E. Dummit’s Math 1365 ~ Intro to Proof, Fall 2022 ~ Homework 6, due Tue Oct 25th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justifications are required for these problems. Answers will be graded on correctness.

1. Find the following;:

Find the values of 6 + 13, 6 — 13, and 6 - 13 in Z/11Z. Write your answers as a where 0 < a < 10.

Give the addition and multiplication tables modulo 7. (For ease of writing, you may omit the bars in
the residue class notation.)

Find all of the unit residue classes modulo 7 and their multiplicative inverses.
Give the multiplication table modulo 8. (Again, you may omit the bars.)

Find all of the unit residue classes modulo 8 and their multiplicative inverses.
Find the multiplicative inverse of 7 modulo 10 or explain why it does not exist.
Find the multiplicative inverse of 14 modulo 49 or explain why it does not exist.

Find the multiplicative inverse of 16 modulo 49 or explain why it does not exist.

2. Each of the following proofs has an error: identify it and briefly explain why it causes the proof to be incorrect:

(a) Proposition: All horses are the same color.

Proof: Induction on n, the number of horses. The base case n = 1 is trivial because any 1 horse is the
same color as itself. For the inductive step, suppose that any n + 1 horses are the same color. Ignoring
the last horse yields means that we need to show that n horses are the same color, which is true by the
induction hypothesis. Therefore the result holds by induction.

(b) Proposition: For every positive integer n, 1 +2+3+ -+ n = In(n+1).

Proof: Induction on n. The base case n = 1 follows because 1 = %(1)(2) For the inductive step,
suppose that 1 +2+3+ -+ n+ (n+1) = 3(n+ 1)(n+ 2). Subtracting n+ 1 from both sides yields
142434+ +n=1%(n+1)(n+2)— (n+1)= in(n+1) which is true by the induction hypothesis.

Therefore the result holds by induction.

(c) Proposition: If n is an integer such that 2n = 6 (mod 10) then n = 3 (mod 10).

Proof: Suppose that 2n = 6 (mod 10). Multiplying both sides by 271 (mod 10) yields 27%(2n) = 2716
(mod 10) which simplifies to n = 3 (mod 10), as claimed.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

3. Suppose a, b, c,m are integers and m > 0. Prove the following properties of modular arithmetic:
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For any a, a = a (mod m).

If a =0 (mod m) and b = ¢ (mod m), then a = ¢ (mod m).

If a = b (mod m) and ¢ = d (mod m), then a + ¢ = b+ d (mod m).

If a = b (mod m), then ac = be (mod me) for any ¢ > 0.

Prove that the operation + is commutative modulo m: namely, that @+ b = b + @ for any @ and b.
Prove that the operation - is associative modulo m: namely, that @- (b-¢) = (a-b) - ¢ for any @, b, and €.

Prove that the residue class 1 is a multiplicative identity modulo m, namely, that 1-@ = @ for any @.




4. The goal of this problem is to discuss modular exponentiation, which is frequently used in cryptography. If
n is a positive integer, we define @” (mod m) to be the n-term product @-a@-----@ (mod m). By an easy

n terms
induction, one has @™ = a” (i.e., the nth power of the residue class @ is the residue class of the nth power a™).

(a) Find the residue classes 52, 53, 54, 55, 56, 32, §3, §4, 35, and 3° (mod 10). (Write your answers as residue
classes 7 where 0 < r <9.)

(b) Show that if a = b (mod m), then for any positive integer n, it is true that o™ = b™ (mod m).

(¢) It is natural to think that if ny = ny (mod m), then ™ = a™ (mod m); i.e., that exponents “can also
be reduced mod m”. Show that this is incorrect by verifying that 22 is not congruent to 27 modulo 5.

(d) Show in fact that if a # 0 modulo 5, then a* = 1 (mod 5). Deduce that a™ = @™ (mod 5) whenever
n1 = ng (mod 4), so that the exponents actually behave “modulo 4”. [Hint: For the first part, simply
test the 4 possible cases. For the second part, use (b) to see that a** = 1 (mod 5) for any k.|

Now suppose we want to find the remainder when we divide 2°16 by 61. Here is an efficient approach:
compute the values 2! = 2, 22 = 4, 2 = 16, 28 = 162 = 12, 216 = 122 = 22, 232 = 222 = —4, 264 = 16,
2128 = 12,9256 = 92 92512 = 57 modulo 61 by squaring each previous term and reducing. Then simply evaluate
2516 — 951294 = 57. 16 = 58 (modulo 61), so the remainder is 58.

(e) Use the method described above to find the remainder when 32! is divided by 43.

e Remark: Efficient calculations with modular exponentiation are a fundamental part of the RSA cryp-
tosystem, which is still in wide use today.

5. Let p be a prime. The goal of this problem is to prove that a? = a (mod p) for every integer a, which is a
result known as Fermat’s Little Theorem.

(a) Show that the binomial coefficient <Z]z> is divisible by p for each integer k with 0 < k < p.

(b) Prove that a? = a (mod p) for every positive integer a.

(c) Show in fact that a? = a (mod p) for all integers a. [Hint: The value of a? — a mod p only depends on
what residue class a lies in mod p.]

6. The goal of this problem is to discuss some applications of modular arithmetic to solving equations in integers.

(a) If n is a positive integer, prove that n? is congruent to 0 or 1 modulo 4. [Hint: Consider n modulo 4.]

(b) Show that the sum of two squares must be congruent to 0, 1, or 2 modulo 4.

(c) Deduce that there do not exist integers a and b such that a? + b* = 2023.

(d) Strengthen (a) by showing that if n is a positive integer, then n? is congruent to 0, 1, or 4 modulo 8.
)

(e) Show that there do not exist integers a, b, and c such that a® + b% + ¢* = 2023.




