1. (a) No, $gcd(10, 25) = 5 > 1$. (b) Yes, $gcd(11, 25) = 1$. By Euclid $-9 \cdot 11 + 4 \cdot 25 = 1$ so $-9 \cdot 11 \equiv 1 \pmod{25}$ so $11^{-1} \equiv -9$. (c) Yes, $gcd(12, 25) = 1$. By Euclid $-2 \cdot 12 + 1 \cdot 25 = 1$ so $-2 \cdot 12 \equiv 1 \pmod{25}$ so $12^{-1} \equiv -2$. (d) No, $gcd(30, 42) = 6 > 1$. (e) Yes, $gcd(31, 42) = 1$. By Euclid $19 \cdot 31 - 14 \cdot 42 = 1$ so $19 \cdot 31 = 1$ (mod 42) so $31^{-1} \equiv 19$. (f) No, $gcd(32, 42) = 2 > 1$.

- 3. (a) f is one-to-one, onto, and a bijection since it has an inverse $f^{-1}(x) = x/2$.
	- (b) f is one-to-one but not onto since $\text{im}(f)$ is only the even integers.
	- (c) f is one-to-one but not onto since its image misses 1.
	- (d) f is one-to-one, onto, and a bijection since it has an inverse $f^{-1}(x) = x^{1/3}$.
	- (e) f is one-to-one, onto, and a bijection since its inverse is also a function.
	- (f) f is not one-to-one since $f(2) = f(4)$ and f is not onto since im(f) misses 2.
- 4. $R = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4), (3, 3), (3, 5), (5, 3), (5, 5), (6, 6)\}.$
- 5. R is reflexive since $|x| = |x|$, R is symmetric since $|x| = |y|$ implies $|y| = |x|$, and R is transitive since $|x| = |y|$ and $|y| = |z|$ imply $|x| = |z|$. Also, $[0] = \{0\}$, $[1] = \{1, -1\}$, $[2] = [-2] = \{2, -2\}$, $[4] = \{4, -4\}$.
- 6. For the divisibility ordering there are no minimal or smallest elements, but 6 is largest and maximal. For the other ordering, −2 and −1 are minimal but neither is smallest, while 6 is largest and maximal.

7. (a) The function $f^{\dagger}: A \to \text{im}(f)$ is one-to-one and onto hence a bijection. Then $\#A = \# \text{im}(f)$ by the definition of cardinality. (b) If f is one-to-one then by (a), $\#A = \#im(f)$. Since $\#A = \#B$ and A and B are finite, this means $\text{im}(f) = B$ so f is onto. (c) Many examples, such as $f(x) = e^x$ or $f(x) = \arctan(x)$.

8. (a) There are finitely many nonzero polynomials of degree at most n whose coefficients are integers and at most n in absolute value (in fact there are n^{n+1} of them). Each of these polynomials has at most n roots, so the total number of roots is finite. Second statement follows by observing that if α is a root of a poly of degree k whose max coeff is M, then $\alpha \in S_{\max(k,M)}$.

(b) By (a), the set of algebraic numbers is a union of countably many finite sets, so it is countable. Since $\mathbb R$ is uncountable, this means that the transcendental numbers are uncountable since otherwise R would be the union of two countable sets hence countable.

- 9. Here are brief outlines of each proof:
	- (a) If n is the sum of $k, k + 1, k + 2, k + 3, k + 4, k + 5$ then $n = 6k + 15 \equiv 3 \pmod{6}$. Conversely if $n \equiv 3$ mod 6 so that $n = 3 + 6a$, then n is the sum of $a - 2, a - 1, a, a + 1, a + 2, a + 3$.
	- (b) If R is reflexive and a function, then $R(a) = a$ for all $a \in A$, so the only possibility is to have $R(a) = a$ for all $a \in A$. But clearly the identity function is also an equivalence relation, so it is the only one that works.
	- (c) Note that $5^n + 6^n \equiv 5^n + (-5)^n \equiv 5^n(1 + (-1)^n)$ (mod 11). If n is odd then $1 + (-1)^n = 0$ while if n is even then $1 + (-1)^n = 2$, so since $5^n \neq 0 \pmod{11}$, we see $5^n + 6^n \equiv 0$ if and only if n is odd.
	- (d) Note that B is a subset of $A \cup (B \setminus A)$. If A and $B \setminus A$ are countable then their union is also countable, hence any subset is countable. If B is uncountable then this is a contradiction, so B is uncountable.
	- (e) If $D \subseteq A$ and $D \subseteq B$ then any $x \in D$ has $x \in A$ and $x \in B$ hence $x \in A \cap B$, so $D \subseteq A \cap B$. But $A \cap B$ is indeed a subset of both A and B, so since it lies above all other such subsets D , it is the largest such set.
	- (f) As proven in class, the Cartesian product of two countable sets is countable, so $\mathbb{Q} \times \mathbb{Z}$ is countable. Also, $\mathbb{R} \times \mathbb{Z}$ contains $\mathbb{R} \times \{1\}$ which is in bijection with \mathbb{R} , so it is uncountable.
	- (g) Modulo 6 we have $7^n + 5 \equiv 1^n + 5 \equiv 1 + 5 \equiv 0 \pmod{6}$, which means $7^n + 5$ is divisible by 6. (Induction also works but the mod-6 argument is much easier.)
	- (h) R is reflexive since $f(a) = f(a)$ for all $a \in A$. R is symmetric since $f(a) = f(b)$ implies $f(b) = f(a)$. R is transitive since $f(a) = f(b)$ and $f(b) = f(c)$ imply $f(a) = f(c)$.
	- (i) Let $x \in A$. Then by hypothesis $(f \circ g)(x) = (f \circ h)(x)$ which means $f(g(x)) = f(h(x))$. But f is one-to-one, so this implies $g(x) = h(x)$. Since g and h agree on all elements in A, that means $g = h$.
	- (j) Note $n 1 \equiv -1 \pmod{n}$ so $(n 1)^{-1} \equiv (-1)^{-1} \equiv -1 \equiv n 1 \pmod{n}$.
	- (k) Both sets are countably innite. Hence they are both in bijection with the positive integers, and therefore also with each other.
	- (1) From homework 8, $S \subseteq f^{-1}(f(S))$. For the reverse, suppose $a \in f^{-1}(f(S))$, so that $f(a) \in f(S)$. Since f is one-to-one, $f(a) = f(b)$ implies $a = b$, so $f(a) \in f(S)$ implies $a \in S$.
	- (m) From homework 8, $f(f^{-1}(T)) \subseteq T$. For the reverse, suppose $b \in T$. Since f is onto, there exists $a \in A$ with $f(a) = b$, so $a \in f^{-1}(T)$. Hence $b \in f(f^{-1}(T))$.
	- (n) Note f has an inverse g. Then in fact f has an inverse $\tilde{g} : \mathcal{P}(B) \to \mathcal{P}(A)$ with $\tilde{g}(T) = \{g(t) : t \in T\}$. Explicitly, for $S \subseteq A$, $\tilde{g}(\tilde{f}(S)) = \tilde{g}(\{f(s) : s \in S\} = \{g(f(s)) : s \in S\} = \{s : s \in S\} = S$ and $\tilde{f}(\tilde{g}(T)) = \tilde{f}(\{g(t) : t \in T\}) = \{f(g(t)) : t \in T\} = \{t : t \in T\} = T.$
	- (o) Note $(a, b) \in R^{-1} \cap S^{-1}$ iff $(a, b) \in R^{-1}$ and $(a, b) \in S^{-1}$ iff $(b, a) \in R$ and $(b, a) \in S$ iff $(b, a) \in R \cap S$ iff $(a, b) \in (R \cap S)^{-1}.$
	- (p) Since $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ we see $b+c \equiv a+d \pmod{n}$. Then $a(b+c) \equiv b(b+c) \equiv b(a+d)$ $(mod n)$ so $a(b+c) \equiv b(a+d) \pmod{n}$.