E. Dummit's Math 1365, Fall 2022 ∼ Midterm 1 Review Answers

(b) False. Counterexample: $A = \{1, 2\}, B = \{1\}, C = \{2\}$. Then $A \setminus (B \cap C) = \{1, 2\}$ while $(A \setminus B) \cap (A \setminus C) = \emptyset$. (d) False. Counterexample: $A = \{1\}$, $B = \{1, 2\}$ with $U = \{1, 2\}$. Then $(A \cap B)^c \cup B = \{1, 2\}$ while $(A^c \cap B)^c = \{1\}$. (e) True. Note $(A \backslash B)^c = (A \cap B^c)^c = A^c \cup B$, and similarly $(B \backslash A)^c = A \cup B^c$. If $x \in A^c \cap B^c$ then $x \in A^c \cup B$ and also $x \in A \cup B^c$.

8. (a) If $3a - 9b = 2$, then a and b cannot both be integers. Proof: By contradiction, if a and b are integers, then 3 divides $3a - 9b$ but 3 does not divide 2 (impossible). (b) If $a > 1$ and $b > 1$, then $ab \neq 1$. Proof: If $a > 1$ and $b > 1$ then multiplying $a > b$ by b yields $ab > b > 1$ so $ab > 1$. In particular $ab \neq 1$. (c) If n is even, then $5n + 1$ is odd. Proof: If $n = 2k$ then $5n + 1 = 10k + 1 = 2(5k) + 1$ is odd by definition. (d) If *n* is even then n^3 is even. Proof: If $n = 2k$ then $n^3 = 8k^3 = 2(4k^3)$ is even by definition. (e) If n is the sum of 3 consecutive integers, then n is a multiple of 3. Proof: If $n = a + (a + 1) + (a + 2)$ then $n = 3a + 3 = 3(a + 1)$ is a multiple of 3. (f) If n divides a or n divides b then n divides ab. Proof: If $n|a$ then $a = kn$ so $ab = (kb)n$, and if $n|b$ then $b = ln$ so

 $ab = (al)n$. In either case, $n|ab$.

9. There are many examples for each part. Here is one for each:

(a) Example: $a = 2, b = 4, c = 6$.

(b) Example: $p = 2$, $q = 3$, then $p + q = 5$ is prime.

- (c) Example: $n = 11$, then $n^2 + n + 11 = 11 \cdot 13$ is not prime.
- (d) Example: $a = 12$, $b = 11$, then $a^2 b^2 = 144 121 = 23$.
- (d) Example: $a = 12$, $b = 11$, then $a^2 b^2 = 144 121 = 23$.

(e) Example: $\sqrt{2} + (-\sqrt{2}) = 0$ is rational, but $\sqrt{2}$ and $-\sqrt{2}$ is irrational.
- (e) Example: $\sqrt{4}$ = 2 is rational.
(f) Example: $\sqrt{4}$ = 2 is rational.
- (g) Example: $n = -3$, then $n \neq 3$ but $n^2 = 9$.

(h) Example: $m = 3$, $n = 2$, then $m^2 - 2n^2 = 9 - 8 = 1$.

- (i) Example: $x = -1$, then there is no possible y with $y^4 = x$.
- (j) Examples: $2^2 + 2^2 = 2^3$, or $5^2 + 10^2 = 5^3$.
- 10. Here are brief outlines of each proof:
	- (a) Induct on n. Base case $n = 1$ has $F_1 + F_3 = 3 = F_4$. Inductive step: if $F_1 + \cdots + F_{2n+1} = F_{2n+2}$ then $F_1 + \cdots + F_{2n+1} + F_{2n+3} = [F_1 + \cdots + F_{2n+1}] + F_{2n+3} = F_{2n+2} + F_{2n+3} = F_{2n+4}$ as required.
	- (b) Clearly, if $6|n$ then $2|n$ and $3|n$. For the other direction, if $2|n$ then $n = 2k$. Then if $3|2k$ we must have $3|k$ since $3 \nmid 2$ and 3 is prime. So $k = 3a$, and thus $n = 6a$, meaning $6|n$.
	- (c) Induct on *n*. Base case $n = 1$ has $1 = 2 1/2^0$. Inductive step: If $1 + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{4}$ $\frac{1}{4} + \cdots + \frac{1}{2^{r}}$ $\frac{1}{2^n} = 2 - \frac{1}{2^n}$ $\frac{1}{2^n}$, then $1 + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{4}$ $\frac{1}{4} + \cdots + \frac{1}{2^{r}}$ $\frac{1}{2^n} + \frac{1}{2^{n-1}}$ $\frac{1}{2^{n+1}} = 2 - \frac{1}{2^n}$ $\frac{1}{2^n} + \frac{1}{2^{n-1}}$ $\frac{1}{2^{n+1}} = 2 - \frac{1}{2^{n-1}}$ $\frac{1}{2^{n+1}}$ as required.
	- (d) If $p|a \cdot a$ then $p|a$ or $p|a$ by the prime divisibility property. Since the two conclusion statements are the same, we have $p|a$.
	- (e) Note that $33 + 9b$ is divisible by 3 but not 9. But then a^2 is divisible by 3 by (d), which would mean $3|a$ and thus $9|a$, but this is impossible.
	- (f) If p is a prime with $p|k^2$ and $p|(k+1)^2$, then by (d) we have $p|k$ and $p|(k+1)$ so that $p|(k+1)-k=1$, impossible.
	- (g) Induct on *n*. Base case $n = 1$ has $\frac{1}{1 \cdot 2} = \frac{1}{2}$ $\frac{1}{2}$. Inductive step: if $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 2}$ $\frac{1}{2 \cdot 3} + \frac{1}{3}$ $\frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$ $\frac{n}{n+1}$ then 1 $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 2}$ $\frac{1}{2 \cdot 3} + \frac{1}{3}$ $\frac{1}{3 \cdot 4} + \cdots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n}{n+1}$ $\frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$ $\frac{n+1}{n+2}$ as required.
	- (h) First, $A \subseteq B$ because if $n = 4a + 6b$ then $n = 2(2a + 3c) \in B$. Also, $B \subseteq A$ because if $n = 2c$ then we would have $n = 4(2c) + 6(-c) \in A$ via Euclidean algorithm calculation.
	- (i) Note gcd $(n, n + p) = \gcd(n, p)$ by gcd properties. Then $\gcd(n, p)$ divides p so is either 1 or p, and it is equal to p if and only if $p|n$ (by definition of gcd).
	- (j) Induct on n. Base case $n = 1$ has $a_1 = 3^1 2$. Inductive step: if $a_n = 3^n 2$ then $a_{n+1} = 3(3^n 2) + 4 = 3^{n+1} 2$ as claimed.
	- (k) If $n \in C$, then $n = 6c$ for some c. Then $n = 10(2c) + 14(-c) \in D$ as required.
	- (l) Induct on n. Base case $n = 1$ has $b_1 = 2^1 + 1$. Inductive step: if $b_n = 2^n + n$ then $b_{n+1} = 2(2^n + n) n + 1 =$ $2^{n+1} + (n+1)$ as claimed.
	- (m) Induct on n. Base cases $n = 1$ and $n = 2$ have $c_1 = 2^{F_1}$ and $c_2 = 2^{F_2}$. Inductive step: if $c_n = 2^{F_n}$ and $c_{n-1} = 2^{F_{n-1}}$ then $c_{n+1} = c_n c_{n-1} = 2^{F_n} 2^{F_{n-1}} = 2^{F_n + F_{n-1}} = 2^{F_{n+1}}$ as required.
	- (n) Induct on n. Base cases $n = 1$ and $n = 2$ have $d_1 = 2^1$ and $d_2 = 2^2$. Inductive step: if $d_n = 2^n$ and $d_{n-1} = 2^{n-1}$ then $d_{n+1} = 2^n + 2(2^{n-1}) = 2^n + 2^n = 2^{n+1}$ as required.
	- (o) If $a = 2c + 1$ and $b = 2d + 1$ then $a^2 + b^2 2 = 4(c^2 + c + d^2 + d)$, which is divisible by 8 since $c^2 + c = c(c + 1)$ is always even as is $d^2 + d$.
	- (p) Induct on n. Base case $n = 1$ has $25^1 + 7 = 32$ a multiple of 8. Inductive step: if 8 divides $25^n + 7$, then 8 divides $25 \cdot (25^{n} + 7) - 24 \cdot 7 = 25^{n+1} + 7$.
	- (q) Note $(2n)(2n+2) = 4n^2 + 4n$ is 1 less than $(2n+1)^2 = 4n^2 + 4n + 1$.
	- (r) Show the contrapositive. If a, b are not relatively prime so that d|a and d|b for some $d > 1$, then $d^2 |a^2|$ and $d^2 |b^2|$ so a^2, b^2 are not relatively prime. Conversely by (d) if p is prime and $p|a^2$ and $p|b^2$ then $p|a$ and $p|b$ so a, b are not relatively prime.

(s) Note
$$
\frac{1}{2^n + k} \ge \frac{1}{2^{n+1}}
$$
 for each $k = 1, 2, ..., 2^n$ so sum exceeds $\frac{2^n}{2^{n+1}} = \frac{1}{2}$.

(t) Induct on *n*. Base case $n = 1$ has $1 > \frac{1}{2}$ $\frac{1}{2}$. Inductive step: suppose $1 + \frac{1}{2}$ $\frac{1}{2} + \cdots + \frac{1}{2^{r}}$ $\frac{1}{2^n} > \frac{n}{2}$ $\frac{n}{2}$. Then $1 + \frac{1}{2}$ $\frac{1}{2} + \cdots + \frac{1}{2^{n-1}}$ $\frac{1}{2^{n+1}} =$ $[1 + \frac{1}{2} + \cdots + \frac{1}{2^{r}}]$ $\frac{1}{2^n}$] + [$\frac{1}{2^{n+1}}$ + \cdots + $\frac{1}{2^n}$ $\frac{1}{2^{n+1}}$ > $\frac{n}{2}$ $\frac{n}{2}+\frac{1}{2}$ $\frac{1}{2} = \frac{n+1}{2}$ $\frac{1}{2}$ by (s).