
E. Dummit's Math 7315 ∼ Number Theory in Function Fields, Fall 2021 ∼ Homework 2

Problems are worth points as indicated. Solve as many problems as you can (suggestion: at least 30 points' worth).
Prepare solutions to these problems so that you may present some of them in lecture on Monday, November 8th.
Starred exercises are especially recommended.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Sep 27)

• [2pts] Extend the example from class to describe all monic irreducibles p ∈ Fq[t] such that t is a square modulo
p for arbitrary �nite �elds Fq.

0.1.2 Exercises from (Sep 30)

• [1pt] Show that if a is not relatively prime to m, then there are only �nitely many primes congruent to a
modulo m.

• *[2pt] If S is �nite, show that its Dirichlet density is 0.

• [4pts] Show that the set of primes whose leading digit is 1 in base 10 has unde�ned natural density, but has
Dirichlet density log10 2. (The answer works out the same if you use integers with leading digit 1 relative to
all integers; this may be a bit easier to work out.)

• [2pts] Show that extended Dirichlet characters modulo m are the same as functions χ : Z → C (or A → C)
such that (i) χ(a+ bm) = χ(a) for all a, b, (ii) χ(ab) = χ(a)χ(b) for all a, b, and (iii) χ(a) 6= 0 i� a is relatively
prime to m.

• [3pts] If G is a �nite abelian group and H is a subgroup, de�ne H⊥ = {χ ∈ Ĝ : χ(H) = 1}. Show that

H⊥ ∼= Ĝ/H and that Ĝ/H⊥ ∼= Ĥ. Use these results along with Ĝ ∼= G to conclude that the subgroup lattice
of G is the same when turned upside down.

• *[2pts] If G is a �nite abelian group, verify that the evaluation map ϕ : G → ˆ̂
G with ϕ(g) = {χ 7→ χ(g)} is

an isomorphism from
ˆ̂
G to G.

• [3pts] Prove Plancherel's theorem 〈f1, f2〉G =
1

|G|

〈
f̂1, f̂2

〉
Ĝ
and deduce Parseval's theorem

∑
g∈G |f(g)|2 =

1

|G|
∑
χ∈Ĝ

∣∣∣f̂(χ)
∣∣∣2.

0.1.3 Exercises from (Oct 14)

• [2pts] Prove that the set {x+ y, x2 + y2} is algebraically independent over R (where x, y are indeterminates).

• [4pts] Show that localization commutes with sums, intersections, quotients, �nite direct sums, and is exact.
(These are standard facts you can look up in Dummit/Foote and Atiyah/Macdonald.)

• [2pts] Show that the �eld F (x,
√
x2 + x) is a purely transcendental extension of F . [Hint: Let t =

√
x2 + x/x

and write x and y =
√
x2 + x in terms of t by using the relation y2 = x2 + x.]

• [2pts] Show that if I is an ideal of R, then D = R\I is multiplicatively closed if and only if I is prime.

• *[2pts] Show that if P is a prime ideal and D = R\P , then D−1R is a local ring with unique maximal ideal
D−1P = π(P ) = eP , the extension of the ideal P to D−1R.
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0.1.4 Exercises from (Oct 18)

• [2pts] If R is a Noetherian integrally-closed domain and P is a minimal nonzero prime ideal of R, show that
RP is a DVR. (This is corollary 8 from Section 16.2 of Dummit/Foote.)

• *[10pts] Let R be a discrete valuation ring with �eld of fractions F and valuation v. Also t ∈ R be a
uniformizer; i.e., an element with v(t) = 1. Show the following:

1. For any r ∈ F×, either r or 1/r is in R.

2. An element u ∈ R is a unit of R if and only if v(u) = 0. In particular, if ζ ∈ F is any root of unity, then
v(ζ) = 0.

3. If x ∈ R is nonzero and v(x) = n, then x can be written uniquely in the form x = utn for some unit
u ∈ R.

4. Every nonzero ideal of R is of the form (tn) for some n ≥ 0.

5. The ring R is a Euclidean domain (hence also a PID and a UFD) and also a local ring.

6. The ring S is a DVR if and only if it is a PID and a local ring but not a �eld.

• [2pts] If v is a discrete valuation on Q, show that the set P = {n ∈ Z : v(n) > 0} is a prime ideal of Z.

• [3pts] Prove that the p-adic valuations vp along with v∞ are the only discrete valuations on F (t)/F . (Use a
similar argument to the one for Q by identifying all possible uniformizers.)

• [2pts] For K = F (t), if a = u
pa11 · · · p

ak
k

qb11 · · · q
bl
l

for u ∈ F× and distinct monic irreducibles p1, . . . , pk, q1, . . . , ql

having associated primes P1, . . . , Pk, Q1, . . . , Ql, show that div(a) = a1P1 + · · ·+ akPk − b1Q1 − · · · − blQl +
[
∑
j bj deg(qj)−

∑
i ai deg(pi)]∞.

• [3pts] For any �eld F , if f(t), g(t) ∈ F [t] are relatively prime, show that [F (t) : F ( f(t)g(t) )] = max(deg f,deg g).

[Hint: Use Gauss's lemma to show that q(y) = f(y) − f(t)
g(t) g(y) ∈ F ( f(t)g(t) )[y] is the minimal polynomial of t

over F ( f(t)g(t) ).]

0.1.5 Exercises from (Oct 21)

• [2pts] Verify that the relation D1 ∼ D2 if D1 − D2 is principal is an equivalence relation, and that the
equivalence classes are the elements in the quotient group of divisors modulo principal divisors.

• [1pt] Check that the relation D1 ≤ D2 is a partial ordering on divisors.

• *[2pts] Determine L(D) when K = F (t) for D = Pt − P∞, Pt + P∞, and Pt + Pt−1.

• [2pts] Show that when K = F (x), the canonical class contains every divisor of K of degree −2.

0.1.6 Exercises from (Oct 25)

• [2pts] For any nonzero meromorphic f on X, show that deg(div(f)) = 0. [Hint: Use Cauchy's argument

principle: for any contour C,
1

2πi

´
C

f ′

f
dz = Z − P is the number of zeroes minus the number of poles in C.]

• [2pts] Explain why saying that the dimension of the space of holomorphic di�erentials on X has dimension g
is equivalent to saying `(C) = g.

• [3pts] If R is the valuation ring of P , show that σR is also a valuation ring with maximal ideal σP , and that
σ gives an isomorphism of R/P with σR/σP . Show also that for any a ∈ K, vσP (a) = vP (σ−1a).

• [2pts] Show that the number of primes of degree ≤ n in K is at most [K : F (x)]qn for any x ∈ K\F .

• [2pts] Give an explicit upper bound in terms of [K : F (x)], q, and n for the number of e�ective divisors of
degree n in K.

• [1pt] If A,B ≥ 0, show that N(A+B) = NA ·NB.
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0.1.7 Exercises from (Oct 28)

• [2pts] Show that ζFq(t)(s) = (1− q−s)−1ζFq [t](s) =
1

(1− q1−s)(1− q−s)
.

• *[3pts] Using the explicit formula ζFq(t)(s) =
1

(1− q−s)(1− q1−s)
, verify the Weil conjectures for K = Fq(t).

• [2pts] Show that if q ≥ 4g2, then there must exist primes of degree 1 in K.

• [2pts] Show that if q > 4 and g > 0, then the class number of K is greater than 1.

0.2 Additional Exercises

• [15pts] Our discussion of primes of a function �eldK/F is predicated on the assumption that there are actually
DVRs inside K. The goal of this problem is to show this is indeed the case by establishing the following result:
if S is a subring of K containing F and I is a nonzero proper ideal of S, then there is a prime P of K with
valuation ring R such that I ⊆ P and S ⊆ R.

1. Let F be the set of subrings T of K containing R such that IT 6= T . Show that F contains a maximal
element.

2. Suppose that O is a maximal element under the conditions of (1). Show that for any element x ∈ K,
either x ∈ O or x−1 ∈ O. [Hint: If not, then IO[x] = O[x] and IO[x−1] = O[x−1]. Pick m,n minimal
with 1 = a0 + a1x+ · · ·+ anx

n and 1 = b0 + b1x
−1 + · · ·+ bmx

−m with ai, bi ∈ IO. Use these relations
to eliminate a power and obtain a contradiction.]

3. Suppose that Σ is a subring of K containing F , with Σ 6= F,K, and such that every element a ∈ K has
a ∈ Σ or a−1 ∈ Σ. Show that Σ is a valuation ring of K. [Hint: Show that Σ is a local ring and that its
maximal ideal is principal, and use this to write down the discrete valuation.]

4. Show that for any a ∈ K\F , a has at least one zero and one pole. [Hint: Take the ring F [z] and the
ideal I = zF [z] to get a zero.]

5. Conclude that K/F has at least two primes P . (In fact, every function �eld has in�nitely many primes,
though this is a bit harder to extract.)

• [10pts] The goal of this problem is to prove a result known as the Weierstrass gap theorem. Let P be a prime
of K and suppose that the genus of K is g. The main task is to investigate the spaces L(nP ) for various n:
we say that an integer n is a pole number for P if there exists a ∈ K such that div−(a) = −nP , and otherwise
(if there is no such a) we say n is a gap number for P .

1. Show that the set of pole numbers for P is an additive semigroup (i.e., it is closed under addition and
contains 0).

2. Show that if n ≥ 2g, then L((n− 1)P ) < L(nP ). Deduce that there exists an element a ∈ K such that
div−(a) = −nP and conclude that each n ≥ 2g is a pole number.

3. Show that there are exactly g gap numbers i1 < i2 < · · · < ig for P , and that i1 = 1 and ig ≤ 2g − 1.
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