
E. Dummit's Math 4527 ∼ Number Theory 2, Fall 2022 ∼ Homework 11, due Fri Dec 9th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Calculate the number of Dirichlet characters (a) modulo 5, and (b) modulo 8, and compute their values
explicitly.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

2. The goal of this problem is to evaluate some Dirichlet L-series at 1.

(a) Let χ4 be the nontrivial Dirichlet character mod 4. Show L(1, χ4) =

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · ·.

(b) Let F (x) =

∞∑
n=0

(−1)nx2n+1

2n+ 1
for |x| < 1. Show that F ′(x) =

∞∑
n=0

(−1)nx2n =
1

1 + x2
and deduce that

L(1, χ4) = F (1) =
´ 1

0

1

1 + x2
dx = π/4. [Hint: Since the series for F converges absolutely, it can be

di�erentiated term by term.]

(c) Let χ3 be the nontrivial Dirichlet character modulo 3. Show that L(1, χ3) =

∞∑
n=0

1

(3n+ 1)(3n+ 2)
.

(d) Let G(x) =

∞∑
n=0

x3n+2

(3n+ 1)(3n+ 2)
for |x| < 1. Show that G(1) =

ˆ 1

0

ˆ y

0

1

1− x3
dx dy and use this to

compute the value of L(1, χ3). [Hint: Note that G′′(x) = (1− x3)−1 for |x| < 1.]

3. The Carmichael Λ-function Λ(n) is de�ned to be ln(p) if n = pd is a prime power and 0 otherwise. It is
frequently used in proofs of the prime number theorem.

(a) Show that
∑
d|n Λ(d) = lnn.

(b) Show that the Dirichlet series for Λ is DΛ(s) = −ζ ′(s)/ζ(s) for Re(s) > 1.

(c) Show that DΛ(s) =
∑
p prime

ln p

ps − 1
for Re(s) > 1. [Hint: Use (b) and logarithmic di�erentiation.]

4. The goal of this problem is to show that the set of primes whose leading digit is 1 in base 10 has unde�ned
natural density using the following weak form of the prime number theorem: for su�ciently large n, the

number of primes π(n) less than n is between 0.99
x

lnx
and 1.01

x

lnx
.

(a) Show that for su�ciently large k, there are at most
1.01

k ln 10
10k primes below 10k and at least

1.97

k ln 10
10k

primes below 2 · 10k.

(b) Show that for su�ciently large k, a proportion at least 0.96/2.02 of primes below 2 · 10k have leading
digit 1.

(c) Show that for su�ciently large k, a proportion at most 2.02/9.9 of primes below 10 · 10k have leading
digit 1.

(d) Deduce that the natural density of the set of primes of leading digit 1 is unde�ned.
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5. LetG be a �nite abelian group with dual group Ĝ, and recall the inner products 〈f1, f2〉G =
1

|G|
∑
g∈G f1(g)f2(g)

on functions f : G→ C and
〈
f̂1, f̂2

〉
Ĝ

=
1

|G|
∑
χ∈Ĝ f̂1(χ)f̂2(χ) on functions f̂ : Ĝ→ C. Also recall the Fourier

transform of a function f : G→ C is the function f̂ : Ĝ→ C with f̂(χ) = 〈f, χ〉G =
1

|G|
∑
g∈G f(g)χ(g), and

the Fourier inversion formula f(g) =
∑
χ∈Ĝ f̂(χ)χ(g) for each g ∈ G.

(a) Prove Plancherel's theorem:
1

|G|
〈f1, f2〉G =

〈
f̂1, f̂2

〉
Ĝ
for any functions f1, f2 : G → C. [Hint: Write

f̂1(χ) as a sum over g ∈ G and f̂2(χ) as a sum over h ∈ G, then use the fact that
∑
χ∈Ĝ χ(g)χ(h) is

either |G| or 0 according to whether g = h or not.]

(b) Deduce Parseval's theorem:
1

|G|
∑
g∈G |f(g)|2 =

∑
χ∈Ĝ

∣∣∣f̂(χ)
∣∣∣2.

6. The goal of this problem is to give another estimate for the absolute value of the Dedekind zeta function. Let
R = O√D be a quadratic integer ring with associated Dedekind zeta function ζK(s) =

∑
I⊆RN(I)−s, and let

f(n) be the number of ideals of R of norm n.

(a) Show that ζK(s) is the Dirichlet series Df (s) for f(n).

(b) Show that f(n) ≤ d(n) where d is the divisor-counting function. [Hint: f(n) is multiplicative.]

(c) Show that |ζK(s)| ≤ ζ(Re(s))2.

7. [Challenge] Let p be a prime and let χ be the Legendre symbol modulo p. The goal of this problem is
to evaluate L(1, χ) explicitly and then to prove a formula for the class number in terms of the number of
quadratic residues and nonresidues on the interval [1, (p − 1)/2] when p ≡ 3 (mod 4). Recall the Gauss sum

g(χ) =
∑p−1
n=1 χ(n)ζn where ζ = e2πi/p, and the general Gauss sum gk(χ) =

∑p−1
n=1 χ(n)ζkn.

(a) Show that − log(1− ζn) =
∑∞
k=1

ζnk

k
. (Note that this series only converges conditionally.)

(b) Let S =
∑p−1
n=1 χ(n) · [− log(1 − ζn)]. Prove that S = g(χ)L(1, χ). [Hint: Use (a), switch summation

order, and use the Gauss sum identity gk(χ) = χ(k)−1g(χ).]

(c) De�ne P =

∏
n∈NR(1− ζn)∏
n∈QR(1− ζn)

where NR is the set of quadratic nonresidues modulo p and QR is the set

of quadratic residues modulo p. Show that P = exp(g(χ)L(1, χ)).

(d) Find the value of L(1, χ) for the Legendre symbol modulo 3. [Hint: The result of (c) is easier to calculate
with, unless you like complex logarithms.]

(e) Show that if p ≡ 3 (mod 4), so that χ(−1) = −1, then S = − iπ
p

∑p−1
n=1 χ(n) · n where S is as de�ned in

(b). [Hint: In (b), interchange n with −n and add the two sums together.]

(f) Show that when p ≡ 3 (mod 4) and p > 3 we have h(−p) = −1

p

∑p−1
n=1 χ(n) · n. [Hint: Use the Gauss

sum evaluation g(χ) = i
√
p and the analytic class number formula.]

(g) Show that when p ≡ 3 (mod 4) and p > 3 we have h(−p) =
1

2− χ(2)

∑(p−1)/2
n=1 χ(n). [Hint: Decompose∑p−1

n=1 χ(n) ·n into two ranges in two di�erent ways: one into even and odd, and another into [1, (p−1)/2]
and p− [1, (p− 1)/2].]

(h) Deduce that when p ≡ 3 (mod 4), the class number of O√−p is equal to
1

2− χ(2)
times the number of

quadratic residues in [1, (p − 1)/2] minus the number of quadratic nonresidues on that interval, so in
particular there are always more quadratic residues than quadratic nonresidues. Also deduce in particular
that this class number is always odd.

(i) Find the class numbers of O√−7, O√−11, O√−19, and O√−31. [If you're still here at this point, for
convenience χ(2) = 1 when p ≡ 7 (mod 8) and χ(2) = −1 when p ≡ 3 (mod 8).]
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