
E. Dummit's Math 4527 ∼ Number Theory 2, Fall 2022 ∼ Homework 8, due Sun Nov 6th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Calculate:

(a) Calculate the cubic residue symbols

[
4 +
√
−3

11

]
3

,

[
2
√
−3

4 +
√
−3

]
3

, and

[
2 +
√
−3

7 + 2
√
−3

]
3

. Which elements are

cubic residues and which are not?

(b) Find the primary associates of the primes 2 +
√
−3 and 7 + 2

√
−3 in O√−3, and then verify cubic

reciprocity for these associates.

(c) Calculate the quartic residue symbols

[
5 + i

7

]
4

,

[
2i

6 + i

]
4

, and

[
−2 + i

7− 2i

]
4

. Which elements are quartic

residues? Which elements are quadratic residues?

(d) Find the primary associates of the primes 11 and 7 + 2i in Z[i], and then verify quartic reciprocity for
these associates.

2. Find all solutions (x, y, z) to the Diophantine equation x2 + y2 = z7 where x and y are relatively prime.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

3. Recall that you proved on homework 9 that Z[
√
2] is a Euclidean domain, hence also a PID and a UFD. Recall

also that the Legendre symbol
(

2
p

)
= (−1)(p2−1)/8.

(a) Show that every nonzero element in Z[
√
2] is associate to one having positive norm.

(b) Prove that the prime elements in Z[
√
2], up to associates, are as follows:

i. The element 2 +
√
2, of norm 2.

ii. The primes p congruent to 3 or 5 modulo 8, of norm p2.

iii. The two conjugate factors a+ b
√
2 and a− b

√
2 where p = a2 − 2b2 is a prime congruent to 1 or 7

modulo 8, of norm p.

(c) Find the irreducible factorizations of 10 +
√
2 and of 345 + 15

√
2 in Z[

√
2].

(d) Let n be a positive integer, and write n = 2kpn1
1 · · · p

nk

k qm1
1 · · · qmd

d , where p1, · · · , pk are distinct primes
congruent to 1 or 7 modulo 8 and q1, · · · , qd are distinct primes congruent to 3 or 5 modulo 8. Prove
that n can be written in the form a2− 2b2 for some integers a and b if and only if all of the mi are even.

4. The goal of this problem is to explore some results about integers of the form x2 +Dy2.

(a) Prove that if an integer n can be written in the form x2 + y2 for rational numbers x, y then it can be
written in that form for integers x, y. (For example, 5 = (22/13)2 + (19/13)2 = 22 + 12.)

(b) Prove that the result of part (a) also holds for integers that are of the form x2 + 2y2 or of the form
x2 + 3y2.

(c) Give a counterexample to the result of part (a) for integers that are of the form x2 + 14y2.
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5. Prove that the only solution to the Diophantine equation y2 = x3 − 8 is (x, y) = (2, 0). [Hint: There are two
di�erent cases according to whether y is even or odd.]

6. If R is a (commutative) ring with 1, the characteristic of R is de�ned to be the smallest positive integer n for
which 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n terms

= 0, or 0 if there is no such positive integer n.

(a) Find the characteristics of Z, R, Z/mZ, Z[i]/(7), Z[i]/(2 + i), and (Z/4Z)× (Z/6Z). [Note that (1, 1) is
the multiplicative identity in the last ring.]

(b) If R is an integral domain, prove that its characteristic is always either 0 or a prime number.

(c) Let R be a commutative ring of prime characteristic p. Prove that for any a, b ∈ R, the �freshman's
binomial theorem� (a + b)p = ap + bp is actually correct. Deduce that the map ϕ : R → R given by
ϕ(a) = ap is actually a ring homomorphism (this map is called the Frobenius endomorphism and turns
out to be quite important in many contexts).

(d) Let p be an integer prime congruent to 3 modulo 4. If z = a + bi ∈ Z[i], prove that zp ≡ z (mod p).
[Note that this was mentioned but not proven in class.]

7. [Challenge] In class, we proved cubic and quartic reciprocity using properties of Gauss sums. The goal of this
problem is to give a self-contained proof of quadratic reciprocity using Gauss sums. So let p, q be distinct

odd integer primes and let χp(a) =

(
a

p

)
be the Legendre symbol modulo p. Recall that the Gauss sum of a

multiplicative character χ is de�ned to be ga(χ) =
∑p−1
t=1 χ(t)e

2πiat/p ∈ C.

(a) Show that ga(χp) =

(
a

p

)
g1(χp) for any integer a. [Hint: If p|a, count the number of quadratic residues.

For other a, reindex the sum.]

(b) Let S =
∑p−1
a=0 ga(χp)g−a(χp). Show that S =

(
−1
p

)
(p − 1)g1(χ)

2. [Hint: Use (a), making sure to

separate a = 0 and a 6= 0.]

(c) Show that
∑p−1
a=0 e

2πia(s−t)/p =

{
p if s ≡ t (mod p)

0 if s 6≡ t (mod p)
for any integers s and t.

(d) Show that the sum S from part (b) is equal to p(p−1). [Hint: Write S =
∑p−1
a=0

∑p−1
s=1

∑p−1
t=1

(
st

p

)
e2πia(s−t)/p,

then change summation order to sum over a �rst, move the Legendre symbol out, and use (c).]

(e) Let p∗ =

(
−1
p

)
p. Show that the Gauss sum g1(χp) has g1(χp)

2 = p∗. Deduce that g1(χp) is an element

of the quadratic integer ring O√p∗ .
Now let p and q be distinct odd primes and let g = g1(χp) ∈ O√p∗ be the quadratic Gauss sum.

(f) Show that gq−1 ≡
(
p∗

q

)
(mod q). [Hint: Use (e).]

(g) Show that gq ≡ gq(χp) ≡
(
q

p

)
g (mod q). [Hint: Use 6(c) and (a).]

(h) Conclude that

(
q

p

)
g ≡

(
p∗

q

)
g (mod q), and deduce that

(
q

p

)
=

(
p∗

q

)
.

(i) Deduce the law of quadratic reciprocity:

(
q

p

)
=

(
p

q

)
(−1)(p−1)(q−1)/4.
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