at s = 1.

◦ There are various ways to establish this fact, but most approaches rely on rearranging the series in some
manner to increase the region of convergence. We will use a clever approach relying on a non-obvious
rearrangement.

◦ Proof: For Re(s) > 2, observe that all of the series in the calculation below converge absolutely, so the
following rearrangements are permissible:

(s− 1)

∞∑
n=1

1

ns
= −1 + s+

∞∑
n=2

s− 1

ns

=

[ ∞∑
n=1

1

(n+ 1)s−1
−
∞∑
n=1

1

ns−1

]
+

[ ∞∑
n=1

s

ns
−
∞∑
n=1

1

(n+ 1)s

]

=

∞∑
n=1

(n+ 1)

(n+ 1)s−1
−
∞∑
n=1

1

(n+ 1)s
−
∞∑
n=1

n

ns
+

∞∑
n=1

s

ns

=

∞∑
n=1

[
n

(n+ 1)s
− n− s

ns

]

◦ Now notice that for Re(s) > 0 we have
n

(n+ 1)s
− n− s

ns
= n[

1

(n+ 1)s
− 1

ns
]+

s

ns
: then by a linearization

we have
1

(n+ 1)s
− 1

ns
∼ (−s)n−s−1 +O(n−s−1), so

n

(n+ 1)s
− n− s

ns
= O(n−s−1).

◦ Therefore, by comparison to the corresponding integral, we see that
∑∞
n=1

[
n

(n+ 1)s
− n− s

ns

]
converges

absolutely for all Re(s) > 0.

◦ As a consequence, since the original de�nition and this new series agree for Re(s) > 2, we obtain an

analytic continuation ζ(s) =
1

s− 1

∑∞
n=1

[
n

(n+ 1)s
− n− s

ns

]
for all Re(s) > 0, except for s = 1.

◦ Furthermore, since lims→1(s− 1)ζ(s) exists, we see immediately that ζ(s) has a simple pole at s = 1.

◦ Finally, the residue at s = 1 is given by lims→1(s− 1)ζ(s) =
∑∞
n=1

[
n

n+ 1
− n− 1

n

]
which telescopes to

1.

10.1.2 Motivation for Dirichlet's Theorem

• Our main goal now is to establish Dirichlet's theorem on primes in arithmetic progressions:

• Theorem (Dirichlet's Theorem on Primes in Arithmetic Progressions): Suppose m is a positive integer and a
is relatively prime to m. Then there exist in�nitely many primes congruent to a modulo m: in other words,
there are in�nitely many primes in the arithmetic progression {a, a+m, a+ 2m, a+ 3m, . . . }.

◦ Of course, if a is not relatively prime to m, then there cannot be very many primes congruent to a
modulo m, since any integer congruent to a modulo m is divisible by gcd(a,m).
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• Taking Dirichlet's theorem for granted at the moment, we see that there are ϕ(m) residue classes modulo m
that contain in�nitely many primes. More precisely, we can still ask: how are the primes distributed among
these residue classes?

◦ In fact, the primes are asymptotically uniformly distributed among these residue classes: the proportion
of primes congruent to a modulo m approaches 1/ϕ(m) upon taking an appropriate limit.

◦ Explicitly, de�ne the natural density of a set S of primes to be lim
n→∞

S ∩ {1, 2, . . . , n}
{primes} ∩ {1, 2, . . . , n}

, provided

the limit exists.

◦ Then, as �rst proven by de la Vallée Poussin, the natural density of the primes congruent to a modulo
m is 1/ϕ(m) when a is relatively prime to m.

• However, the natural density is somewhat di�cult to handle with analytic methods. From the standpoint of
zeta functions, a more natural choice is the Dirichlet density:

• De�nition: If S is a set of primes, the Dirichlet density of S is the value δS = lim
s→1+

∑
p∈S prime p

−s∑
p prime p

−s , assuming

the limit exists.

◦ Note that the sum in the numerator is always �nite for Re(s) > 1 by comparison to the sum for the zeta
function.

◦ It is not hard to see that if S is �nite, then its Dirichlet density is 0, since the numerator term is bounded
while the denominator is unbounded, since as we proved earlier the sum

∑
p prime 1/p diverges.

◦ More generally, one may prove that if a set has natural density δ, then its Dirichlet density is also δ.

◦ The converse is not true, however: a (relatively) simple counterexample due to Serre is the set S of primes
whose leading digit is 1 in base 10: its Dirichlet density is log10 2, but its natural density is unde�ned.
Intuitively, the natural density of this set �uctuates too much when taking the limit, because there are
so many n-digit primes with leading digit 1 relative to the number of primes having at most n− 1 digits
that the natural density limit does not converge.

• Our approach (and indeed, Dirichlet's original approach) is to show that the Dirichlet density of the set of
primes congruent to a (modm) has positive Dirichlet density: by our observation that �nite sets have Dirichlet
density zero, this would immediately imply that there are in�nitely many primes congruent to a (mod m).

10.1.3 Dirichlet Series

• A classical area of study in elementary number theory over Z consists of the arithmetic functions related to
divisors, such as the Euler ϕ-function, the divisor-counting function, and the sum-of-divisors function.

◦ All of these are examples of multiplicative functions, which have the property that f(ab) = f(a)f(b)
whenever a, b are relatively prime.

◦ Note the infelicitous terminology: if f(ab) = f(a)f(b) for all a, b (rather than just relatively prime a, b)
then f is instead called completely multiplicative.

◦ If f is multiplicative then f(1) = f(1)2 so either f(1) = 0 or f(1) = 1. The former case is quite trivial
since it implies f(a) = 0 for all a, so we will also usually assume f(1) = 1 when f is multiplicative.

◦ Then if n has prime factorization n =
∏
i p
ai
i and f is multiplicative, we immediately have f(n) =∏

i f(paii ): thus, characterizing the values of a multiplicative function requires only knowing its values
on prime powers.

• It is a standard principle in combinatorics that if we want to understand a sequence {an}n≥1 = {a0, a1, a2, . . . }
we should study its generating function f(x) =

∑∞
n=0 anx

n.

◦ Since all of the terms of the sequence can be extracted from the function (they are, after all, merely
its coe�cients) the generating function, in principle, encapsulates all possible information about the
sequence {an}.
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◦ Typically, if the sequence has some kind of convenient description (e.g., a recurrence relation) then this
information carries some kind of implication for the generating function: e.g., that it has some speci�c
algebraic form, or satis�es a particular di�erential equation, or something similar of that nature.

◦ For example, if Fn is the nth Fibonacci number satisfying the recurrence Fn+1 = Fn + Fn−1 for all
n ≥ 1, with associated generating function f(x) =

∑∞
n=0 Fnx

n, then the recurrence implies that (1 −
x − x2)f(x) = F0 + (F1 − F0)x + (F2 − F1 − F0)x2 + · · · = 1 + x, and so we obtain an explicit formula

f(x) =
1 + x

1− x− x2
.

• We would like to use a similar approach for studying multiplicative functions.

◦ A natural �rst guess would be to use the same type of power series F (x) =
∑∞
n=0 f(n)xn.

◦ However, this type of generating function is useful primarily for functions that behave additively. For
number-theoretic functions, we instead want to use a di�erent type of series, one that behaves multi-
plicatively.

• De�nition: If h : N→ C is a complex-valued function de�ned on positive integers, its associated Dirichlet series

is Dh(s) =
∑∞
n=1

h(n)

ns
.

◦ Example: If h(n) = 1 for all n, then Dh(s) =
∑∞
n=1

1

ns
= ζ(s), the Riemann zeta function. (So even for

this extremely trivial function, we already obtain a very interesting Dirichlet series!)

◦ In order for this series to converge, we need h not to grow too fast. One may check that if h(n) = O(nα)
then Dh(s) is absolutely convergent for Re(s) > 1 + α by comparison to the p-series

∑∞
n=1 n

α−Re(s).

◦ We will mostly be able to ignore issues of convergence for the moment, since our functions will grow
polynomially at worst.

◦ In most cases, therefore, we may manipulate the series formally without worrying explicitly about con-
vergence: in other words, by treating s as an indeterminate rather than some speci�c real or complex
number.

◦ If h is multiplicative, then it is a straightforward calculation to see that Dh(s) has an Euler product

expansion: Dh(s) =
∏
p prime(1 +

h(p)

p
+
h(p2)

p2
+ · · · ), on the appropriate domain of convergence. (The

argument is the same as for the Riemann zeta function: simply multiply out and collect terms.)

• The key property of Dirichlet series is that they reproduce desired number-theoretic behaviors under multi-
plication.

◦ To motivate the idea, suppose f and g are any functions, and multiply out the product of the Dirichlet
series

Df (s)Dg(s) =

[
f(1)

1s
+
f(2)

2s
+
f(3)

3s
+
f(4)

4s
+ · · ·

]
·
[
g(1)

1s
+
g(2)

2s
+
g(3)

3s
+
g(4)

4s
+ · · ·

]
=

f(1)g(1)

1s
+
f(1)g(2) + f(2)g(1)

2s
+
f(1)g(3) + f(3)g(1)

3s
+
f(1)g(4) + f(2)g(2) + f(4)g(1)

4s
+ · · · .

◦ We can see in general that the coe�cient of n−s is the sum over divisors given by
∑
d|n f(d)g(n/d).

◦ This is a far more natural sum to consider for number-theoretic functions than the power series coe�cient
for xn in the product

∑∞
n=0 f(n)xn ·

∑∞
n=0 g(n)xn, which is

∑n
d=0 f(d)g(n− d).

• We record the de�nition of these coe�cients:

• De�nition: If f, g : N → C are functions, then their Dirichlet convolution f ∗ g is de�ned via (f ∗ g)(n) =∑
d|n f(d)g(n/d) for each n ≥ 1.

◦ Equivalently, and more symmetrically, we have (f ∗ g)(n) =
∑
ab=n f(a)g(b).

• Here are various fundamental properties of Dirichlet convolution:
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• Proposition (Properties of Dirichlet Convolution): Let f, g, h : N → C be functions with associated Dirichlet
series Df (s), Dg(s), and Dh(s), and let ∗ represent Dirichlet convolution, where either we work with formal
series or in a region where all series converge absolutely.

1. We have Df (s) ·Dg(s) = Df∗g(s).

◦ Proof: We haveDf (s)Dg(s) =
∑∞
a=1

f(a)

as
∑∞
b=1

g(b)

bs
=
∑∞
a=1

∑∞
b=1

f(a)g(b)

(ab)s
=
∑∞
n=1

1

ns
∑
ab=n f(a)g(b) =∑∞

n=1

(f ∗ g)(n)

ns
= Df∗g(s).

2. Dirichlet convolution is commutative and associative, and has an identity element given by I(n) ={
1 for n = 1

0 for n > 1
.

◦ Proof: For commutativity we have (f ∗ g)(n) =
∑
ab=n f(a)g(b) =

∑
ab=n g(a)f(b) = (g ∗ f)(n) for

each n.

◦ For associativity we have [(f∗g)∗h](n) =
∑
bc=n(f∗g)(b)h(c) =

∑
abc=n f(a)g(b)h(c) =

∑
ab=n f(a)(g∗

h)(b) = [f ∗ (g ∗ h)](n) for each n.

◦ For the identity we have (f ∗ I)(n) =
∑
ab=n f(a)I(b) = f(n) since all terms have I(b) = 0 except

for the one with b = 1.

3. The function f has an inverse under Dirichlet convolution if and only if f(1) 6= 0. In such a case,

Df−1(s) =
1

Df (s)
.

◦ Proof: If (f ∗ g)(n) = I(n) then setting n = 1 yields f(1)g(1) = 1, so we must have f(1) 6= 0.

◦ Conversely, if f(1) 6= 0 we can solve recursively for the values g(n) using the recurrence f(1)g(1) = 1
and

∑
d|n f(d)g(n/d) = 0 for all n ≥ 2.

◦ Explicitly, we obtain g(1) = f(1)−1 and g(n) = −f(1)−1
∑
d|n,d>1 f(d)g(n/d) for each n ≥ 2. The

function g de�ned this way satis�es f ∗ g = I, so it is an inverse of f .

◦ The second statement follows immediately from (1) and the fact that DI(s) = 1.

4. If f is multiplicative with f(1) = 1, then its Dirichlet inverse f−1 is also multiplicative.

◦ Proof: By using the explicit recurrence g(1) = f(1)−1 and g(n) = −f(1)−1
∑
d|n,d>1 f(d)g(n/d)

for each n ≥ 2 derived above in (3) for the Dirichlet inverse g = f−1, we see that g(1) = 1 and
g(n) = −

∑
d|n,d>1 f(d)g(n/d).

◦ Then by a trivial induction on n, since each term in the sum
∑
d|n,d>1 f(d)g(n/d) is multiplicative

(for f by de�nition, and for g by the induction hypothesis), the sum for g itself is also multiplicative.

5. If two of f , g, and f ∗ g are multiplicative, then the third is also.

◦ Proof: If f and g are multiplicative, then since (f ∗ g)(n) =
∑
d|n f(d)g(n/d) and each term in the

sum is multiplicative, so is f ∗ g.
◦ If f and f∗g are multiplicative, then so is f−1 by (4), and thus so is f−1∗[f∗g] = [f−1∗f ]∗g = I∗g = g
by the calculation above and (2). The case where g and f ∗ g are multiplicative follows in the same
way.

• By exploiting Dirichlet convolution, we can �nd the Dirichlet series for many basic multiplicative functions in
terms of the Riemann zeta function:

• Proposition (Dirichlet Series Evaluations): Let n be a positive integer. Then the following hold:

1. For I(n) =

{
1 for n = 1

0 for n > 1
we have DI(s) = 1.

2. For 1(n) = 1 (for all n) we have D1(s) = ζ(s).

3. For N(n) = n (for all n) we have DN (s) = ζ(s− 1).

◦ Proofs: (1) and (2) are trivial. For (3), DN (s) =
∑∞
n=1

n

ns
=
∑∞
n=1

1

ns−1
= ζ(s− 1).
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4. For the Möbius function µ(n) =

{
0 if n is not squarefree

(−1)r if n is the product of rdistinct primes
we have µ ∗ 1 = I and

Dµ(s) =
1

ζ(s)
.

◦ Proof: First we observe that µ ∗ 1 = I, since (µ ∗ 1)(n) =
∑
d|n µ(d)1(n/d) =

∑
d|n µ(d) ={

1 for n = 1

0 for n > 1
= I(n) as follows by a straightforward induction.

◦ Therefore, by multiplicativity of the Dirichlet series, we see Dµ(s)D1(s) = DI(s) so Dµ(s) =
1

ζ(s)
.

5. (Möbius Inversion) If g(n) =
∑
d|n f(n) for each n ≥ 1, then f(n) =

∑
d|n µ(d)g(n/d) for each n ≥ 1.

◦ Proof: The hypothesis on g states that g = f ∗ 1, so since µ ∗ 1 = I, convolving with µ and using
associativity yields f = µ ∗ g, which directly states that f(n) =

∑
d|n µ(d)g(n/d).

6. For the Euler ϕ-function ϕ, we have Dϕ(s) =
ζ(s− 1)

ζ(s)
.

◦ Proof: First we observe that
∑
d|n ϕ(d) = n, since ϕ(d) counts the number of integers A less than

or equal to n with gcd(A,n) = n/d. Summing over all possible gcds yields
∑
d|n ϕ(d) = n.

◦ Equivalently, this result says that ϕ ∗ 1 = N , so by composing with µ and using associativity, we see
that ϕ = µ ∗N .

◦ Then Dϕ(s) = Dµ(s)DN (s) =
ζ(s− 1)

ζ(s)
.

◦ Remark: In principle, we could have established this fornula for Dϕ(s) by manipulating the zeta
function directly, but this method is both more di�cult and requires knowing the actual (non-
obvious) formula for the answer ahead of time.

7. For the divisor-counting function d(n) =
∑
d|n 1, we have Dϕ(s) = ζ(s)2.

◦ Proof: The de�nition equivalently states that d(n) =
∑
d|n 1(d)1(d/n) so d = 1 ∗ 1. Then Dd(s) =

D1(s)2 = ζ(s)2.

8. For the sum-of-divisors function σ(n) =
∑
d|n d, we have Dσ(s) = ζ(s− 1)ζ(s).

◦ Proof: The de�nition equivalently states that σ(n) =
∑
d|nN(d)1(n/d) so σ = N ∗ 1. Then Dσ(s) =

DN (s)D1(s) = ζ(s− 1)ζ(s).

• There are many other useful arithmetic function whose Dirichlet series can be similarly computed explicitly,
but we will content ourselves with these.

◦ One of the main applications of computing the Dirichlet series for these various arithmetic functions is
that we can extract information about growth rates from them, which we will discuss in a later section.

10.1.4 Group Characters and Dirichlet Characters

• In order to progress towards Dirichlet's theorem, we require some basic facts about group characters, as they
will will allow us to study the Dirichlet series that picks out primes congruent to a (mod m).

• De�nition: Let G be a �nite abelian group. A group character χ of G is a homomorphism χ : G→ C×.

◦ Note that χ(1) = 1 for every character, and also if g ∈ G has order d, then 1 = χ(1) = χ(gd) = χ(g)d, so
χ(g) is a dth root of unity. Thus in general, χ is a map from G to the group of complex |G|th roots of
unity.

◦ Example: For any G, the trivial character χtriv has χtriv(g) = 1 for all g ∈ G.

◦ Example: If G = (Z/pZ)×, the quadratic residue symbol χ(a) =

(
a

p

)
is a group character.

◦ Example: If G = (Z/pZ)× has generator g (of order p − 1), the map χ(gd) = e2πid/(p−1) is a group
character.
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◦ Example: If P = (π) is a prime ideal of R = Z[i], and G = (R/P )×, the quartic residue symbol

χ(a) =
[ a
π

]
4
is a group character.

• We will be interested in the case where G is the group of units (Z/mZ)× in which case we call χ a
Dirichlet character.

◦ In some situations it is slightly more convenient to work with extended Dirichlet characters, which we
extend to have domain Z/mZ by setting χ(a) = 0 whenever a is not relatively prime to m.

◦ Equivalently, extended Dirichlet characters modulo m are functions χ : Z→ C such that (i) χ(a+ bm) =
χ(a) for all a, b, (ii) χ(ab) = χ(a)χ(b) for all a, b, and (iii) χ(a) 6= 0 if and only if a is relatively prime to
m.

• We can multiply two group characters on G pointwise, and this operation makes them into a group:

• Proposition (Dual Group ofG): The set of group characters onG forms a group under pointwise multiplication.
The identity is the trivial character and the inverse of χ is its complex conjugate χ. This group is called the
dual group of G and is denoted Ĝ.

◦ Proof: These properties can be checked directly (they are quite straightforward), or one may simply note
that Ĝ = Hom(G,C×), the set of group homomorphisms from G to C×, which naturally carries a group
structure.

• The dual group Ĝ is also an abelian group, so it is natural to wonder how its structure relates to G. In fact,
it is isomorphic to G:

• Proposition (Dual Group, II): If G is a �nite abelian group, its dual group Ĝ is isomorphic to G.

◦ Proof: First consider the special case where G is a cyclic group of order n generated by g. Then
χ(gd) = χ(g)d for all d, so any group character χ is uniquely determined by the value of χ(g), which
must be some nth root of unity.

◦ Conversely, any such selection e2πia/n for χ(g) yields a valid group character χa, namely with χa(gd) =
e2πiad/n. Since χaχb = χa+b and χ

n
1 is the trivial character, we see that the dual group Ĝ is cyclic of

order n (the map a 7→ χa is an isomorphism of Ĝ with Z/nZ).
◦ Now suppose G = H ×K is a direct product. If χ : H ×K → C× is a homomorphism, let χH : H → C×
and χK : K → C× be the projections χH(h) = χ(h, 1) and χK(k) = χ(1, k). Then χH is a group
character of H, χK is a group character of K, and χ = χHχK .

◦ Conversely, any pair (χH , χK) ∈ (Ĥ, K̂) yields a character χ = χHχK ∈ Ĝ, so we see Ĝ ∼= Ĥ × K̂.

◦ Since every �nite abelian group is a direct product of cyclic groups, and the result holds for cyclic groups
and direct products, we are done.

• The isomorphism between Ĝ and G above is non-canonical (i.e., it is not �coordinate-free� in the sense that
we must pick speci�c generators for G and Ĝ to obtain the isomorphism).

◦ However, there is a canonical isomorphism between
ˆ̂
G (the double dual) and G given by the �evaluation

map� ϕ, which maps an element g ∈ G to the �evaluation-at-g� map eg on characters χ ∈ Ĝ, de�ned by
eg(χ) = χ(g).

◦ This result is a special case of Pontryagin duality, and has an analogous statement for duals of �nite-
dimensional vector spaces.

◦ In fact, it is really the algebraic analogue of Fourier inversion (the reason being that Fourier analysis on
�nite abelian groups involves sums over group characters in lieu of integrals). For a brief taste of the
analogy, the main idea is to note that the map einx : R→ C× is a group homomorphism, and thus is an
�R�-character.

• We can also put the structure of an inner product on group characters. To establish this we �rst show some
simple orthogonality relations:
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• Proposition (Orthogonality Relations): If G is a �nite abelian group and χ is a group character, the following
hold:

1. The sum
∑
g∈G χ(g) =

{
|G| if χis trivial

0 otherwise
.

◦ Proof: If χ is trivial the sum is clearly |G|. If χ is not trivial, say with χ(h) 6= 1, then
∑
g∈G χ(g) =∑

g∈G χ(gh) = χ(h)
∑
g∈G χ(g) by reindexing (since G = Gh), and so

∑
g∈G χ(g) = 0.

2. The sum
∑
χ∈Ĝ χ(g) =

{
|G| if g = 1

0 otherwise
.

◦ Proof: Apply duality to (1).

3. (Orthogonality 1) For any characters χ1 and χ2,
∑
g∈G χ1(g)χ2(g) =

{
|G| if χ1 = χ2

0 otherwise
.

◦ Proof: Apply (1) to χ = χ1χ2.

4. (Orthogonality 2) For any elements g1 and g2,
∑
χ∈Ĝ χ(g1)χ(g2) =

{
|G| if g1 = g2

0 otherwise
.

◦ Proof: Apply (2) to g = g1g
−1
2 , or apply duality to (3).

5. The pairing 〈f1, f2〉G =
1

|G|
∑
g∈G f1(g)f2(g) is a complex inner product on functions f : G → C, and

the elements of the dual group Ĝ are an orthonormal basis with respect to this inner product.

◦ Proof: The inner product axioms are straightforward, and the fact that Ĝ yields an orthonormal
basis follows from (3).

6. The pairing
〈
f̂1, f̂2

〉
Ĝ

=
1

|G|
∑
χ∈Ĝ f̂1(χ)f̂2(χ) is a complex inner product on functions f̂ : Ĝ→ C, and

the elements of G are an orthonormal basis with respect to this inner product.

◦ Proof: The inner product axioms are straightforward, and the fact that G ∼= ˆ̂
G yields an orthonormal

basis follows from (4), or apply duality to (5).

7. (Fourier Inversion) For any function f : G → C, with the Fourier transform f̂ : Ĝ → C de�ned by

f̂(χ) = 〈f, χ〉G =
1

|G|
∑
g∈G f(g)χ(g), we have f(g) =

∑
χ∈Ĝ f̂(χ)χ(g) for all g ∈ G.

◦ Proof: This follows immediately from (5), since the elements of Ĝ are an orthonormal basis.

10.1.5 Dirichlet L-Series and Dirichlet's Theorem

• With the fundamentals taken care of, we can now focus on Dirichlet characters.

◦ Studying primes congruent to a modulo m naturally leads to a question about Dirichlet characters via
Fourier inversion, since we may decompose the characteristic function of [primes congruent to a modulo
m] as a sum over Dirichlet characters for the group G = (Z/mZ)×.

◦ Explicitly, if δa(p) is 1 when p ≡ a (mod m) and 0 otherwise, then δ̂a(χ) =
1

Φ(m)

∑
g∈G δa(g)χ(g) =

1

Φ(m)
χ(a), since the only nonzero value of δa(g) occurs when g ≡ a (mod m).

◦ Then by Fourier inversion we have δa(p) =
∑
χ∈Ĝ δ̂a(χ)χ(p) =

∑
χ∈Ĝ

1

Φ(m)
χ(a)χ(p). So the numerator

for the Dirichlet density is
∑
p≡a (mod m) |p|

−s
=
∑
p δa(p) |p|−s =

1

Φ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p χ(p) |p|−s

]
.

◦ This is a bit complicated, but the point is that we have a sum over the Dirichlet characters of constants

(namely χ(a)) times
∑
p

χ(p)

ps
, which is quite close to the Dirichlet series for the character χ: the only

di�erence is that we are only summing over primes, rather than all integers.
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◦ As we will see, we will be able to extract this sum over primes from the full Dirichlet series, which we
now examine more closely.

◦ The main reason we go to this e�ort to use Fourier inversion is that the Dirichlet series for Dirichlet
characters behave very nicely (far more nicely than the original series over primes congruent to a modulo
m) because Dirichlet characters are completely multiplicative.

• De�nition: If χ is a Dirichlet character modulo m, we de�ne its associated Dirichlet L-series L(s, χ) =∑∞
n=1

χ(n)

ns
.

◦ Note that this is just the Dirichlet series for χ, as we de�ned it previously. It is traditional to denote
these series with the letter L (which was the letter Dirichlet used for such functions).

◦ Since |χ(n)| ≤ 1 for all n, the series converges absolutely for Re(s) > 1 by comparison to the series for
the zeta function.

◦ Furthermore, because Dirichlet characters are completely multiplicative, the L-series has a very simple
Euler product: explicitly, L(s, χ) =

∏
p prime [1− χ(p)p−s]

−1
, for Re(s) > 1.

◦ The Euler product is the key to calculating the Dirichlet density we wanted earlier: taking the logarithm

of the Euler product gives logL(s, χ) = −
∑
p prime log(1 − χ(p)/ps) ≈

∑
p prime

χ(p)

ps
using the Taylor

approximation − log(1− x) ≈ x which is accurate for small |x|.

• So our main task is to determine what happens to logL(s, χ) as s → 1, since this is the required input for
calculating the Dirichlet density of the primes congruent to a modulo m.

• Example: For the trivial character χtriv modulo m, we have L(s, χtriv) =
∏
p|m prime(1− p−s) · ζ(s), since the

terms with p|m are missing from the Euler product for L(s, χ).

◦ In particular, we see that L(s, χtriv) has an analytic continuation to the region with Re(s) > 0, since ζ(s)
does, and it has a single simple pole at s = 1.

• For other characters, the L-series is better behaved. In order to establish this fact, we require a preliminary
result.

• Proposition (Abel Summation): Suppose {an}n≥1 and {bn}n≥1 are two complex sequences, and de�ne Sn =∑n
k=1 akbk and Bn =

∑n
k=1 bk. Then Sn = anBn +

∑n−1
k=1 Bk(ak − ak+1), and furthermore if anBn → 0 as

n→∞, then
∑∞
k=1 akbk =

∑∞
k=1Bk(ak − ak+1).

◦ Proof: First we show that Sn = anBn +
∑n−1
k=1 Bk(ak − ak+1) by induction. The base case is trivial, and

for the inductive step suppose that Sn = anBn +
∑n−1
k=1 Bk(ak − ak+1).

◦ Then Sn+1 = an+1bn+1 +Sn = an+1bn+1 +[anBn+
∑n−1
k=1 Bk(ak−ak+1)] = an+1Bn+1 +(an−an+1)Bn+∑n−1

k=1 Bk(ak − ak+1) = an+1Bn+1 +
∑n
k=1Bk(ak − ak+1) as required.

◦ The second statement follows immediately by taking n→∞.

• Now we can establish our �rst main result on the L-series for nontrivial Dirichlet characters.

• Proposition (L-Series for Nontrivial Characters): Letm be a modulus and χ be a nontrivial Dirichlet character
modulo m. Then L(s, χ) has an analytic continuation to the region with Re(s) > 0, and has no poles in this
region.

◦ Proof: First we show that the partial sums BN =
∑N
n=1 χ(n) are bounded uniformly in N . Divide N by

m to write N = qm+ r with 0 ≤ r ≤ m− 1.

◦ Then since χ is periodic modulom we have
∑N
n=1 χ(n) = q

∑m−1
n=0 χ(n)+

∑r
n=1 χ(n), and since

∑m−1
n=0 χ(n) =∑m−1

n=0 χ(n)χtriv(n) = 0 by the orthogonality relations, we see
∑N
n=1 χ(n) =

∑r
n=1 χ(n).

◦ Therefore, BN is periodic modulom and it is uniformly bounded above in absolute value by the maximum
value of |

∑r
n=1 χ(n)| for 0 ≤ r ≤ m − 1. (Certainly this sum is at most r ≤ ϕ(m) by the triangle

inequality.)

10



◦ Now apply Abel summation with an = n−s and bn = χ(n): since BN is bounded and an → 0 we have
anBn → 0.

◦ Hence by the proposition, if we de�ne Bx = Bbxc, then for Re(s) > 1 we have L(s, χ) =
∑∞
n=1Bn[n−s −

(n+ 1)−s] =
∑∞
n=1Bns

´ n+1

n
x−s−1 dx = s

´∞
1
Bxx

−s−1 dx.

◦ By our bounding estimate we have |Bx| ≤ ϕ(m), so the integral converges absolutely hence yields an
analytic function for all Re(s) > 0.

• As a consequence, we see that L(s, χ) has no pole at s = 1 when χ 6= χtriv. Our next major goal is to prove
that L(1, χ) 6= 0 for χ 6= χtriv.

• Lemma (Character Product): Let χ be any Dirichlet character modulo m. Then for each prime p not dividing
m, there exist a, b with ab = ϕ(m) such that

∏
χ∈Ĝ L(s, χ) =

∏
p-m(1− |p|−as)−b.

◦ Proof: For a �xed prime p - m, as we have previously noted, the evaluation-at-p map χ 7→ χ(p) is a
homomorphism from Ĝ to C×.
◦ Let the image be a cyclic group of order a and the kernel have size b: then ab = #Ĝ = #G = ϕ(m) by
the �rst isomorphism theorem.

◦ For this p, by grouping the �bers of the evaluation-at-p map together, for ζ = e2πi/p we have
∏
χ∈Ĝ(1−

χ(p)p−s)−1 =
∏p−1
j=0(1− ζjp−s)−b, and this last product equals (1− p−as)−b since it is the evaluation of

the polynomial (1− t)(1− ζt) · · · (1− ζp−1t) = 1− tp at t = p−s.

◦ Thus, taking the product over all primes p - m yields the claimed
∏
χ∈Ĝ L(s, χ) =

∏
χ∈Ĝ

∏
p-m(1 −

χ(p)p−s)−1 =
∏
p-m(1− p−as)−b after reversing the order of the products.

• We next show that L(1, χ) 6= 0 for nonreal Dirichlet characters χ:

• Lemma (Nonvanishing, I): Let χ be any Dirichlet character modulo m such that χ 6= χ. Then L(1, χ) 6= 0.

◦ Proof: If we expand the product
∏
χ∈Ĝ L(s, χ) =

∏
p-m(1 − p−as)−b from the Lemma above, it yields a

Dirichlet series with nonnegative coe�cients and constant term 1.

◦ Thus, if s is real and greater than 1 (so that the product converges), the value of the product is real and
greater than 1.

◦ If χ 6= χ, then
∏
χ∈Ĝ L(s, χ) = L(s, χtriv)L(s, χ)L(s, χ) · [other terms].

◦ Now suppose L(1, χ) = 0: then we would have L(1, χ) = 0 also. But this would mean the product∏
χ∈Ĝ L(s, χ) vanishes at s = 1, because the only term that has a pole at s = 1 is L(s, χtriv) and that

pole has order 1, but we have two zeroes at s = 1 arising from L(s, χ) and L(s, χ).

◦ But this is impossible because the value of the product is real and greater than 1 for s > 1. Thus,
L(1, χ) 6= 0.

• The case where χ = χ and χ 6= χtriv (i.e., when χ has order 2 in Ĝ) is quite a bit trickier, since we cannot get
away with such a simple order-of-vanishing argument.

• Lemma (Nonvanishing, II): Let χ be any Dirichlet character of order 2 modulo m (i.e., such that χ = χ but
χ 6= χtriv). Then L(1, χ) 6= 0.

◦ Proof: Suppose χ = χ but χ 6= χtriv, so that χ(p) ∈ {±1} for p - m, and also suppose by way of
contradiction that L(1, χ) = 0.

◦ De�ne the functionG(s) =
L(s, χtriv)L(s, χ)

L(2s, χtriv)
=
∏
p-m

(1− p−s)−1(1− χ(p)p−s)−1

(1− p−2s)−1
=
∏
p-m

1 + p−s

1− χ(p)p−s
=∏

p-m,χ(p)=1

1 + p−s

1− p−s
=
∏
p-m,χ(p)=1[1 + 2

∑∞
k=1 p

−ks], where these manipulations are valid for Re(s) > 1.

◦ By expanding this last expression forG, we can see that its Dirichlet series has all coe�cients nonnegative:
say G(s) =

∑∞
n=1 ann

−s.

◦ The two numerator functions L(s, χtriv) and L(s, χ) are both analytic for Re(s) > 0 except for the pole
of L(s, χtriv) at s = 1, but this is cancelled by the hypothesized zero of L(s, χ) at s = 1. Hence the
numerator is analytic for Re(s) > 0.
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◦ The denominator function L(2s, χtriv) is also analytic for Re(s) > 0 except for having a pole at s = 1/2,
which since it is not o�set by a pole of the numerator implies that G(s)→ 0 as s→ 1/2.

◦ Now, we would simply like to take s→ 1/2 in the product expansionG(s) =
∏
p-m,χ(p)=1[1+2

∑∞
k=1 p

−ks],

which would give an immediate contradiction since clearly G(s) ≥ 1 for positive s in this product (since
all the coe�cients are nonnegative), but we only know this expansion is valid when Re(s) > 1.

◦ So instead, we expand G(s) as a power series centered at s = 2, as G(s) =
∑∞
j=0 bj(s− 2)j , and observe

that the coe�cients bn are given by
1

j!
G(j)(2) =

1

j!

∑∞
n=1

dj

dsj
[ann

−s] =
1

j!

∑∞
n=1 an(− lnn)jn−s =

(−1)jcj for some cj ≥ 0.

◦ Hence we obtain G(s) =
∑∞
j=0(−1)jcj(s− 2)j =

∑∞
j=0 cj(2− s)j , which for real s with 1/2 < s < 2 is a

sum of nonnegative terms, so in particular G(s) ≥ c0 = b0 = 1.

◦ This means G(s) ≥ 1 for real 1/2 < s < 2, which contradicts the fact that G(s)→ 0 as s→ 1/2. This is
impossible so in fact L(1, χ) 6= 0 as claimed.

• Now that we know L(1, χ) vanishes for nontrivial characters χ, we can prove Dirichlet's theorem:

• Theorem (Dirichlet's Theorem on Primes in Arithmetic Progressions): Suppose m is a positive integer and a
is relatively prime to m. Then the Dirichlet density of the set of primes congruent to a (mod m) exists and
is 1/ϕ(m). In particular, there are in�nitely many such primes.

◦ We have already obtained all of the necessary ingredients, so the proof is mostly a matter of putting
them all together.

◦ Proof: Recall the power series − log(1− x) =
∑∞
k=1 x

k/k, valid for |x| < 1.

◦ Then for any Dirichlet character χ, we have logL(s, χ) =
∑
p− log(1−χ(p)p−s) =

∑
p

[∑∞
k=1

χ(p)k

k
|p|−ks

]
=∑

p

χ(p)

|p|s
+
∑
p

∑∞
k=2

χ(p)k

k
p−ks. The absolute value of the second term is bounded by

∑
p

∑∞
k=2

1

k
p−ks ≤∑∞

n=2 n
−2s, which is �nite as s→ 1+.

◦ Therefore, as s → 1+, we have logL(s, χ) =
∑
p χ(p)p−s + O(1). In particular, we see that

∑
p p
−s =

log(s− 1) +O(1) as s→ 1+, since L(s, χtriv) has a simple pole at s = 1.

◦ Now, by Fourier inversion (as we previously worked out) we have
∑
p≡a (mod m) p

−s =
∑
p δa(p)p−s =

1

ϕ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p χ(p)p−s

]
.

◦ So, the quotient for the Dirichlet density is

∑
p≡a (mod m) p

−s∑
p p
−s =

1

ϕ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p χ(p)p−s

]
∑
p p
−s =

1

ϕ(m)

[∑
p-m p

−s∑
p p
−s +

∑
χ 6=χtriv

χ(a)
∑
p χ(p)p−s∑

p p
−s

]
=

1

ϕ(m)

[
1−

∑
p|m p

−s

log(s− 1) +O(1)
+

∑
χ 6=χtriv

logL(s, χ) +O(1)

log(s− 1) +O(1)

]
.

◦ Now, taking the limit as s → 1+ makes the second term go to zero (since the numerator is �nite) and
the third term go to zero (since L(1, χ) 6= 0 for χ 6= χtriv), and so the value of the limit is just 1/ϕ(m),
as claimed.

• Now that we have established Dirichlet's theorem, we make some brief remarks about what improvements are
required to show that the natural density of the primes congruent to a modulo m is equal to 1/ϕ(m), not just
the Dirichlet density.

◦ To do this requires showing that L(s, χ) is zero-free on a larger region: speci�cally, we need it to be
zero-free for Re(s) = 1, rather than just at s = 1.

◦ It is hypothesized in fact that the L-function L(s, χ) is actually zero-free on a much larger region:
precisely, that all of its zeroes lie on the line Re(s) = 1/2: this is the generalized Riemann hypothesis.
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10.2 The Dedekind Zeta Function and the Analytic Class Number Formula

• We now generalize the notion of the Riemann zeta function to give the analogous zeta function for a quadratic
integer ring O√D.

◦ We also use the resulting new kind of zeta function, called the Dedekind zeta function, to give an analytic
formula for the class number.

10.2.1 The Dedekind Zeta Function

• Before beginning, we will highlight some of the salient features of the analogy between Z and O√D.

◦ First, rather than having unique factorization of elements into products of prime elements, we have
unique factorizations of ideals into products of prime ideals.

◦ Therefore, the proper analogy of �positive integers n� is �nonzero ideals I�, and the analogy of �prime
numbers p� is �prime ideals P �.

◦ Furthermore, although we did not really need to do this in Z, we also have a natural way of measuring
the size of an integer, namely via its absolute value. For ideals, we measure their size using the norm.

• Now we can de�ne the Dedekind zeta function of a quadratic integer ring:

• De�nition: If K = Q(
√
D) and R = O√D is the associated quadratic integer ring, the Dedekind zeta function

for K is the Dirichlet series ζK(s) =
∑
I⊆R

1

N(I)s
, where the sum is over all nonzero ideals in O√D.

◦ Remark: This de�nition works equally well for other �nite-degree �eld extensions K/Q, although we will
focus only on the case of quadratic integer rings here.

◦ By the uniqueness of prime factorizations of ideals in O√D we obtain an analogous Euler product ex-

pansion: ζK(s) =
∏
P prime(1−N(P )−s)−1, where the product is over all prime ideals P of O√D.

◦ Like with the Riemann zeta function, the series for ζK(s), and the Euler product, both converge absolutely
for Re(s) > 1. However, this is a bit more di�cult to prove than in the situation for the Riemann zeta
function, because there can now be several ideals of the same norm.

◦ Explicitly, as we have shown, there are at most 2 prime ideals of a given norm (if P is rami�ed or inert,
then it is the only ideal of its norm, while if P is split then its conjugate is the only other ideal of the
same norm).

◦ By exploiting the Euler product and this fairly trivial estimate on the number of ideals of a given norm
we can establish the desired convergence results:

• Proposition (Convergence of ζK(s)): If K = Q(
√
D) and R = O√D then the Dedekind zeta function

ζK(s) =
∑
I⊆RN(I)−s converges absolutely for Re(s) > 1, and also has an Euler product expansion

ζK(s) =
∏
P prime(1−N(P )−s)−1 which converges absolutely and is nonzero for Re(s) > 1.

◦ Proof: Observe �rst that
∑
P primeN(P )−s converges absolutely for Re(s), since

∑
P prime |N(P )−s| =∑

P primeN(P )−Re(s) ≤
∑
p prime 2p−Re(s) ≤

∑∞
n=1 2n−Re(s) < ∞, where the middle inequality follows

since there are at most 2 prime ideals P lying above an integer prime p and their norms are at least p.

◦ Now for a �xed X, observe that all terms in the partial sum
∑
I⊆R,N(I)≤X N(I)−s are included in the

sum
∏
P prime,N(P )≤T (1 +N(P )−s +N(P )−2s + · · · ) by unique factorization of ideals, since an ideal of

norm ≤ X is a product of prime powers of norm ≤ X.

◦ Thus taking absolute values yields
∑
I⊆R,N(I)≤X |N(I)−s| ≤

∏
P prime,N(P )≤T (1+N(P )−Re(s)+N(P )−2Re(s)+

· · · ) ≤
∏
P prime(1 + 3N(P )−Re(s)) ≤ exp[

∑
P prime 3N(P )−Re(s)] < ∞, where the last step follows from

the standard inequality
∏

(1 + xi) ≤ e
∑
xi for positive xi.

◦ Therefore, the partial sums of the Dedekind zeta function converge absolutely for Re(s) > 1. The Euler
product also converges absolutely by the triangle inequality and the inequality

∏
(1 + xi) ≤ e

∑
xi , and

is nonzero since none of the terms can be zero. Finally, the sum and Euler product agree by comparing
tails as with the Riemann zeta function.

13



• We will also remark that there is a simple relationship between the Dedekind zeta function and the Dirichlet
L-series we have previously examined:

• Proposition (Dirichlet L-Series and ζK(s)): For K = Q(
√
D) of discriminant ∆, let χ be the Jacobi symbol

modulo ∆ (considered as a Dirichlet character). Then ζK(s) = ζ(s) · L(s, χ) for Re(s) > 1.

◦ Proof: We compare Euler products for both sides.

◦ For ζ(s) =
∏
p prime(1− p−s)−1 the Euler factor at p is (1− p−s)−1.

◦ For L(s, χ) =
∏
p prime(1− χ(p)p−s)−1 the Euler factor at p is (1− χ(p)p−s)−1.

◦ Since χ(p) =


1 when p is a quadratic residue

0 when p|∆
−1 when p is a quadratic nonresidue

=


1 when p splits

0 when p rami�es

−1 when p is inert

by Dedekind-Kummer,

we see that the product of the Euler factors is (1−p−s)−2 when p splits, it is (1−p−s)−1 when p rami�es,
and it is (1− p−s)−1(1 + p−s)−1 = (1− p−2s)−1 when p is inert.

◦ For ζK(s) =
∏
P prime(1−N(P )−s)−1 =

∏
p prime

∏
P |p(1−N(P )−s)−1, the Euler factor at p is

∏
P |p(1−

N(P )−s)−1.

◦ This factor is (1− p−s)−2 when p splits (two factors with N(P ) = p), it is (1− p−s)−1 when p rami�es
(one factor with N(P ) = p), and it is (1− p−2s)−1 when p is inert (one factor with N(P ) = p2).

◦ In all three cases we see that the Euler factors are the same for the two expressions, so since the products
all converge absolutely, we may rearrange them to conclude they are equal.

10.2.2 The Analytic Class Number Formula

• Our goal now is to show that ζK(s) has a pole at s = 1 and to calculate its residue there.

◦ The �rst portion of the argument is to exploit the class group structure to decompose the sum ζK(s) =∑
I⊆R

1

N(I)s
into separate pieces for each ideal class C in the class group G.

• Proposition (Decomposition of ζK(s) Over Ideal Classes): Let K = Q(
√
D) and R = O√D, with Dedekind

zeta function ζK(s) =
∑
I⊆RN(I)−s and ideal class group G. Then we have the following:

1. We have ζK(s) =
∑
C∈G

∑
I∈C N(I)−s where the outer sum is over ideal classes C and the inner sum is

over all ideals I in the class C.
◦ Proof: Since ζK(s) is the sum over all nonzero ideals I in R and each ideal I lies in a unique ideal
class C, grouping the ideals together by ideal class yields the claimed formula.

2. For a �xed ideal class C choose any ideal JC ∈ C−1 and let S be any set of nonzero elements α ∈ JC
containing exactly one element from each associate class (i.e., representatives for JC\{0} up to associates).
Then

∑
I∈C N(I)−s = N(Jc)

s
∑
α∈S |N(α)|−s.

◦ Proof: By de�nition, for any I ∈ C the ideal product JCI represents the trivial class, hence is some
principal ideal (α). Furthermore, we see that the correspondence I 7→ (α) is a bijection between
ideals J ∈ C and nonzero principal ideals (α) is divisible by JC : equivalently, such that α ∈ JC .
◦ Taking norms yields N(JCI) = N((α)) = |N(α)| whence N(I) = N(JC)−1 |N(α)|.
◦ Thus

∑
I∈C N(I)−s = N(Jc)

s
∑
JC |(α) |N(α)|−s, where the sum is over all principal ideals (α) con-

taining JC . By selecting a generator α ∈ JC of (α), which is unique up to associates, we see that∑
JC |(α) |N(α)|−s =

∑
α∈S |N(α)|−s as claimed.

3. Suppose D < 0 and let π : O√D → R2 be the Minkowski embedding π(α) = (Reα, Imα). If O√D has
ω(K) units, then each nonzero element π(α) ∈ π(O√D) has a unique associate in the fundamental region
X given by the set of points (r, θ) in polar coordinates with r > 0 and 0 ≤ θ < 2π/ω(K).

◦ Note that the group of roots of unity in K is �nite: they are the 6 sixth roots of unity in O√−3, the
4 fourth roots of unity in O√−1, and the 2 square roots of unity ±1 in all other cases.
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◦ Proof: Since the only units in K are the ω(K) roots of unity, which act by rotation in increments
of 2π/ω(K) radians, the fundamental domain is simply the quotient of C× by this group, which is
precisely the claimed region X.

4. Suppose D > 0 and let π : O√D → R2 be the Minkowski embedding π(α) = (α, α). If O√D has
fundamental unit ε > 1, then each nonzero element π(α) ∈ π(O√D) has a unique associate in the
fundamental region X given by the set of points (x, y) in rectangular coordinates with x > 0 and with
ε−2 |x| < |y| ≤ |x|.
◦ Proof: Since ε > 1 is the fundamental unit of O√D, the group of units is ±εn for integers n, per our
study of Pell's equation. Then π(ε) = (ε, ε) = (ε,±1/ε) and π(−1) = (−1,−1).

◦ Therefore, given any nonzero element (x, y) ∈ π(JC), we may rescale its �rst coordinate to be
positive, which fully accounts for the unit factor ±1. Then scaling α by εn rescales |y| / |x| by ε−2n,
hence we may rescale by a unique power of ε to ensure that 1 ≤ |y| / |x| < ε−2, which fully accounts
for the unit factor εn. Thus each element has a unique associate in the region X described above,
as claimed.

• We can see that both of the fundamental regions X over whose lattice points we seek to sum in (3) and (4)
of the proposition above are cones: sets such that x ∈ X implies λx ∈ X for any λ > 0.

◦ Explicitly, suppose that f is a homogeneous function on X of degree 2: a function such that f(λx) =
λ2f(x) for all x ∈ X and all λ > 0. (Note that the norm function satis�es this condition in both the real
and imaginary cases.)

◦ Also suppose Λ is a lattice in R2 whose fundamental parallelogram has area ∆.

◦ Then the zeta functions in the proposition above are both of the form ζΛ,F (s) =
∑
x∈Λ∩X

1

f(x)s
. We

now seek to give a general result for calculating the residue at s = 1 for zeta functions of this type.

◦ Roughly speaking, the idea is to use the homogeneity of f to rescale the sum and then compare it to the
Riemann zeta function.

• Theorem (Zeta Functions on Cones): Suppose X is a cone in R2, F is a homogeneous function on X of degree
2, T = {(x, y) ∈ X : f(x, y) ≤ 1} is bounded and has area A, and Λ is a lattice in R2 whose fundamental
parallelogram P has area ∆. Then the following hold:

1. We have lims→∞
#{x ∈ Λ : f(x) ≤ s2}

s2
=
A

∆
.

◦ Proof: For any set S and any positive real scalar s > 0 let sS be the set obtained by scaling all
elements of S by s.

◦ Then sΛ is a lattice with fundamental parallelogram sP of area s2∆, sX is merely X itself, and
sT = {sx : x ∈ X, f(x) ≤ 1} = {x ∈ X : f(x) ≤ s2} by the homogeneity of f and sX = X.

◦ Then Λ ∩ sT = {(x, y) ∈ Λ : f(x) ≤ s2}, so we wish to calculate lims→∞#(Λ ∩ sT )/s2.

◦ Consider Λ ∩ sR and imagine �lling in a copy of P with center at each point of Λ ∩ sT : the area of
these tiled copies of P di�ers from the area of sT by at most the perimeter of sT times the area of
P .

◦ Since the area of all these copies of P is #(Λ∩ sT ) ·Area(P ), the area of sT is s2 times the area of T
while the perimeter of sT is s times the perimeter of T , we see that

∣∣#(Λ ∩ sT ) ·Area(P )− s2Area(T )
∣∣ ≤

s ·Perimeter(T ) ·Area(P ), so dividing yields

∣∣∣∣#(Λ ∩ sT )

s2
− Area(T )

Area(P )

∣∣∣∣ ≤ 1

s
Perimeter(T ) which tends

to 0 as s→∞.

◦ Hence we see that lims→∞
#(Λ ∩ sT )

s2
=

Area(T )

Area(P )
=
A

∆
, as desired.

2. If we label the countably many points {x1, x2, x3, . . . } of Λ ∩ X in increasing order of their associated

value of f , so that 0 < f(x1) ≤ f(x2) ≤ f(x3) ≤ · · · , then we have limn→∞
n

f(xn)
=
A

∆
.

◦ Proof: Note as in (1) that
√
f(xn)T = {x ∈ X : f(x) ≤ f(xn)}.
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◦ Then each of x1, x2, . . . , xn lie in
√
f(xn)T , but xn does not lie in (

√
f(xn) − ε)T for any ε > 0.

Therefore, we have #[(
√
f(xn)− ε)T ] ≤ n ≤ #[

√
f(xn)T ].

◦ Thus
#[(
√
f(xn)− ε)T ]

(
√
f(xn)− ε)2

·

[√
f(xn)− ε√
f(xn)

]2

≤ n

f(xn)
≤

#[
√
f(xn)T ]

f(xn)
. As k → ∞ we also have

f(xn)→∞ since there are only �nitely many xn with f(nk) ≤ B for any B.

◦ Thus by (1) the lower bound has limit
A

∆
· 12 while the upper bound also has limit

A

∆
, and so we

conclude that limn→∞
n

f(xn)
=
A

∆
, as desired.

3. The series
∑
x∈Λ∩X f(x)−s converges absolutely for Re(s) > 1 with a simple pole at s = 1 of residue

A/∆.

◦ The idea here is to compare ζΛ,f to the Riemann zeta function and use our earlier calculation of its
pole and residue at s = 1.

◦ Proof: Let ε > 0. By (2) we know that there exists N such that for all n ≥ N we have

∣∣∣∣ n

f(xn)
− A

∆

∣∣∣∣ <
ε, meaning that

[
A

∆
− ε
]

1

n
<

1

f(xn)
<

[
A

∆
+ ε

]
1

n
.

◦ Raising to the sth power and taking absolute values shows
∑∞
n=N

1

|f(xn)|s
≤
[
A

∆
+ ε

]Re(s)

ζ(Re(s))

which converges absolutely for Re(s) > 1.

◦ For the pole and residue, multiplying by s− 1 for real s > 1 then yields[
A

∆
− ε
]s

(s− 1)
∑∞
n=N

1

ns
< (s− 1)

∑∞
n=N

1

f(xn)s
<

[
A

∆
+ ε

]s
(s− 1)

∑∞
n=N

1

ns
.

◦ Now we make the trivial observations that lims→1(s−1)
∑N−1
n=1

1

ns
= 0 = lims→1+(s−1)

∑N−1
n=1

1

f(xn)s

since both sums are �nite.

◦ Thus

[
A

∆
− ε
]s

(s − 1)
∑∞
n=1

1

ns
− δs < (s − 1)

∑∞
n=1

1

f(xn)s
<

[
A

∆
+ ε

]s
(s − 1)

∑∞
n=1

1

ns
+ δs for

some δs → 0 as s→ 1+.

◦ Hence when we take s→ 1+, the lower bound approaches
A

∆
− ε while the upper bound approaches

A

∆
+ ε. So

A

∆
− ε ≤ lim infs→1+(s− 1)

∑∞
n=1

1

f(xn)s
≤ lim sups→1+(s− 1)

∑∞
n=1

1

f(xn)s
≤ A

∆
+ ε.

◦ Finally, taking ε → 0 shows that in fact the liminf and limsup must equal
A

∆
, and hence the limit

exists and we have lims→1+(s− 1)
∑∞
n=1

1

f(xn)s
=
A

∆
, as desired.

• Now we assemble these various pieces to compute the residue of the Dedekind zeta function at s = 1, which
gives an analytic expression for the class number:

• Theorem (Analytic Class Number Formula): Let K = Q(
√
D) and R = O√D, with Dedekind zeta function

ζK(s) =
∑
I⊆RN(I)−s, discriminant ∆, and ideal class group G and class number h(K).

1. If D < 0 then ζK(s) has a simple pole at s = 1 with residue equal to
2πh(K)

ω(K)
√
|∆|

where ω(K) is the

number of roots of unity in K.

◦ Proof: By our proposition on decomposing the Dirichlet series, we have ζK(s) =
∑
C∈G

∑
I∈C N(I)−s

where
∑
I∈C N(I)−s = N(Jc)

s
∑
α∈π(Jc)∩X |N(α)|−s and X is the fundamental region given by the

set of points (r, θ) in polar coordinates such that r > 0 and 0 ≤ θ < 2π/ω(K).

◦ Now, sinceX is a cone, and π(Jc) is a lattice Λ whose fundamental parallelogram has area
√
|∆|N(JC),

applying our theorem about zeta functions on cones yields that
∑
α∈π(Jc)∩X |N(α)|−s has a simple

pole at s = 1 with residue A/∆, where A is the area of the region T with N(x+ iy) ≤ 1 inside X.
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◦ Since the Minkowski map has π(α) = (Reα, Imα), the norm map is N(α) = αα = [Reα]2 + [Imα]2

which on coordinates is N(x, y) = x2 + y2.

◦ Therefore, the set T = {(x, y) ∈ X : N(x, y) ≤ 1} is just a circular sector of radius 1 and angle
2π

ω(K)
, hence has area A =

2π

ω(K)
. Therefore the pole residue at s = 1 of

∑
α∈π(Jc)∩X |N(α)|−s is

A

∆
=

2π

ω(K)
√
|∆|N(JC)

, hence the pole residue of N(Jc)
s
∑
α∈π(Jc)∩X |N(α)|−s is 2π

ω(K)
√
|∆|

.

◦ Finally, summing over all terms shows that
∑
C∈G

∑
I∈C N(I)−s has a simple pole at s = 1 and

its residue is the sum of the residues for each term. Since there are h(K) terms each with residue
2π

ω(K)
√
|∆|

, the sum is
2πh(K)

ω(K)
√
|∆|

as claimed.

2. If D > 0 then ζK(s) has a simple pole at s = 1 with residue equal to
2h(K) ln ε√

∆
where ε > 1 is the

fundamental unit of K.

◦ Proof: The argument is the same as in (1), except now X is the fundamental region given by the set
of points (x, y) in rectangular coordinates with x > 0 and with ε−2 |x| < |y| ≤ |x|.
◦ Since the Minkowski map has π(α) = (α, α) and the norm map is N(α) = αα, the norm map on
coordinates is N(x, y) = xy.

◦ Therefore, the set T = {(x, y) ∈ X : N(x, y) ≤ 1} is the region de�ned by ε−2 |x| < |y| ≤ |x| and
xy ≤ 1.

◦ This region consists of two pieces symmetric across the x-axis, with the piece above the axis bounded
by the lines y = x, y = ε−2x and the curve N(xy) = xy = 1.

◦ The area of each piece is therefore
´ 1

0
(x − ε−2x) dx +

´ ε
1

(x−1 − ε−2x) dx = ln ε, so the area of the
fundamental region is 2 ln ε.

◦ Just as in (1), since the area of the fundamental parallelogram is
√

∆N(JC), so the pole residue

of the pole residue of N(Jc)
s
∑
α∈π(Jc)∩X

1

|N(α)|s
is

2 ln ε√
∆

. Each of the h(K) terms has the same

residue, so the residue for the sum is
2h(K) ln ε√

∆
as claimed.

• As an immediate corollary, because we have the decomposition ζK(s) = ζ(s)L(s, χ) for the Jacobi symbol χ
modulo D, equating the residues at s = 1 yields the following:

• Corollary (Class Numbers and L-Series): Let K = Q(
√
D) and χ be the Jacobi symbol modulo ∆. Then for

D < 0 we have L(1, χ) =
2πh(K)

ω(K)
√
|∆|

and for D > 0 we have L(1, χ) =
2h(K) ln ε√

∆
.

◦ We will remark here that this calculation provides an alternate proof that L(1, χ) 6= 0 for this quadratic
character χ, since all of the terms in the expression are obviously nonzero (in fact, this was Dirichlet's
original argument for the nonvanishing of these L-series).

◦ Proof: Since ζK(s) and ζ(s)L(s, χ) both have simple poles at s = 1, the limit L(1, χ) = lims→1+ L(s, χ) =

lims→1+
ζK(s)

ζ(s)
= lims→1+

(s− 1)ζK(s)

(s− 1)ζ(s)
is just the ratio of their residues. Since the zeta function has

residue 1, we obtain the claimed formulas immediately.

• Example: Verify the class number formula for D = −1.

◦ For the quadratic character modulo 4, we have L(1, χ) =
∑∞
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
− · · · = π

4
since

this is Leibniz's formula.

◦ Here we also have ω = 4, ∆ = −4, and h = 1, so
2πh

ω ·
√
|∆|

=
π

4
, which agrees.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2021-2022. You may not reproduce or distribute this
material without my express permission.
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