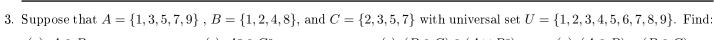
1.	. Suppose the logical operator $*$ is defined so that $P*Q = \neg P \land Q$. Using a truth table or otherwise, determine whether the following pairs of statements are logically equivalent for arbitrary propositions P , Q , and R :				
	(a) $P * (P * P)$ and (b) $(P \Rightarrow Q) \Rightarrow (P)$		(c) $P * Q$ and $\neg (Q \Rightarrow P)$. (d) $(Q * Q) * P$ and $P \wedge Q$.	() (•)	R and $P*(Q*R)$. R and $(R*\neg Q)*(R*P)$.
2. Suppose that $A = \{1, 2, \{1\}, \{2\}, \{1, 3\}\}$ and $B = \{1, \{1, 2\}, \{1, 3\}, \{2\}\}$. Find the truth value of each statement					
	(a) $1 \in A$.	(c) $\{1\} \in B$.	(e) $\{1\} \in A \cap B$.	(g) $\{1,2\} \in A \cup B$.	(i) $\{1,3\} \in A \cap B$.
	(b) $1 \subseteq A$.	(d) $\{1\} \subseteq B$.	(f) $\{1\} \subseteq A \cap B$.	(h) $\{1,2\} \subseteq A \cup B$.	(j) $\{1,3\} \subseteq A \cap B$.



4. Write a negation for each of the following statements:

(a)
$$\forall x \forall y \exists z, \ x + y + z > 5$$
. (e) The integer n is a prime number and $n < 10$.

(b) Every integer is a rational number.
 (f)
$$\forall \epsilon > 0 \,\exists \delta > 0, \, (|x - a| < \delta) \Rightarrow (|x^2 - a^2| < \epsilon).$$

(c)
$$\forall x \in A \ \forall y \in B, \ x \cdot y \in A \cap B.$$
 (g) For any $x \in \mathbb{R}$ there exists an $n \in \mathbb{Z}$ such that $x < n$.

(d) There is a perfect square that is not even.
 (h) There exist positive integers
$$a$$
 and b with $\sqrt[3]{2} = a/b$.

5. Find the truth values of the following statements, where the universal set is \mathbb{R} :

(a)
$$\forall x \forall y, y \neq x$$
. (c) $\exists x \forall y, y \neq x$. (e) $\forall x \forall y, y^2 \geq x$. (g) $\exists x \forall y, y^2 \geq x$.

(b)
$$\forall x \exists y, y \neq x$$
. (d) $\exists x \exists y, y \neq x$. (f) $\forall x \exists y, y^2 \geq x$. (h) $\exists x \exists y, y^2 \geq x$.

6. Calculate the following things:

(a) The gcd and lcm of
$$256$$
 and 520 . (c) The gcd and lcm of 2019 and 5678 .

7. Suppose A, B, and C are arbitrary sets contained in a universal set U. Identify which statements are true and which are false. Then prove the true statements and give a counterexample for the false ones.

are false. Then prove the true statements and give a counterexample for the false ones.

(a)
$$(A \cup B) \setminus A = B \setminus A$$
.

(b) $(A \cap B)^c \cup B \subseteq (A^c \cup B)^c$.

(b)
$$A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$$
. (d) $A^c \cap B^c \subseteq (A \setminus B)^c \cap (B \setminus A)^c$.

8. Write, and then prove, the contrapositive of each of these statements (assume n refers to an integer):

- (a) If a and b are integers, then $3a 9b \neq 2$.
- (b) Suppose $a, b \in \mathbb{Z}$. If ab = 1 then $a \le 1$ or $b \le 1$.
- (c) If 5n + 1 is even, then n is odd.
- (d) If n^3 is odd, then n is odd.
- (e) If n is not a multiple of 3, then n cannot be written as the sum of 3 consecutive integers.
- (f) Suppose $a, b \in \mathbb{Z}$. If n does not divide ab, then n does not divide a and n does not divide b.

- 9. Find a counterexample to each of the following statements:
 - (a) For any integers a, b, and c, if a|b and a|c, then b|c.
 - (b) If p and q are prime, then p+q is never prime.
 - (c) If n is an integer, then $n^2 + n + 11$ is always prime.
 - (d) There do not exist integers a and b with $a^2 b^2 = 23$.
 - (e) The sum of two irrational numbers is always irrational.
- (f) If n > 1 is an integer, then \sqrt{n} is always irrational.
- (g) If $n \neq 3$ then $n^2 \neq 9$.
- (h) There are no positive integers m, n with $m^2 2n^2 = 1$.
- (i) For all real x there exists a real y with $y^4 = x$.
- (i) The sum of two perfect squares is never a perfect cube.
- 10. Prove the following (recall the Fibonacci numbers F_i are defined by $F_1 = F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for all $n \ge 2$):
 - (a) If F_n is the *n*th Fibonacci number, prove that $F_1 + F_3 + F_5 + \cdots + F_{2n+1} = F_{2n+2}$ for every positive integer *n*.
 - (b) Suppose n is an integer. Prove that 2|n and 3|n if and only if 6|n.
 - (c) Prove that $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for every positive integer n.
 - (d) Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that p|a.
 - (e) Prove there do not exist integers a and b such that $a^2 = 33 + 9b$. [Hint: Use (d).]
 - (f) Prove that any two consecutive perfect squares (i.e., the integers k^2 and $(k+1)^2$) are relatively prime.
 - (g) Prove that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$ for every positive integer n.
 - (h) If $A = \{4a + 6b : a, b \in \mathbb{Z}\}$ and $B = \{2c : c \in \mathbb{Z}\}$, prove that A = B.
 - (i) If p is a prime, prove that gcd(n, n + p) > 1 if and only if p|n.
 - (j) Suppose $a_1 = 1$ and $a_n = 3a_{n-1} + 4$ for all $n \ge 2$. Prove that $a_n = 3^n 2$ for every positive integer n.
 - (k) If $C = \{6c : c \in \mathbb{Z}\}$ and $D = \{10a + 14b : a, b \in \mathbb{Z}\}$, prove that $C \subseteq D$.
 - (l) Suppose $b_1 = 3$ and $b_n = 2b_{n-1} n + 1$ for all $n \ge 2$. Prove that $b_n = 2^n + n$ for every positive integer n.
 - (m) Suppose $c_1 = c_2 = 2$, and for all $n \ge 3$, $c_n = c_{n-1}c_{n-2}$. Prove that $c_n = 2^{F_n}$ for every positive integer n.
 - (n) Suppose $d_1 = 2$, $d_2 = 4$, and for all $n \ge 3$, $d_n = d_{n-1} + 2d_{n-2}$. Prove that $d_n = 2^n$ for every positive integer n.
 - (o) Prove that if a and b are both odd, then $a^2 + b^2 2$ is divisible by 8.
 - (p) Show that $25^n + 7$ is a multiple of 8 for every positive integer n.
 - (q) Prove that the product of two consecutive even integers is always 1 less than a perfect square.
 - (r) Prove that a and b are relatively prime if and only if a^2 and b^2 are relatively prime.
 - (s) Prove that $\frac{1}{2^n+1} + \frac{1}{2^n+2} + \cdots + \frac{1}{2^{n+1}} > \frac{1}{2}$ for every positive integer n. [Hint: Don't use induction.]
 - (t) Prove that $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} > \frac{n}{2}$ for every positive integer n. [Hint: Use (s).]