- 1. Calculate/determine the following things:
 - (a) The minimum number of socks needed to be drawn from a drawer with 10 blue, 10 black, 10 red, and 11 green socks, in order to obtain at least 1 matching pair.
 - (b) The minimum number of socks needed to be drawn from a drawer with 10 blue, 10 black, 10 red, and 11 green socks, in order to obtain at least 2 matching pairs.
 - (c) Whether the set $(\mathbb{Z}, -)$ of integers under subtraction is a group.
 - (d) The products $(sr)(sr^2)$ and $s^2r^3s^4r^5$ in the dihedral group $D_{2\cdot 10}$ of order 20.
 - (e) The inverses of r^3 and sr^2 in the dihedral group $D_{2\cdot 12}$ of order 24.
 - (f) The cycle decomposition of the permutation $\sigma \in S_8$ with $\sigma(n) = 9 n$ for each $1 \le n \le 8$.
 - (g) The cycle decomposition of the permutation $\sigma \in S_7$ with $\sigma(n) \equiv 3n \pmod{7}$ for each $1 \leq n \leq 7$.
 - (h) The cycle decomposition of the product (314)(15) in S_6 .
 - (i) The cycle decomposition of the product $(2718) \cdot (28) \cdot (18) \cdot (28)$ in S_8 .
 - (j) The cycle decomposition of the inverse of (14285)(67) in S_8 .
 - (k) An abelian group of order 8.
 - (l) A non-abelian group of order 20.
 - (m) A countably infinite abelian group.
 - (n) A countably infinite non-abelian group.
 - (o) An uncountably infinite abelian group.
 - (p) An uncountably infinite non-abelian group.
 - (q) The orders of the elements $s, r, and r^2$ in the dihedral group $D_{2\cdot 10}$.
 - (r) The orders of the elements (123), (45), and (123)(45) in S_5 .
 - (s) The orders of the elements (245), (15)(23), and $(245) \cdot (15)(23)$ in S_5 .
 - (t) The least upper bound in \mathbb{R} of the set of rational numbers $\{0.3, 0.33, 0.333, 0.3333, 0.33333, \dots\}$.
 - (u) A subset of \mathbb{R} with no least upper bound.

2. Prove the following:

- (a) Prove that if five points are selected inside a circle of radius 1, then some pair of points must be within a distance $\sqrt{2}$ of each other.
- (b) Let $f : \{1, 2, 3, ..., n\} \to \{1, 2, 3, ..., n\}$ be a function. Show that there exists some positive integers A < B such that $f^A(i) = f^B(i)$ for each $i \in \{1, 2, 3, ..., n\}$, where $f^n = f \circ f \circ \cdots \circ f$ composed n times.
- (c) Prove that if at least n + 1 elements are selected from $\{1, 2, 3, ..., 2n\}$ then some pair of them must have difference 1.
- (d) Prove that there exists a bijection between \mathbb{Q} and $\mathbb{Q} \cap (0, 1)$, the set of rational numbers strictly between 0 and 1.
- (e) Prove that there exists a bijection between (0, 1) and [0, 1]. [Hint: Cantor-Schröder-Bernstein.]
- (f) Suppose g and h are elements in a group such that gh = hg. Prove that $gh^n = h^n g$ for all positive integers n.
- (g) Suppose g and h are elements of a group such that $g^{-1}h^{-1} = h^{-1}g^{-1}$. Prove that gh = hg.
- (h) Suppose g is an element of a group G and that g has order n. Show that $g^{-1} = g^{n-1}$.
- (i) Let $f : \{1, 2, 3, ..., n\} \to \{1, 2, 3, ..., n\}$ be a bijection. Show that there exists some positive integer A such that $f^A(i) = i$ for each $i \in \{1, 2, 3, ..., n\}$.
- (j) Suppose G is a group and H is a subgroup, and define the relation R on G by saying $g_1 R g_2$ whenever there exists $h \in H$ such that $g_1 = hg_2$. Prove that R is an equivalence relation.
- (k) Suppose G is an abelian group. Show that the subset $S = \{a \in g : a^2 = e\}$ is a subgroup of G.