1. Calculations:

- (a) 5 socks, by pigeonhole.
- (b) 7 socks, by pigeonhole (take out the first pair and then apply to the 5 remaining socks).
- (c) It is not a group, the operation is not associative and the identity is not two-sided.
- (d) $(sr)(sr^2) = s(sr^{-1})r^2 = r$ and $s^2r^3s^4r^5 = r^3r^5 = r^8$.
- (e) $(r^3)^{-1} = r^9$ and $(sr^2)^{-1} = r^{-2}s^{-1} = r^{-2}s = sr^2$.
- (f) This permutation is $(18)(27)(36)(45)$.
- (g) This permutation is $(132645)(7) = (132645)$.
- (h) $(314)(15) = (1543)$ by tracing right to left.
- (i) $(2718) \cdot (28) \cdot (18) \cdot (28) = (17)(28)$ by tracing right to left.
- (j) $[(1\ 4\ 2\ 8\ 5)(6\ 7)]^{-1} = (6\ 7)^{-1}(1\ 4\ 2\ 8\ 5)^{-1} = (7\ 6)(5\ 8\ 2\ 4\ 1) = (1\ 5\ 8\ 2\ 4)(6\ 7).$
- (k) $\mathbb{Z}/8\mathbb{Z}$ and $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ and $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ all work.
- (l) The dihedral group $D_{2,10}$ of order 20 is non-abelian.
- (m) The groups $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{Q}\setminus\{0\}, \cdot)$ are all countably infinite.
- (n) A Cartesian product of a group in (m) with S_3 or $D_{2.4}$ is countably infinite and non-abelian.
- (o) The groups $(\mathbb{R}, +)$ and $(\mathbb{R}\setminus\{0\}, \cdot)$ are both uncountably infinite.
- (p) A Cartesian product of one of the groups in (o) with S_3 or $D_{2.4}$ is uncountably infinite and non-abelian.
- (q) s has order 2, r has order 10, r^2 has order 5, r^3 has order 10.
- (r) $(1\,2\,3)$ has order 3, $(4\,5)$ has order 2, $(1\,2\,3)(4\,5)$ has order 6.
- (s) $(2\,4\,5)$ has order 3, $(1\,5)(2\,3)$ has order 2, $(2\,4\,5) \cdot (1\,5)(2\,3) = (1\,2\,3\,4\,5)$ has order 5.
- (t) The least upper bound is $0.33333\dots = 1/3$.
- (u) This requires a set with no upper bound, such as $(0, \infty)$ or R itself.

2. Proofs:

- (a) Divide the circle into four quarter-circles. By pigeonhole two points must lie in the same quarter-circle of Divide the circle into four quarter-circles. By pigeonhole two p
radius 1, and they must be within a distance $\sqrt{2}$ of each other.
- (b) By pigeonhole, since there are n^n functions from $\{1, 2, 3, \ldots, n\} \rightarrow \{1, 2, 3, \ldots, n\}$, some of $\{f^1, f^2, f^3, \ldots\}$ must be equal as functions: then $f^A = f^B$ means $f^A(i) = f^B(i)$ for all $i \in \{1, 2, ..., n\}$.
- (c) By pigeonhole, selecting $n+1$ elements must pick two from one of the n sets $\{1,2\}$, $\{3,4\}$, ..., $\{2n-1,2n\}$.
- (d) Both $\mathbb Q$ and $\mathbb Q \cap (0,1)$ are countably infinite, so there is a bijection between these sets since they are both in bijection with the positive integers.
- (e) The functions $f:(0,1) \rightarrow [0,1]$ with $f(x) = x$ and $g:[0,1] \rightarrow (0,1)$ with $g(x) = (x+1)/3$ are both one-to-one, so by Cantor-Schröder-Bernstein there exists a bijection between (0, 1) and [0, 1].
- (f) Induct on n. Base case $n = 1$ is given. For inductive step suppose $gh^n = h^n g$. Then $gh^{n+1} = (gh)(h^n) =$ $(hg)h^n = h(gh^n) = h(h^n g) = h^{n+1}g$ using $gh = hg$ and $gh^n = h^n g$.
- (g) Multiply $g^{-1}h^{-1} = h^{-1}g^{-1}$ on the left by hg and on the right by gh. This yields $hg(g^{-1}h^{-1})gh =$ $hg(h^{-1}g^{-1})gh$. Then $hg(g^{-1}h^{-1})gh = hgg^{-1}h^{-1}gh = hh^{-1}gh = gh$ while $hg(h^{-1}g^{-1})gh = hgh^{-1}g^{-1}gh = gh$ $hgh^{-1}h = hg$, so $gh = hg$.
- (h) By hypothesis $g^n = e$. Multiplying by g^{-1} on both sides yields $g^{-1}g^n = g^{-1}e = g^{-1}$ and since $g^{-1}g^n = g^{-1}e$ $g^{-1}g(g^{n-1}) = eg^{n-1} = g^{n-1}$ we see $g^{n-1} = g^{-1}$.
- (i) The function f is an element of the symmetric group S_n . By Lagrange's theorem, its order divides n! hence is finite. But if the order is A then this means f^A is the identity, which is to say, $f^A(i) = i$ for each $i \in \{1, 2, 3, \ldots, n\}.$
- (j) Reflextive: $e \in H$ and $g_1 = eg_1$ so $g_1 R g_1$. Symmetric: If $g_1 R g_2$ so that $g_1 = hg_2$ with $h \in H$ then $h^{-1}g_1 = g_2$ and $h^{-1} \in H$, so $g_2 R g_1$. Transitive: If $g_1 R g_2$ and $g_2 R g_3$ so that $g_1 = h g_2$ and $g_2 = k g_3$ with $h, k \in H$ then $g_1 = hg_2 = hkg_3$ and $hk \in H$ so $g_1 R g_3$.
- (k) First $e \in S$ since $e^2 = e$. Second if $g, h \in S$ then $g^2 = e$ and $h^2 = e$ so $(gh)^2 = ghgh = g^2h^2 = ee = e$ since $gh = hg$ because G is abelian, so $gh \in S$. Finally if $g \in S$ then $g^2 = e$ so $(g^{-1})^2 = (g^2)^{-1} = e$ so $g^{-1} \in S$.