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5 Eigenvalues and Diagonalization

In this chapter, we will discuss eigenvalues and eigenvectors: these are �characteristic values� (and �characteristic
vectors�) associated to a linear operator T : V → V that will allow us to study T in a particularly convenient way.
Our ultimate goal is to describe methods for �nding a basis for V such that the associated matrix for T has an
especially simple form.

We will �rst describe diagonalization, the procedure for (trying to) �nd a basis such that the associated matrix for
T is a diagonal matrix, and characterize the linear operators that are diagonalizable. Then we will discuss a few
applications of diagonalization, including the Cayley-Hamilton theorem that any matrix satis�es its characteristic
polynomial, and close with a brief discussion of non-diagonalizable matrices.

5.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial

• Suppose that we have a linear transformation T : V → V from a (�nite-dimensional) vector space V to itself.

We would like to determine whether there exists a basis β of V such that the associated matrix [T ]ββ is a
diagonal matrix.

◦ Ultimately, our reason for asking this question is that we would like to describe T in as simple a way as
possible, and it is unlikely we could hope for anything simpler than a diagonal matrix.

◦ So suppose that β = {v1, . . . ,vn} and the diagonal entries of [T ]ββ are {λ1, . . . , λn}.
◦ Then, by assumption, we have T (vi) = λivi for each 1 ≤ i ≤ n: the linear transformation T behaves like
scalar multiplication by λi on the vector vi.

◦ Conversely, if we were able to �nd a basis β of V such that T (vi) = λivi for some scalars λi, with

1 ≤ i ≤ n, then the associated matrix [T ]ββ would be a diagonal matrix.

◦ This suggests we should study vectors v such that T (v) = λv for some scalar λ.
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5.1.1 Eigenvalues and Eigenvectors

• De�nition: If T : V → V is a linear transformation, a nonzero vector v with T (v) = λv is called an eigenvector
of T , and the corresponding scalar λ is called an eigenvalue of T .

◦ Important note: We do not consider the zero vector 0 an eigenvector. (The reason for this convention is
to ensure that if v is an eigenvector, then its corresponding eigenvalue λ is unique.)

◦ Terminology notes: The term �eigenvalue� derives from the German �eigen�, meaning �own� or �charac-
teristic�. The terms characteristic vector and characteristic value are occasionally used in place of �eigen-
vector� and �eigenvalue�. When V is a vector space of functions, we often use the word eigenfunction in
place of �eigenvector�.

• Here are a few examples of linear transformations and eigenvectors:

◦ Example: If T : R2 → R2 is the map with T (x, y) = 〈2x+ 3y, x+ 4y〉, then the vector v = 〈3,−1〉 is an
eigenvector of T with eigenvalue 1, since T (v) = 〈3,−1〉 = v.

◦ Example: If T : R2 → R2 is the map with T (x, y) = 〈2x+ 3y, x+ 4y〉, the vector w = 〈1, 1〉 is an
eigenvector of T with eigenvalue 5, since T (w) = 〈5, 5〉 = 5w.

◦ Example: If T : M2×2(R)→M2×2(R) is the transpose map, then the matrix

[
1 1
1 3

]
is an eigenvector

of T with eigenvalue 1.

◦ Example: If T : M2×2(R)→M2×2(R) is the transpose map, then the matrix

[
0 −2
2 0

]
is an eigenvector

of T with eigenvalue −1.

◦ Example: If T : P (R) → P (R) is the map with T (f(x)) = xf ′(x), then for any integer n ≥ 0, the
polynomial xn is an eigenfunction of T with eigenvalue n, since T (xn) = x · nxn−1 = nxn.

◦ Example: If V is the space of in�nitely-di�erentiable functions and D : V → V is the di�erentiation
operator, the function f(x) = erx is an eigenfunction with eigenvalue r, for any real number r, since
D(erx) = rerx.

◦ Example: If T : V → V is any linear transformation and v is a nonzero vector in ker(T ), then v is an
eigenvector of V with eigenvalue 0. In fact, the eigenvectors with eigenvalue 0 are precisely the nonzero
vectors in ker(T ).

• Finding eigenvectors is a generalization of computing the kernel of a linear transformation, but, in fact, we can
reduce the problem of �nding eigenvectors to that of computing the kernel of a related linear transformation:

• Proposition (Eigenvalue Criterion): If T : V → V is a linear transformation, the nonzero vector v is an
eigenvector of T with eigenvalue λ if and only if v is in ker(λI − T ), where I is the identity transformation
on V .

◦ This criterion reduces the computation of eigenvectors to that of computing the kernel of a collection of
linear transformations.

◦ Proof: Assume v 6= 0. Then v is an eigenvalue of T with eigenvalue λ ⇐⇒ T (v) = λv ⇐⇒
(λI)v − T (v) = 0 ⇐⇒ (λI − T )(v) = 0 ⇐⇒ v is in the kernel of λI − T .

• We will remark that some linear operators may have no eigenvectors at all.

• Example: If I : P (R)→ P (R) is the integration operator I(p) =
´ x
0
p(t) dt, show that I has no eigenvectors.

◦ Suppose that I(p) = λp, so that
´ x
0
p(t) dt = λp(x).

◦ Then, di�erentiating both sides with respect to x and applying the fundamental theorem of calculus
yields p(x) = λp′(x).

◦ If p had positive degree n, then λp′(x) would have degree at most n− 1, so it could not equal p(x).

◦ Thus, p must be a constant polynomial. But the only constant polynomial with I(p) = λp is the zero
polynomial, which is by de�nition not an eigenvector. Thus, I has no eigenvectors.
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• Computing eigenvectors of general linear transformations on in�nite-dimensional spaces can be quite di�cult.

◦ For example, if V is the space of in�nitely-di�erentiable functions, then computing the eigenvectors of
the map T : V → V with T (f) = f ′′ + xf ′ requires solving the di�erential equation f ′′ + xf ′ = λf for
an arbitrary λ.

◦ It is quite hard to solve that particular di�erential equation for a general λ (at least, without resorting
to using an in�nite series expansion to describe the solutions), and the solutions for most values of λ are
non-elementary functions.

• In the �nite-dimensional case, however, we can recast everything using matrices.

• Proposition: Suppose V is a �nite-dimensional vector space with ordered basis β and that T : V → V is linear.
Then v is an eigenvector of T with eigenvalue λ if and only if [v]β is an eigenvector of left-multiplication by

[T ]ββ with eigenvalue λ.

◦ Proof: Note that v 6= 0 if and only if [v]β 6= 0, so now assume v 6= 0.

◦ Then v is an eigenvector of T with eigenvalue λ ⇐⇒ T (v) = λv ⇐⇒ [T (v)]β = [λv]β ⇐⇒
[T ]ββ [v]β = λ[v]β ⇐⇒ [v]β is an eigenvector of left-multiplication by [T ]ββ with eigenvalue λ.

5.1.2 Eigenvalues and Eigenvectors of Matrices

• We will now study eigenvalues and eigenvectors of matrices. For convenience, we restate the de�nition for
this setting:

• De�nition: For A an n× n matrix, a nonzero vector x with Ax = λx is called1 an eigenvector of A, and the
corresponding scalar λ is called an eigenvalue of A.

◦ Example: If A =

[
2 3
1 4

]
, the vector x =

[
3
−1

]
is an eigenvector of A with eigenvalue 1, because

Ax =

[
2 3
1 4

] [
3
−1

]
=

[
3
−1

]
= x.

◦ Example: If A =

 2 −4 5
2 −2 5
2 1 2

, the vector x =

 1
2
2

 is an eigenvector of A with eigenvalue 4, because

Ax =

 2 −4 5
2 −2 5
2 1 2

 1
2
2

 =

 4
8
8

 = 4x.

• Eigenvalues and eigenvectors can involve complex numbers, even if the matrix A only has real-number entries.
We will always work with complex numbers unless speci�cally indicated otherwise.

◦ Example: If A =

 6 3 −2
−2 0 0
6 4 2

, the vector x =

 1− i
2i
2

 is an eigenvector of A with eigenvalue 1+ i,

because Ax =

 6 3 −2
−2 0 0
6 4 −2

 1− i
2i
2

 =

 2
−2 + 2i
2 + 2i

 = (1 + i)x.

• It may at �rst seem that a given matrix may have many eigenvectors with many di�erent eigenvalues. But
in fact, any n × n matrix can only have a few eigenvalues, and there is a simple way to �nd them all using
determinants:

• Proposition (Computing Eigenvalues): If A is an n× n matrix, the scalar λ is an eigenvalue of A if and only
det(λI −A) = 0.

1Technically, such a vector x is a �right eigenvector� of A: this stands in contrast to a vector y with yA = λy, which is called
a �left eigenvector� of A. We will only consider right-eigenvectors in our discussion: we do not actually lose anything by ignoring
left-eigenvectors, because a left-eigenvector of A is the same as the transpose of a right-eigenvector of AT .
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◦ Proof: Suppose λ is an eigenvalue with associated nonzero eigenvector x.

◦ Then Ax = λx, or as we observed earlier, (λI −A)x = 0.

◦ But from our results on invertible matrices, the matrix equation (λI − A)x = 0 has a nonzero solution
for x if and only if the matrix λI − A is not invertible, which is in turn equivalent to saying that
det(λI −A) = 0.

• When we expand the determinant det(tI −A), we will obtain a polynomial of degree n in the variable t:

• De�nition: For an n×nmatrixA, the degree-n polynomial p(t) = det(tI−A) is called the characteristic polynomial
of A, and its roots are precisely the eigenvalues of A.

◦ Some authors instead de�ne the characteristic polynomial as the determinant of the matrix A− tI rather
than tI −A. We de�ne it this way because then the coe�cient of tn will always be 1, rather than (−1)n.

• To �nd the eigenvalues of a matrix, we need only �nd the roots of its characteristic polynomial.

• When searching for roots of polynomials of small degree, the following case of the rational root test is often
helpful.

• Proposition: Suppose the polynomial p(t) = tn+ · · ·+b has integer coe�cients and leading coe�cient 1. Then
any rational number that is a root of p(t) must be an integer that divides b.

◦ The proposition cuts down on the amount of trial and error necessary for �nding rational roots of
polynomials, since we only need to consider integers that divide the constant term.

◦ Of course, a generic polynomial will not have a rational root, so to compute eigenvalues in practice
one generally needs to use some kind of numerical approximation procedure to �nd roots. (But we will
arrange the examples so that the polynomials will factor nicely.)

• Example: Find the eigenvalues of A =

[
3 1
2 4

]
.

◦ First we compute the characteristic polynomial det(tI −A) =

∣∣∣∣ t− 3 −1
−2 t− 4

∣∣∣∣ = t2 − 7t+ 10.

◦ The eigenvalues are then the zeroes of this polynomial. Since t2 − 7t + 10 = (t − 2)(t − 5) we see that

the zeroes are t = 2 and t = 5, meaning that the eigenvalues are 2 and 5 .

• Example: Find the eigenvalues of A =

 1 4
√

3
0 3 −8
0 0 π

.

◦ Observe that det(tI − A) =

∣∣∣∣∣∣
t− 1 −4 −

√
3

0 t− 3 8
0 0 t− π

∣∣∣∣∣∣ = (t − 1)(t − 3)(t − π) since the matrix is upper-

triangular. Thus, the eigenvalues are 1, 3, π .

• The idea from the example above works in generality:

• Proposition (Eigenvalues of Triangular Matrix): The eigenvalues of an upper-triangular or lower-triangular
matrix are its diagonal entries.

◦ Proof: If A is an n× n upper-triangular (or lower-triangular) matrix, then so is tI −A.
◦ Then by properties of determinants, det(tI−A) is equal to the product of the diagonal entries of tI−A.
◦ Since these diagonal entries are simply t− ai,i for 1 ≤ i ≤ n, the eigenvalues are ai,i for 1 ≤ i ≤ n, which
are simply the diagonal entries of A.

• It can happen that the characteristic polynomial has a repeated root. In such cases, it is customary to note
that the associated eigenvalue has �multiplicity� and include the eigenvalue the appropriate number of extra
times when listing them.
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◦ For example, if a matrix has characteristic polynomial t2(t−1)3, we would say the eigenvalues are 0 with
multiplicity 2, and 1 with multiplicity 3. We would list the eigenvalues as λ = 0, 0, 1, 1, 1.

• Example: Find the eigenvalues of A =

 1 −1 0
1 3 0
0 0 0

.

◦ By expanding along the bottom row we see det(tI − A) =

∣∣∣∣∣∣
t− 1 1 0
−1 t− 3 0
0 0 t

∣∣∣∣∣∣ = t

∣∣∣∣ t− 1 1
−1 t− 3

∣∣∣∣ =

t(t2 − 4t+ 4) = t(t− 2)2.

◦ Thus, the characteristic polynomial has a single root t = 0 and a double root t = 2, so A has an eigenvalue
0 of multiplicity 1 and an eigenvalue 2 of multiplicity 2. As a list, the eigenvalues are λ = 0, 2, 2 .

• Example: Find the eigenvalues of A =

 1 1 0
0 1 1
0 0 1

.
◦ Since A is upper-triangular, the eigenvalues are the diagonal entries, so A has an eigenvalue 1 of multi-
plicity 3. As a list, the eigenvalues are λ = 1, 1, 1 .

• Note also that the characteristic polynomial may have non-real numbers as roots, even if the entries of the
matrix are real.

◦ Since the characteristic polynomial will have real coe�cients, any non-real eigenvalues will come in
complex conjugate pairs. Furthermore, the eigenvectors for these eigenvalues will also necessarily contain
non-real entries.

• Example: Find the eigenvalues of A =

[
1 1
−2 3

]
.

◦ First we compute the characteristic polynomial det(tI −A) =

∣∣∣∣ t− 1 −1
2 t− 3

∣∣∣∣ = t2 − 4t+ 5.

◦ The eigenvalues are then the zeroes of this polynomial. By the quadratic formula, the roots are
4±
√
−4

2
= 2± i, so the eigenvalues are 2 + i, 2− i .

• Example: Find the eigenvalues of A =

 −1 2 −4
3 −2 1
4 −4 4

.
◦ By expanding along the top row,

det(tI −A) =

∣∣∣∣∣∣
t+ 1 −2 4
−3 t+ 2 −1
−4 4 t− 4

∣∣∣∣∣∣
= (t+ 1)

∣∣∣∣ t+ 2 −1
4 t− 4

∣∣∣∣+ 2

∣∣∣∣ −3 −1
−4 t− 4

∣∣∣∣+ 4

∣∣∣∣ −3 t+ 2
−4 4

∣∣∣∣
= (t+ 1)(t2 − 2t− 4) + 2(−3t+ 8) + 4(4t− 4)

= t3 − t2 + 4t− 4.

◦ To �nd the roots, we wish to solve the cubic equation t3 − t2 + 4t− 4 = 0.

◦ By the rational root test, if the polynomial has a rational root then it must be an integer dividing −4:
that is, one of ±1, ±2, ±4. Testing the possibilities reveals that t = 1 is a root, and then we get the
factorization (t− 1)(t2 + 4) = 0.

◦ The roots of the quadratic are t = ±2i, so the eigenvalues are 1, 2i, −2i .
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5.1.3 Eigenspaces

• Using the characteristic polynomial, we can �nd all the eigenvalues of a matrix A without actually determining
the associated eigenvectors. However, we often also want to �nd the eigenvectors associated to each eigenvalue.

• We might hope that there is a straightforward way to describe all the eigenvectors, and (conveniently) there
is: the set of all eigenvectors with a particular eigenvalue λ has a vector space structure.

• Proposition (Eigenspaces): If T : V → V is linear, then for any �xed value of λ, the set Eλ of vectors in V
satisfying T (v) = λv is a subspace of V . This space Eλ is called the eigenspace associated to the eigenvalue
λ, or more simply the λ-eigenspace.

◦ Notice that Eλ is precisely the set of eigenvectors with eigenvalue λ, along with the zero vector.

◦ The eigenspaces for a matrix A are de�ned in the same way: Eλ is the space of vectors v such that
Av = λv.

◦ Proof: By de�nition, Eλ is the kernel of the linear transformation λI − T , and is therefore a subspace of
V .

• Example: Find the 1-eigenspaces, and their dimensions, for A =

[
1 0
0 1

]
and B =

[
1 1
0 1

]
.

◦ For the 1-eigenspace of A, we want to �nd all vectors with

[
1 0
0 1

] [
a
b

]
=

[
a
b

]
.

◦ Clearly, all vectors satisfy this equation, so the 1-eigenspace of A is the set of all vectors

[
a
b

]
, and

has dimension 2.

◦ For the 1-eigenspace of B, we want to �nd all vectors with

[
1 1
0 1

] [
a
b

]
=

[
a
b

]
, or equivalently,[

a+ b
b

]
=

[
a
b

]
.

◦ The vectors satisfying the equation are those with b = 0, so the 1-eigenspace of B is the set of vectors of

the form

[
a
0

]
, and has dimension 1.

◦ Notice that the characteristic polynomial of each matrix is (t − 1)2, since both matrices are upper-
triangular, and they both have a single eigenvalue λ = 1 of multiplicity 2. Nonetheless, the matrices do
not have the same eigenvectors, and the dimensions of their 1-eigenspaces are di�erent.

• To compute a basis for the λ-eigenspace we must solve the system (λI − A)v = 0, which we can do by
row-reducing the matrix λI −A.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

[
2 2
3 1

]
.

◦ We have tI −A =

[
t− 2 −2
−3 t− 1

]
, so p(t) = det(tI −A) = (t− 2)(t− 1)− (−2)(−3) = t2 − 3t− 4.

◦ Since p(t) = t2 − 3t− 4 = (t− 4)(t+ 1), the eigenvalues are λ = −1, 4 .

◦ For λ = −1, we want to �nd the nullspace of

[
−1− 2 −2
−3 −1− 1

]
=

[
−3 −2
−3 −2

]
. By row-reducing we

�nd the row-echelon form is

[
−3 −2
0 0

]
, so the (−1)-eigenspace is 1-dimensional with basis

[
−2
3

]
.

◦ For λ = 4, we want to �nd the nullspace of

[
4− 2 −2
−3 4− 1

]
=

[
2 −2
−3 3

]
. By row-reducing we �nd

the row-echelon form is

[
1 −1
0 0

]
, so the 4-eigenspace is 1-dimensional with basis

[
1
1

]
.
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• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 1 0 1
−1 1 3
−1 0 3

.

◦ First, we have tI−A =

 t− 1 0 −1
1 t− 1 −3
1 0 t− 3

, so p(t) = (t−1) ·
∣∣∣∣ t− 1 −3

0 t− 3

∣∣∣∣+(−1) ·
∣∣∣∣ 1 t− 1

1 0

∣∣∣∣ =

(t− 1)2(t− 3) + (t− 1).

◦ Since p(t) = (t− 1) · [(t− 1)(t− 3) + 1] = (t− 1)(t− 2)2, the eigenvalues are λ = 1, 2, 2 .

◦ For λ = 1 we want to �nd the nullspace of

 1− 1 0 −1
1 1− 1 −3
1 0 1− 3

 =

 0 0 −1
1 0 −3
1 0 −3

. This matrix's

reduced row-echelon form is

 1 0 0
0 0 1
0 0 0

, so the 1-eigenspace is 1-dimensional with basis

 0
1
0

 .
◦ For λ = 2 we want to �nd the nullspace of

 2− 1 0 −1
1 2− 1 −3
1 0 2− 3

 =

 1 0 −1
1 1 −3
1 0 −1

. This matrix's

reduced row-echelon form is

 1 0 −1
0 1 −2
0 0 0

, so the 2-eigenspace is 1-dimensional with basis

 1
2
1

 .

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 0 0 0
1 0 −1
0 1 0

.

◦ We have tI −A =

 t 0 0
−1 t 1
0 −1 t

, so p(t) = det(tI −A) = t ·
∣∣∣∣ t 1
−1 t

∣∣∣∣ = t · (t2 + 1).

◦ Since p(t) = t · (t2 + 1), the eigenvalues are λ = 0, i, −i .

◦ For λ = 0 we want to �nd the nullspace of

 0 0 0
−1 0 1
0 −1 0

. This matrix's reduced row-echelon form is

 1 0 −1
0 1 0
0 0 0

, so the 0-eigenspace is 1-dimensional with basis

 1
0
1

 .
◦ For λ = i we want to �nd the nullspace of

 i 0 0
−1 i 1
0 −1 i

. This matrix's reduced row-echelon form is

 1 0 0
0 1 −i
0 0 0

, so the i-eigenspace is 1-dimensional with basis

 0
i
1

 .
◦ For λ = −i we want to �nd the nullspace of

 −i 0 0
−1 −i 1
0 −1 −i

. This matrix's reduced row-echelon form

is

 1 0 0
0 1 i
0 0 0

, so the (−i)-eigenspace is 1-dimensional with basis

 0
−i
1

 .
• Notice that in the example above, with a real matrix having complex-conjugate eigenvalues, the associated
eigenvectors were also complex conjugates. This is no accident:
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• Proposition (Conjugate Eigenvalues): If A is a real matrix and v is an eigenvector with a complex eigenvalue
λ, then the complex conjugate v is an eigenvector with eigenvalue λ. In particular, a basis for the λ-eigenspace
is given by the complex conjugate of a basis for the λ-eigenspace.

◦ Proof: The �rst statement follows from the observation that the complex conjugate of a product or sum
is the appropriate product or sum of complex conjugates, so if A and B are any matrices of compatible
sizes for multiplication, we have AB = A B.

◦ Thus, if Av = λv, taking complex conjugates gives Av = λv, and since A = A because A is a real
matrix, we see Av = λv: thus, v is an eigenvector with eigenvalue λ.

◦ The second statement follows from the �rst, since complex conjugation does not a�ect linear independence
or dimension.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

[
3 −1
2 5

]
.

◦ We have tI − A =

[
t− 3 1
−2 t− 5

]
, so p(t) = det(tI − A) = (t − 3)(t − 5) − (−2)(1) = t2 − 8t + 17, so

the eigenvalues are λ = 4± i .

◦ For λ = 4 + i, we want to �nd the nullspace of

[
t− 3 1
−2 t− 5

]
=

[
1 + i 1
−2 −1 + i

]
. Row-reducing this

matrix yields [
1 + i 1
−2 −1 + i

]
R2+(1−i)R1−−−−−−−−→

[
1 + i 1

0 0

]

from which we can see that the (4 + i)-eigenspace is 1-dimensional and spanned by

[
1

−1− i

]
.

◦ For λ = 4 − i we can simply take the conjugate of the calculation we made for λ = 4 + i: thus, the

(4− i)-eigenspace is also 1-dimensional and spanned by

[
1

−1 + i

]
.

• We will mention one more result about eigenvalues that can be useful in double-checking calculations:

• Theorem (Eigenvalues, Trace, and Determinant): The product of the eigenvalues of A is the determinant of
A, and the sum of the eigenvalues of A equals the trace of A.

◦ Recall that the trace of a matrix is de�ned to be the sum of its diagonal entries.

◦ Proof: Let p(t) be the characteristic polynomial of A.

◦ If we expand out the product p(t) = (t− λ1) · (t− λ2) · · · (t− λn), we see that the constant term is equal
to (−1)nλ1λ2 · · ·λn.
◦ But the constant term is also just p(0), and since p(t) = det(tI − A) we have p(0) = det(−A) =

(−1)n det(A): thus, λ1λ2 · · ·λn = det(A).

◦ Furthermore, upon expanding out the product p(t) = (t − λ1) · (t − λ2) · · · (t − λn), we see that the
coe�cient of tn−1 is equal to −(λ1 + · · ·+ λn).

◦ If we expand out the determinant det(tI − A) to �nd the coe�cient of tn−1, we can show (with a little
bit of e�ort) that the coe�cient is the negative of the sum of the diagonal entries of A.

◦ Thus, setting the two expressions equal shows that the sum of the eigenvalues equals the trace of A.

• Example: Find the eigenvalues of the matrix A =

 2 1 1
−2 −1 −2
2 2 −3

, and verify the formulas for trace and

determinant in terms of the eigenvalues.
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◦ By expanding along the top row, we can compute

det(tI −A) = (t− 2)

∣∣∣∣ t+ 1 2
−2 t+ 3

∣∣∣∣− (−1)

∣∣∣∣ 2 2
−2 t+ 3

∣∣∣∣+ (−1)

∣∣∣∣ 2 t+ 1
−2 −2

∣∣∣∣
= (t− 2)(t2 + 4t+ 7) + (2t+ 10)− (2t− 2) = t3 + 2t2 − t− 2.

◦ To �nd the eigenvalues, we wish to solve the cubic equation t3 + 2t2 − t− 2 = 0.

◦ By the rational root test, if the polynomial has a rational root then it must be an integer dividing −2:
that is, one of ±1, ±2. Testing the possibilities reveals that t = 1, t = −1, and t = −2 are each roots,
from which we obtain the factorization (t− 1)(t+ 1)(t+ 2) = 0.

◦ Thus, the eigenvalues are t = −2,−1, 1.

◦ We see that tr(A) = 2 + (−1) + (−3) = −2, while the sum of the eigenvalues is (−2) + (−1) + 1 = −2.

◦ Also, det(A) = 2, and the product of the eigenvalues is (−2)(−1)(1) = 2.

• In all of the examples above, the dimension of each eigenspace was less than or equal to the multiplicity of
the eigenvalue as a root of the characteristic polynomial. This is true in general:

• Theorem (Eigenvalue Multiplicity): If λ is an eigenvalue of the matrix A which appears exactly k times as a
root of the characteristic polynomial, then the dimension of the eigenspace corresponding to λ is at least 1
and at most k.

◦ Remark: The number of times that λ appears as a root of the characteristic polynomial is sometimes called
the �algebraic multiplicity� of λ, and the dimension of the eigenspace corresponding to λ is sometimes
called the �geometric multiplicity� of λ. In this language, the theorem above says that the geometric
multiplicity is less than or equal to the algebraic multiplicity.

◦ Example: If the characteristic polynomial of a matrix is (t − 1)3(t − 3)2, then the eigenspace for λ = 1
is at most 3-dimensional, and the eigenspace for λ = 3 is at most 2-dimensional.

◦ Proof: The statement that the eigenspace has dimension at least 1 is immediate, because (by assumption)
λ is a root of the characteristic polynomial and therefore has at least one nonzero eigenvector associated
to it.

◦ For the other statement, observe that the dimension of the λ-eigenspace is the dimension of the solution
space of the homogeneous system (λI − A)x = 0. (Equivalently, it is the dimension of the nullspace of
the matrix λI −A.)
◦ If λ appears k times as a root of the characteristic polynomial, then when we put the matrix λI −A into
its reduced row-echelon form B, we claim that B must have at most k rows of all zeroes.

◦ Otherwise, the matrix B (and hence λI −A too, since the nullity and rank of a matrix are not changed
by row operations) would have 0 as an eigenvalue more than k times, because B is in echelon form and
therefore upper-triangular.

◦ But the number of rows of all zeroes in a square matrix in reduced row-echelon form is the same as
the number of nonpivotal columns, which is the number of free variables, which is the dimension of the
solution space.

◦ So, putting all the statements together, we see that the dimension of the eigenspace is at most k.

5.2 Diagonalization

• Let us now return to our original question that motivated our discussion of eigenvalues and eigenvectors in
the �rst place: given a linear operator T : V → V on a vector space V , can we �nd a basis β of V such that
the associated matrix [T ]ββ is a diagonal matrix?
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5.2.1 Criterion for Diagonalizability

• De�nition: A linear operator T : V → V on a �nite-dimensional vector space V is diagonalizable if there
exists a basis β of V such that the associated matrix [T ]ββ is a diagonal matrix.

◦ We can also formulate essentially the same de�nition for matrices: if A is an n×n matrix, then A is the
associated matrix of the linear transformation T given by left-multiplication by A.

◦ We then would like to say that A is diagonalizable when T is diagonalizable.

◦ By our results on change of basis, this is equivalent to saying that there exists an invertible matrix
Q, namely the change-of-basis matrix Q = [I]βγ , for which Q

−1AQ = [I]βγ [T ]γγ [I]γβ = [T ]ββ is a diagonal
matrix.

• De�nition: An n×n matrix A is diagonalizable if there exists an invertible n×n matrix Q for which Q−1AQ
is a diagonal matrix.

◦ Recall that we say two n× n matrices A and B are similar if there exists an invertible n× n matrix Q
such that B = Q−1AQ.

• Our goal is to study and then characterize diagonalizable linear transformations, which (per the above dis-
cussion) is equivalent to characterizing diagonalizable matrices.

• Proposition (Characteristic Polynomials and Similarity): If A and B are similar, then they have the same
characteristic polynomial, determinant, trace, and eigenvalues (and their eigenvalues have the same multiplic-
ities).

◦ Proof: Suppose B = Q−1AQ. For the characteristic polynomial, we simply compute det(tI − B) =
det(Q−1(tI)Q−Q−1AQ) = det(Q−1(tI −A)Q) = det(Q−1) det(tI −A) det(Q) = det(tI −A).

◦ The determinant and trace are both coe�cients (up to a factor of ±1) of the characteristic polynomial,
so they are also equal.

◦ Finally, the eigenvalues are the roots of the characteristic polynomial, so they are the same and occur
with the same multiplicities for A and B.

• The eigenvectors for similar matrices are also closely related:

• Proposition (Eigenvectors and Similarity): If B = Q−1AQ, then v is an eigenvector of B with eigenvalue λ if
and only if Qv is an eigenvector of A with eigenvalue λ.

◦ Proof: Since Q is invertible, v = 0 if and only if Qv = 0. Now assume v 6= 0.

◦ First suppose v is an eigenvector of B with eigenvalue λ. Then A(Qv) = Q(Q−1AQ)v = Q(Bv) =
Q(λv) = λ(Qv), meaning that Qv is an eigenvector of A with eigenvalue λ.

◦ Conversely, if Qv is an eigenvector of A with eigenvalue λ. Then Bv = Q−1A(Qv) = Q−1λ(Qv) =
λ(Q−1Qv) = λv, so v is an eigenvector of B with eigenvalue λ.

• Corollary: If B = Q−1AQ, then the eigenspaces for B have the same dimensions as the eigenspaces for A.

• As we have essentially worked out already, diagonalizability is equivalent to the existence of a basis of eigen-
vectors:

• Theorem (Diagonalizability): A linear operator T : V → V is diagonalizable if and only if there exists a basis
β of V consisting of eigenvectors of T .

◦ Proof: First suppose that V has a basis of eigenvectors β = {v1, . . . ,vn} with respective eigenvalues

λ1, · · · , λn. Then by hypothesis, T (vi) = λivi, and so [T ]ββ is the diagonal matrix with diagonal entries
λ1, . . . , λn.

◦ Conversely, suppose T is diagonalizable and let β = {v1, . . . ,vn} be a basis such that [T ]ββ is a diagonal
matrix whose diagonal entries are λ1, . . . , λn. Then by hypothesis, each vi is nonzero and T (vi) = λivi,
so each vi is an eigenvector of T .
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• Although the result above does give a characterization of diagonalizable matrices, it is not entirely obvious
how to determine whether a basis of eigenvectors exists.

◦ It turns out that we can essentially check this property on each eigenspace.

◦ As we already proved, the dimension of the λ-eigenspace of A is less than or equal to the multiplicity of
λ as a root of the characteristic polynomial.

◦ But since the characteristic polynomial has degree n, that means the sum of the dimensions of the
λ-eigenspaces is at most n, and can equal n only when each eigenspace has dimension equal to the
multiplicity of its corresponding eigenvalue.

◦ Our goal is to show that the converse holds as well: if each eigenspace has the proper dimension, then
the matrix will be diagonalizable.

• We �rst need an intermediate result about linear independence of eigenvectors having distinct eigenvalues:

• Theorem (Independent Eigenvectors): If v1,v2, . . . ,vn are eigenvectors of T associated to distinct eigenvalues
λ1, λ2, . . . , λn, then v1,v2, . . . ,vn are linearly independent.

◦ Proof: We induct on n.

◦ The base case n = 1 is trivial, since by de�nition an eigenvector cannot be the zero vector.

◦ Now suppose n ≥ 2 and that we had a linear dependence a1v1+· · ·+anvn = 0 for eigenvectors v1, . . . ,vn
having distinct eigenvalues λ1, λ2, . . . , λn,

◦ Applying T to both sides yields 0 = T (0) = T (a1v1 + · · ·+ anvn) = a1(λ1v1) + · · ·+ an(λnvn).

◦ But now if we scale the original dependence by λ1 and subtract this new relation (to eliminate v1), we
obtain a2(λ2 − λ1)v2 + a3(λ3 − λ1)v3 + · · ·+ an(λn − λ1)vn = 0.

◦ By the inductive hypothesis, all coe�cients of this dependence must be zero, and so since λk 6= λ1 for
each k, we conclude that a2 = · · · = an = 0. Then a1v1 = 0 implies a1 = 0 also, so we are done.

• Theorem (Diagonalizability Criterion): An n× n matrix is diagonalizable (over the complex numbers) if and
only if for each eigenvalue λ, the dimension of the λ-eigenspace is equal to the multiplicity of λ as a root of
the characteristic polynomial.

◦ Proof: If the n× n matrix A is diagonalizable, then by our previous theorem on diagonalizability, V has
a basis β of eigenvectors for A.

◦ For any eigenvalue λi of A, let bi be the number of elements of β having eigenvalue λi, and let di be the
multiplicity of λi as a root of the characteristic polynomial.

◦ Then
∑
i bi = n since β is a basis of V , and

∑
i di = n by our results about the characteristic polynomial,

and bi ≤ di as we proved before. Thus, n =
∑
i bi ≤

∑
di = n, so ni = di for each i.

◦ For the other direction, suppose that all eigenvalues of A lie in the scalar �eld of V , and that bi = di for all
i. Then let β be the union of bases for each eigenspace of A: by hypothesis, β contains

∑
i bi =

∑
i di = n

vectors, so to conclude it is a basis of the n-dimensional vector space V , we need only show that it is
linearly independent.

◦ Explicitly, let βi = {vi,1, . . . ,vi,ji} be a basis of the λi-eigenspace for each i, so that β = {v1,1,v1,2, . . . ,vk,j}
and Avi,j = λivi,j for each pair (i, j).

◦ Suppose we have a dependence a1,1v1,1 + · · ·+ ak,jvk,j = 0. Let wi =
∑
j ai,jvi,j , and observe that wi

has Awi = λiwi, and that w1 + w2 + · · ·+ wk = 0.

◦ If any of the wi were nonzero, then we would have a nontrivial linear dependence between eigenvectors
of A having distinct eigenvalues, which is impossible by the previous theorem.

◦ Therefore, each wi = 0, meaning that ai,1vi,1 + · · · + ai,jivi,ji = 0. But then since βi is linearly
independent, all of the coe�cients ai,j must be zero. Thus, β is linearly independent and therefore is a
basis for V .

• Corollary: If A is an n× n matrix with n distinct eigenvalues, then A is diagonalizable.

◦ Proof: Every eigenvalue must occur with multiplicity 1 as a root of the characteristic polynomial, since
there are n eigenvalues and the sum of their multiplicities is also n.

◦ Then the dimension of each eigenspace is equal to 1 (since it is always between 1 and the multiplicity),
so by the theorem above, A is diagonalizable.
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5.2.2 Calculating Diagonalizations

• The proof of the diagonalizability theorem gives an explicit procedure for determining both diagonalizability
and the diagonalizing matrix. To determine whether a linear transformation T (or matrix A) is diagonalizable,

and if so how to �nd a basis β such that [T ]ββ is diagonal (or a matrix Q with Q−1AQ diagonal), follow these
steps:

◦ Step 1: Find the characteristic polynomial and eigenvalues of T (or A).

◦ Step 2: Find a basis for each eigenspace of T (or A).

◦ Step 3a: Determine whether T (or A) is diagonalizable. If each eigenspace is �nondefective� (i.e., its
dimension is equal to the number of times the corresponding eigenvalue appears as a root of the charac-
teristic polynomial) then T is diagonalizable, and otherwise, T is not diagonalizable.

◦ Step 3b: For a diagonalizable linear transformation T , take β to be a basis of eigenvectors for T . For a
diagonalizable matrix A, the diagonalizing matrix Q can be taken to be the matrix whose columns are
a basis of eigenvectors of A.

• Example: For T : R2 → R2 given by T (x, y) = 〈−2y, 3x+ 5y〉, determine whether T is diagonalizable and if

so, �nd a basis β such that [T ]ββ is diagonal.

◦ The associated matrix A for T relative to the standard basis is A =

[
0 −2
3 5

]
.

◦ For the characteristic polynomial, we compute det(tI−A) = t2−5t+6 = (t−2)(t−3), so the eigenvalues
are therefore λ = 2, 3. Since the eigenvalues are distinct we know that T is diagonalizable.

◦ A short calculation yields that 〈1,−1〉 is a basis for the 2-eigenspace, and that 〈−2, 3〉 is a basis for the
3-eigenspace.

◦ Thus, for β = {〈1,−1〉 , 〈−2, 3〉} , we can see that [T ]ββ =

[
2 0
0 3

]
is diagonal.

• Example: For A =

 1 −1 −1
0 1 −1
0 0 1

, determine whether there exists a diagonal matrix D and an invertible

matrix Q with D = Q−1AQ, and if so, �nd them.

◦ We compute det(tI −A) = (t− 1)3 since tI −A is upper-triangular, and the eigenvalues are λ = 1, 1, 1.

◦ The 1-eigenspace is then the nullspace of I − A =

 0 1 1
0 0 1
0 0 0

, which (since the matrix is already in

row-echelon form) is 1-dimensional and spanned by

 1
0
0

.
◦ Since the eigenspace for λ = 1 is 1-dimensional but the eigenvalue appears 3 times as a root of the

characteristic polynomial, the matrix A is not diagonalizable and there is no such Q.

• Example: For A =

 1 −1 0
0 2 0
0 2 1

, determine whether there exists a diagonal matrix D and an invertible

matrix Q with D = Q−1AQ, and if so, �nd them.

◦ We compute det(tI −A) = (t− 1)2(t− 2), so the eigenvalues are λ = 1, 1, 2.

◦ A short calculation yields that

 1
0
0

,
 0

0
1

 is a basis for the 1-eigenspace and that

 −1
1
2

 is a basis

for the 2-eigenspace.
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◦ Since the eigenspaces both have the proper dimensions, A is diagonalizable, and we can take D = 1 0 0
0 1 0
0 0 2

 with Q =

 1 0 −1
0 0 1
0 1 2

 .

◦ To check: we haveQ−1 =

 1 1 0
0 −2 1
0 1 0

, soQ−1AQ =

 1 1 0
0 −2 1
0 1 0

 1 −1 0
0 2 0
0 2 1

 1 0 −1
0 0 1
0 1 2

 = 1 0 0
0 1 0
0 0 2

 = D.

◦ Remark: We could (for example) also take D =

 2 0 0
0 1 0
0 0 1

 if we wanted, and the associated conju-

gating matrix could have been Q =

 −1 1 0
1 0 0
2 0 1

 instead. There is no particular reason to care much

about which diagonal matrix we want as long as we make sure to arrange the eigenvectors in the correct
order. We could also have used any other bases for the eigenspaces to construct Q.

• Knowing that a matrix is diagonalizable can be very computationally useful.

◦ For example, if A is diagonalizable with D = Q−1AQ, then it is very easy to compute any power of A.

◦ Explicitly, since we can rearrange to write A = QDQ−1, then Ak = (QDQ−1)k = Q(Dk)Q−1, since the
conjugate of the kth power is the kth power of a conjugate.

◦ But since D is diagonal, Dk is simply the diagonal matrix whose diagonal entries are the kth powers of
the diagonal entries of D.

• Example: If A =

[
−2 −6
3 7

]
, �nd a formula for the kth power Ak, for k a positive integer.

◦ First, we (try to) diagonalize A. Since det(tI − A) = t2 − 5t + 4 = (t − 1)(t − 4), the eigenvalues are 1
and 4. Since these are distinct, A is diagonalizable.

◦ Computing the eigenvectors of A yields that

[
−2
1

]
is a basis for the 1-eigenspace, and

[
−1
1

]
is a

basis for the 4-eigenspace.

◦ Then D = Q−1AQ where D =

[
1 0
0 4

]
and Q =

[
−2 −1
1 1

]
, and also Q−1 =

[
−1 −1
1 2

]
.

◦ ThenDk =

[
1 0
0 4k

]
, soAk = QDkQ−1 =

[
−2 −1
1 1

] [
1 0
0 4k

] [
−1 −1
1 2

]
=

[
2− 4k 2− 2 · 4k
−1 + 4k −1 + 2 · 4k

]
.

◦ Remark: This formula also makes sense for values of k which are not positive integers. For example, if

k = −1 we get the matrix

[
7/4 3/2
−3/4 −1/2

]
, which is actually the inverse matrix A−1. And if we set

k =
1

2
we get the matrix B =

[
0 −2
1 3

]
, whose square satis�es B2 =

[
−2 −6
3 7

]
= A.

• By diagonalizing a given matrix, we can often prove theorems in a much simpler way. Here is a typical
example:

• De�nition: If T : V → V is a linear operator and p(x) = a0 + a1x + · · · + anx
n is a polynomial, we de�ne

p(T ) = a0I + a1T + · · ·+ anT
n. Similarly, if A is an n×n matrix, we de�ne p(A) = a0In + a1A+ · · ·+ anA

n.

◦ Since conjugation preserves sums and products, it is easy to check that Q−1p(A)Q = p(A−1AQ) for any
invertible Q.
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• Theorem (Cayley-Hamilton): If p(x) is the characteristic polynomial of a matrix A, then p(A) is the zero
matrix 0.

◦ The same result holds for the characteristic polynomial of a linear operator T : V → V .

◦ Example: For the matrix A =

[
2 2
3 1

]
, we have det(tI − A) =

∣∣∣∣ t− 2 −2
−3 t− 1

∣∣∣∣ = (t − 1)(t − 2) − 6 =

t2 − 3t− 4. We can compute A2 =

[
10 6
9 7

]
, and then indeed we have A2 − 3A− 4I2 =

[
10 6
9 7

]
−[

6 6
9 3

]
−
[

4 0
0 4

]
=

[
0 0
0 0

]
.

◦ Proof (if A is diagonalizable): If A is diagonalizable, then let D = Q−1AQ with D diagonal, and p(x) be
the characteristic polynomial of A.

◦ The diagonal entries of D are the eigenvalues λ1, · · · , λn of A, hence are roots of the characteristic
polynomial of A. So p(λ1) = · · · = p(λn) = 0.

◦ Then, because raising D to a power just raises all of its diagonal entries to that power, we can see that

p(D) = p


 λ1

. . .

λn


 =

 p(λ1)
. . .

p(λn)

 =

 0
. . .

0

 = 0.

◦ Now by conjugating each term and adding the results, we see that 0 = p(D) = p(Q−1AQ) = Q−1 [p(A)]Q.
So by conjugating back, we see that p(A) = Q0Q−1 = 0, as claimed.

◦ Remark: In the case where A is not diagonalizable, the proof of the Cayley-Hamilton theorem is more
di�cult2.

5.2.3 The Spectral Theorem for Symmetric Matrices

• An important computational result is a result known as the real spectral theorem, which says that every real
symmetric matrix is diagonalizable. We will prove this result and then give some of its applications.

• De�nition: If A is an n× n matrix, we say A is symmetric if AT = A.

◦ We will also make use of the fact that if v and w are column vectors in Rn, then we can express the dot
product v ·w as the matrix product vTw.

◦ In particular, note that vTv = ||v||2, so vTv = 0 if and only if v = 0.

• We will also use a few observations about orthogonal matrices:

• De�nition: An n×n matrix U such that U−1 = UT (equivalently, UTU = In) is called an orthogonal matrix.

◦ Observe that an n×n matrix U is orthogonal if and only if its columns are an orthonormal basis for Rn,
since the dot product of its ith column with its jth column is the (i, j)-entry in UTU .

• Proposition (Properties of Symmetric Matrices): Suppose A is an n × n symmetric real matrix. Then the
following properties hold:

1. Eigenvectors of A with di�erent eigenvalues are orthogonal.

◦ Proof: Suppose that Av1 = λ1v1 and Av2 = λ2v2 where λ1 6= λ2.

◦ Then, since A = AT , we have λ2v
T
1 v2 = vT1 (λ2v2) = vT1 (Av2) = vT1 A

Tv2 = (Av1)Tv2 =
(λ1v1)Tv2 = λ1v

T
1 v2 since λ1 is real.

◦ But since λ1 6= λ2, this means vT1 v2 = 0, which is to say, v1 · v2 = 0, so v1 and v2 are orthogonal.

2. All eigenvalues of A are real numbers.

2One way to proceed is to note that even if A is a non-diagonalizable matrix with real entries, it is the limit of a sequence of
diagonalizable matrices (this is true because we may always perturb A slightly to make its eigenvalues unequal, which will yield a
diagonalizable matrix). Then since the characteristic polynomial is a continuous function of the entries of the matrix, passing it through
the limit shows that p(A) is still zero even for non-diagonalizable A.

14



◦ Proof: Suppose λ = a+ bi is an eigenvalue of A with eigenvector x + yi where x,y are real vectors.

◦ Then since A is a real matrix, λ = a− bi is also an eigenvalue of A with eigenvector x− yi.

◦ If λ is not real, then by (1), since λ 6= λ we see that (x + yi) · (x − yi) = 0. Expanding out yields
x · x − i(x · y) + i(y · x) − i2(y · y) = 0, which yields x · x + y · y = 0. But since x and y are real
vectors, this forces x = y = 0, which is impossible since 0 is not an eigenvector.

◦ Therefore, λ must be real, as claimed.

3. The matrix A is diagonalizable, and so Rn has a basis consisting of eigenvectors of A.

◦ Proof: Suppose that λ is an eigenvalue of A, which must be real by (2). Choose a unit eigenvector
e1 and then extend it to an orthonormal basis β = {e1, e2, . . . , en} for Rn.
◦ Let T : Rn → Rn be the linear transformation with T (v) = Av and let γ be the standard basis:
then A = [T ]γγ .

◦ If S = [I]βγ , then since the columns e1, . . . , en of S are orthonormal, we see that S is an orthogonal

matrix, so S−1 = ST . By our results on change of basis, we have [T ]ββ = SAS−1 = SAST . Therefore,

the transpose of [T ]ββ is (SAST )T = (ST )TATST = SATST = SAST , so it is also a symmetric
matrix.

◦ Now, since T (e1) = λe1, the �rst column of [T ]ββ is simply (λ, 0, . . . , 0)T . But since [T ]ββ is symmetric,

it actually has the form

[
λ 0
0 B

]
for some 1×(n−1) matrix A and some symmetric (n−1)×(n−1)

matrix B.

◦ By iterating this argument repeatedly on the smaller matrix B (which is still symmetric), we even-
tually obtain a diagonalization of A.

◦ Since the eigenvalues and eigenvectors of A are real, this also means that Rn has a basis consisting
of eigenvectors of A, as claimed.

• In fact, we can strengthen this argument to show that symmetric matrices are diagonalizable in a particularly
nice way:

• Theorem (Real Spectral Theorem): If A is a real symmetric matrix, then Rn has an orthonormal basis β of
eigenvectors of A. Therefore, A may be written in the form A = UDU−1 where D is a diagonal matrix with
real entries and U is an orthogonal matrix with real entries (i.e., satisfying U−1 = UT ).

◦ More succinctly, this result says that real symmetric matrices are orthogonally diagonalizable.

◦ Proof: As noted above, A has a basis of eigenvectors and is therefore diagonalizable.

◦ To get the more speci�c statement here, start with a basis for each eigenspace, and then apply Gram-
Schmidt, yielding an orthonormal basis for each eigenspace.

◦ Since A is diagonalizable, the union of these bases is a basis for V : furthermore, each of the vectors
has norm 1, and they are all orthogonal by property (1) above, so we obtain an orthonormal basis β of
eigenvectors.

◦ If U is the matrix whose columns are the vectors in the orthonormal basis β, then as we have repeat-
edly noted, we have A = UDU−1 where D is diagonal. Furthermore, because the columns of U are
orthonormal, as remarked above this means U is orthogonal, so U−1 = UT .

◦ Remark: The set of eigenvalues of A is called the spectrum of A. The spectral theorem shows that
the behavior of A on Rn can be decomposed into its eigenspaces where A acts very simply (as scalar
multiplication), with one piece coming from each piece of the spectrum. (This is the reason for the name
of the theorem.)

• Per the theorem above, if A is a real symmetric matrix, to �nd the decomposition A = UDU−1 where D is
diagonal and U is orthogonal, we simply take U to the matrix whose columns are an orthonormal basis of
eigenvectors of A and D to be the diagonal matrix with the corresponding eigenvalues.

• Example: For A =

[
3 6
6 8

]
, �nd a diagonal matrix D and an orthogonal matrix U such that A = UDU−1.

◦ First, we �nd the eigenvalues of A. The characteristic polynomial is p(t) = det(tI −A) = t2− 11t+ 12 =
(t+ 1)(t− 12) so the eigenvalues are λ = −1, 12.
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◦ Next, we �nd an orthonormal basis for each eigenspace. A short calculation shows that

[
−3
2

]
is a basis

for the (−1)-eigenspace and

[
2
3

]
is a basis for the 12-eigenspace, so normalizing these vectors yields an

orthonormal basis of eigenvectors
1√
13

[
−3
2

]
,

1√
13

[
2
3

]
.

◦ Then the desired matrices are D =

[
−1 0
0 12

]
and U =

1√
13

[
−3 2
2 3

]
.

◦ Indeed, since the columns of U are orthonormal, we see U−1 = UT =
1√
13

[
−3 2
2 3

]
, and then we can

compute UDU−1 =
1√
13

[
−3 2
2 3

] [
−1 0
0 12

]
1√
13

[
−3 2
2 3

]
=

[
3 6
6 8

]
= A, as required.

• Example: For A =

 3 2 −2
2 2 0
−2 0 4

, �nd a diagonal matrix D and an orthogonal matrix U such that

A = UDU−1.

◦ First, we �nd the eigenvalues of A. The characteristic polynomial is p(t) = det(tI−A) = t3−9t2 +18t =
t(t− 3)(t− 9) so the eigenvalues are λ = 0, 3, 6.

◦ Next, we �nd an orthonormal basis for each eigenspace. A s

∗ Step 1: Find the characteristic polynomial and eigenvalues of T (or A).

∗ Step 2: Find a basis for each eigenspace of T (or A).

∗ Step 3a: Determine whether T (or A) is diagonalizable. If each eigenspace is �nondefective� (i.e.,
its dimension is equal to the number of times the corresponding eigenvalue appears as a root of the
characteristic polynomial) then T is diagonalizable, and otherwise, T is not diagonalizable.

∗ Step 3b: For a diagonalizable linear transformation T , take β to be a basis of eigenvectors for T . For
a diagonalizable matrix A, the diagonalizing matrix Q can be taken to be the matrix whose columns
are a basis of eigenvectors of A.

◦ hort calculation shows that

 2
−2
1

 is a basis for the 0-eigenspace,

 1
2
2

 is a basis for the 3-eigenspace,

and

 2
1
−2

 is a basis for the 6-eigenspace.

◦ Normalizing yields an orthonormal basis of eigenvectors
1

3

 2
−2
1

, 1

3

 1
2
2

, 1

3

 2
1
−2

.
◦ Then the desired matrices are D =

 0 0 0
0 3 0
0 0 6

 and U =
1

3

 2 1 2
−2 2 1
1 2 −2

 .

• We will remark that although real symmetric matrices are diagonalizable, it is not true that complex symmetric
matrices are always diagonalizable.

◦ For example, the complex symmetric matrix

[
1 i
i −1

]
is not diagonalizable. This follows from the

observation that its eigenvalues are 0 and 0, but the 0-eigenspace only has dimension 1.

◦ The correct statement for complex matrices is that complex matrices with AT = A are diagonalizable
(i.e., we must use the conjugate-transpose rather than the conjugate).

◦ Matrices with AT = A are called Hermitian matrices, and satisfy analogues of the properties we listed
above for symmetric matrices: their eigenvalues are all real, there is an orthonormal basis of Cn consisting
of eigenvectors of A, and A is diagonalizable via a unitary matrix U with UT = U .
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5.3 Applications of Diagonalization

• In this section we discuss a few applications of diagonalization. Our analysis is not intended to be a deep
survey of all the applications of diagonalization, but rather a broad overview of a few important topics, with
examples intended to convey many of the main ideas.

5.3.1 Transition Matrices and Markov Chains

• In many applications, we can use linear algebra to model the behavior of an iterated system. Such models
are quite common in applied mathematics, the social sciences (particularly economics), and the life sciences.

◦ For example, consider a state with two cities A and B whose populations �ow back and forth over time:
after one year passes a resident of city A has a 10% chance of moving to city B and a 90% chance of
staying in city A, while a resident of city B has a 30% change of moving to A and a 70% chance of
staying in B.

◦ We would like to know what will happen to the relative populations of cities A and B over a long period
of time.

◦ If city A has a population of Aold and city B has a population of Bold, then one year later, we can
see that city A's population will be Anew = 0.9Aold + 0.3Bold, while B's population will be Bnew =
0.1Aold + 0.7Bold.

◦ By iterating this calculation, we can in principle compute the cities' populations as far into the future
as desired, but the computations rapidly become quite messy to do exactly.

◦ For example, with the starting populations (A,B) = (1000, 3000), here is a table of the populations (to
the nearest whole person) after n years:
n 0 1 2 3 4 5 6 7 8 9 10 15 20 30

A 1000 1800 2280 2568 2741 2844 2907 2944 2966 2980 2988 2999 3000 3000
B 3000 2200 1720 1432 1259 1156 1093 1056 1034 1020 1012 1001 1000 1000

◦ We can see that the populations seem to approach (rather rapidly) having 3000 people in city A and
1000 in city B.

◦ We can do the computations above much more e�ciently by writing the iteration in matrix form:[
Anew

Bnew

]
=

[
0.9 0.3
0.1 0.7

] [
Aold

Bold

]
.

◦ Since the population one year into the future is obtained by left-multiplying the population vector by

M =

[
0.9 0.3
0.1 0.7

]
, the population k years into the future can then be obtained by left-multiplying the

population vector by Mk.

◦ By diagonalizing this matrix, we can easily computeMk, and thus analyze the behavior of the population
as time extends forward.

◦ In this case, M is diagonalizable: M = QDQ−1 with D =

[
1 0
0 3/5

]
and Q =

[
3 −1
1 1

]
.

◦ ThenMk = QDkQ−1, and as k →∞, we see thatDk →
[

1 0
0 0

]
, soMk will approachQ

[
1 0
0 0

]
Q−1 =[

3/4 3/4
1/4 1/4

]
.

◦ From this calculation, we can see that as time extends on, the cities' populations will approach the
situation where 3/4 of the residents live in city A and 1/4 of the residents live in city B.

◦ Notice that this �steady-state� solution where the cities' populations both remain constant represents an
eigenvector of the original matrix with eigenvalue λ = 1.

• The system above, in which members of a set (in this case, residents of the cities) are identi�ed as belonging
to one of several states that can change over time, is known as a stochastic process.

◦ If, as in our example, the probabilities of changing from one state to another are independent of time,
the system is called a Markov chain.
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◦ Markov chains and their continuous analogues (known as Markov processes) arise (for example) in prob-
ability problems involving repeated wagers or random walks, in economics modeling the �ow of goods
among industries and nations, in biology modeling the gene frequencies in populations, and in civil
engineering modeling the arrival of people to buildings.

◦ A Markov chain model was also used for one of the original versions of the PageRank algorithm used by
Google to rank internet search results.

• De�nition: A square matrix whose entries are nonnegative and whose columns sum to 1 is called a transition matrix
(or a stochastic matrix).

◦ Equivalently, a square matrix M is a transition matrix precisely when MTv = v, where v is the column
vector of all 1s.

◦ From this description, we can see that v is an eigenvector of MT of eigenvalue 1, and since MT and M
have the same characteristic polynomial, we conclude that M has 1 as an eigenvalue.

◦ If it were true that M were diagonalizable and every eigenvalue of M had absolute value less than 1
(except for the eigenvalue 1), then we could apply the same argument as we did in the example to
conclude that the powers of M approached a limit.

◦ Unfortunately, this is not true in general: the transition matrix M =

[
0 1
1 0

]
has M2 equal to the

identity matrix, so odd powers of M are equal to M while even powers are equal to the identity. (In this
case, the eigenvalues of M are 1 and −1.)

◦ Fortunately, the argument does apply to a large class of transition matrices:

• Theorem (Markov Chains): IfM is a transition matrix, then every eigenvalue λ ofM has |λ| ≤ 1. Furthermore,
if some power of M has all entries positive, then the only eigenvalue of M of absolute value 1 is λ = 1, and
the 1-eigenspace has dimension 1. In such a case, the �matrix limit� lim

k→∞
Mk exists and has all columns equal

to a �steady-state� solution of the Markov chain whose transition matrix is M .

◦ We will not prove this theorem, although most of the arguments (when M is diagonalizable) are similar
to the computations we did in the example above.

• Example: In a certain country, there are two cities, City A and City B. Each year, 1/5 of the residents of City
A move to City B, and 1/4 of the residents of City B move to City A; the remaining residents stay in their
current city. If in year 0 the populations of Cities A and B are 9000 and 18000 residents respectively, �nd the
cities' populations in year n, and identify the behavior as n→∞.

◦ If the populations of the cities are currently

[
a
b

]
, then the populations one year later are

[
4/5 1/4
1/5 3/4

] [
a
b

]
.

◦ The given information implies that the populations are given by the Markov process whose transition

matrix is M =

[
4/5 1/4
1/5 3/4

]
, so we can analyze the system by diagonalizing M .

◦ The characteristic polynomial of M is p(t) = t2 − 31

20
t +

11

20
= (t − 1)(t − 11

20
), so the eigenvalues are 1

and
11

20
, with respective eigenspaces spanned by

[
5/4
1

]
and

[
−1
1

]
.

◦ So withQ =

[
5/4 −1
1 1

]
we getMn = Q

[
1 0
0 (11/20)n

]
Q−1 =

1

9

[
5 + 4(11/20)n 5− 5(11/20)n

4− 4(11/20)n 4 + 5(11/20)n

]
.

◦ Then the populations in year n are Mn

[
3000
6000

]
=

[
15000− 6000(11/20)n

12000 + 6000(11/20)n

]
. So as n → ∞, the

populations approach 15000 in city A and 12000 in city B.

◦ Note that the limiting behavior of the populations approaches the steady-state solution

[
15000
12000

]
, as

predicted by the theorem.
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5.3.2 Bilinear Forms and Quadratic Forms

• Up until now, we have exclusively focused our attention on linear phenomena (i.e., linear transformations and
matrices). But we can also use many of the ideas we have developed to study quadratic phenomena as well.

◦ In fact, we have already encountered a general example of a quadratic function: if V is an inner product
space, then Q(v) = 〈v,v〉 = ||v||2 behaves like a quadratic function in many instances.

◦ For example, for V = Rn with the dot product, we can seeQ(x1, . . . , xn) = (x1, x2, . . . , xn)·(x1, x2, . . . , xn) =
x21 + x22 + · · ·+ x2n is clearly quadratic.

◦ Some other examples of quadratic functions of this general type are Q(x, y) = x2 + 3xy + 2y2 and
Q(x, y, z) = xz + yz.

• The precise de�nition of a quadratic form is a bit more complicated than our de�nition of a linear transfor-
mation, but it relies on a type of pairing that is quite similar to an inner product:

• De�nition: If V is a (real) vector space, a function Φ : V 2 → R is a symmetric bilinear form on V if it satis�es
the following two properties:

[B1] Linearity in both arguments: Φ(v1 + cv2,w) = Φ(v1,w) + cΦ(v2,w) and Φ(v,w1 + cw2) = Φ(v,w1) +
cΦ(v,w2) for any scalar c.

[B2] Symmetry: Φ(v,w) = Φ(w,v).

◦ Notice that a symmetric bilinear form is simply an inner product with the positive-de�niteness axiom
[I3] removed. Therefore, any inner product 〈·, ·〉 on V is automatically a symmetric bilinear form on V .

◦ Example: The dot product Φ(v,w) = v ·w on Rn is a symmetric bilinear form, as is the inner product

Φ(f, g) =
´ b
a
f(x)g(x) dx on the space of continuous functions on the interval [a, b].

• A large class of examples of symmetric bilinear forms arise as follows: if V = Rn, then for any symmetric
matrix A ∈Mn×n(R), the map ΦA(v,w) = vTAw is a bilinear form on V .

◦ Example: The matrixA =

[
1 2
2 4

]
yields the bilinear form ΦA

([
x1
y1

]
,

[
x2
y2

])
= [x1 y1]

[
1 2
2 4

] [
x2
y2

]
=

x1x2 + 2x1y2 + 2x2y1 + 4y1y2.

◦ It is not hard to check that this function ΦA(v,w) is linear in both v and w: we have ΦA(v1 + cv2,w) =
(v1 + cv2)TAw = vT1 Aw + cvT2 Aw = ΦA(v1,w) + cΦA(v2,w), and similarly ΦA is linear in the second
argument.

◦ For symmetry, we have ΦA(w,v) = wTAv = (vTATw)T = (vTAw)T = vTAw where we used the facts
that AT = A since A is symmetric and that the matrix (vTATw)T equals its own transpose since it is a
1× 1 matrix.

◦ In fact, one may show that every symmetric bilinear form on Rn is of the form ΦA(v,w) = vTAw, in
the same way that every linear transformation on Rn is of the form T (v) = Av for an appropriate n× n
matrix A.

• Like with linear transformations, we may also associate matrices to bilinear forms:

• De�nition: If V is a �nite-dimensional vector space, β = {β1, . . . , βn} is a basis of V , and Φ is a symmetric
bilinear form on V , the associated matrix of Φ with respect to β is the matrix [Φ]β ∈ Mn×n(F ) whose
(i, j)-entry is the value Φ(βi, βj).

◦ This is the natural analogue of the matrix associated to a linear transformation, for bilinear forms.

• Example: For the bilinear form Φ((a, b), (c, d)) = 2ac+ 4ad+ 4bc− bd on R2, �nd [Φ]β for the standard basis
β = {(1, 0), (0, 1)}.

◦ We simply calculate the four values Φ(βi, βj) for i, j ∈ {1, 2}, where β1 = (1, 0) and β2 = (0, 1).

◦ This yields Φ(β1, β1) = 2, Φ(β1, β2) = 4, Φ(β2, β1) = 4, and Φ(β2, β2) = −1.
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◦ Thus, the associated matrix is [Φ]β =

[
2 4
4 −1

]
.

• Example: For the bilinear form Φ(p, q) =
´ 1
0
p(x)q(x) dx on P2(R), �nd [Φ]β for the basis β = {1, x, x2}.

◦ We simply calculate the nine values Φ(βi, βj) for i, j ∈ {1, 2, 3}, where β1 = 1, β2 = x, β3 = x2.

◦ For example, Φ(β1, β3) =
´ 1
0

1 · x2 dx =
1

3
and Φ(β3, β2) =

´ 1
0
x2 · x dx =

1

4
.

◦ The resulting associated matrix is [Φ]β =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .

• Like with matrices associated with linear transformations, we can describe how the matrices associated to
bilinear forms relate to coordinate vectors and how they change under a change of basis:

• Proposition (Associated Matrices): Suppose that V is a �nite-dimensional vector space, β = {β1, . . . , βn} is
an ordered basis of V , and Φ is a bilinear form on V . Then the following hold:

1. If v and w are any vectors in V , then Φ(v,w) = [v]Tβ [Φ]β [w]β .

◦ Proof: If v = βi and w = βj then the result follows immediately from the de�nition of matrix
multiplication and the matrix [Φ]β . The result for arbitrary v and w then follows by linearity.

2. The association Φ 7→ [Φ]β of a symmetric bilinear form with its matrix representation yields an isomor-
phism of the space B(V ) of bilinear forms on V with the symmetric n× n matrices.

◦ Proof: The inverse map is de�ned as follows: given a symmetric matrix A, de�ne a bilinear form ΦA
via ΦA(v,w) = [v]TβA[w]β .

◦ It is easy to verify that this map is a well-de�ned linear transformation and that it is inverse to the
map given above.

3. If γ is another basis of V and P = [I]γβ is the change-of-basis matrix from β to γ, then [Φ]γ = PT [Φ]βP .

◦ Proof: By de�nition, [v]γ = P [v]β . Hence [v]TβP
T [Φ]βP [w]β = [v]Tγ [Φ]β [w]γ .

◦ This means that PT [Φ]βP and [Φ]γ agree, as bilinear forms, on all pairs of vectors [v]β and [w]β in
Rn, so they are equal.

• Now that we have discussed bilinear forms, we can de�ne their associated quadratic forms:

• De�nition: If Φ is a symmetric bilinear form on V , the function Q : V → R given by Q(v) = Φ(v,v) is called
the quadratic form associated to Φ. If β is a basis of V , then the associated matrix of Q with respect to β is
the matrix [Φ]β associated to the bilinear form Φ.

◦ From the de�nition, we can see that Q(rv) = Φ(rv, rv) = r2Φ(v,v) = r2Q(v): thus, Q scales quadrati-
cally with its input vector (thereby justifying the name �quadratic form�).

◦ Also, by setting α = 0 we see Q(0) = 0, and by setting α = −1 we see Q(−v) = Q(v).

◦ Example: If Φ is an inner product, then the associated quadratic form Q(v) = 〈v,v〉 = ||v||2 is the
square of the norm of v.

• We are mainly interested in the situation where V = Rn, in which case we have the quadratic form QA(v) =
vTAv associated to a symmetric n× n matrix A.

◦ If β is the standard basis of Rn, then the matrix associated to QA with respect to β is simply A.

◦ When we multiply out the product QA(v) = vTAv where v = [x1 x2 · · · xn]T , we obtain a sum of the
form Q(x1, x2, . . . , xn) =

∑
1≤i≤j≤n ci,jxixj .

◦ The associated matrix A then has entries ai,j = aj,i =

{
ci,i for i = j

ci,j/2 for i 6= j
, as can be seen by comparing

coe�cients for each monomial xixj .
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◦ Example: ForA =

[
7 −2
−2 3

]
, the associated quadratic form on R2 isQA(x, y) = [x y]

[
7 −2
−2 3

] [
x
y

]
= 7x2 − 4xy + 3y2.

◦ Example: ForB =

 1 0 1
0 0 3

2
1 3

2 4

, the associated quadratic form isQB(x, y, z) = [x y z]

 1 0 1
0 0 3

2
1 3

2 4

 x
y
z


= x2 + 2xz + 3yz + 4z2.

• Example: Find the associated matrix M for the quadratic form Q(x, y, z) = x2 − 4xy + 6xz + 9y2 − yz + 8z2

on R3.

◦ We simply read o� the entries of the matrix from the coe�cients: the diagonal entries are the coe�cients
of x2, y2, z2 while the o�-diagonal entries are half the corresponding coe�cients of xy, xz, yz.

◦ We obtain the matrix M =

 1 −2 3
−2 9 −1/2
3 −1/2 8

 .

◦ Indeed, we can check that [x y z]

 1 −2 3
−2 9 −1/2
3 −1/2 8

 x
y
z

 = [x y z]

 x− 2y + 3z
−2x+ 9x− z/2
3x− y/2 + 8z

 = x2 −

4xy + 6xz + 9y2 − yz + 8z2 as required.

• Example: Find the quadratic form Q(a, b, c, d) on R4 associated to the matrix C =


3 0 1 −2
0 4 1 8
1 1 0 0
−2 8 0 2

.
◦ We can read o� the coe�cients of each of the monomials from the entries of the matrix: the diago-
nal entries are the coe�cients of a2, b2, c2, d2, while the o�-diagonal entries are half the corresponding
coe�cients of ab, ac, ad, . . . , cd.

◦ We obtain the quadratic form Q(a, b, c, d) = 3a2 + 2ac− 4ad+ 4b2 + 2bc+ 16bd+ 2d2 .

◦ Alternatively, we could just multiply out the product [a b c d]


3 0 1 −2
0 4 1 8
1 1 0 0
−2 8 0 2



a
b
c
d

, which yields

3a2 + 2ac− 4ad+ 4b2 + 2bc+ 16bd+ 2d2 after simpli�cation.

• When working with quadratic forms, much as when we are working with linear transformations, we often
want to express them in as simple a form as possible. Pleasantly, quadratic forms behave quite nicely under
change of basis.

◦ Explicitly, suppose we are considering the quadratic form QA(v) = vTAv, where we think of A as being
described in terms of the standard basis β of Rn.
◦ If γ is another basis of V and P = [I]γβ is the change-of-basis matrix from β to γ, then as shown above,

we have [Φ]γ = PT [Φ]βP = PTAP .

◦ Therefore, after we change basis from β to γ, we obtain the quadratic form QB(v) = vTBv where
B = PTAP .

• The most convenient possible outcome would be if we can change basis to make the resulting matrix B =
PTAP diagonal. Quite pleasantly, the spectral theorem guarantees that we can always do this!

◦ Explicitly, since A is symmetric, the spectral theorem says that it is orthogonally diagonalizable; in other
words, there exists an orthogonal matrix Q (with QT = Q−1) such that QSQ−1 = D is diagonal.

◦ But since QT = Q−1, if we take P = QT then this condition is the same as saying PTAP = B is diagonal.
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◦ Therefore, we may always change basis to diagonalize a symmetric bilinear form over R by computing
the (regular) diagonalization of its associated matrix A, which is quite e�cient as it only requires �nding
the eigenvalues and eigenvectors.

◦ The corresponding diagonalization represents �completing the square� in the quadratic form via a change
of variables that is orthogonal (i.e., arises from an orthonormal basis), which corresponds geometrically
to a rotation of the standard coordinate axes, possibly also with a re�ection.

• Example: Find the matrix associated to the quadratic form Q(x, y) = 4x2 − 4xy + 7y2, and also �nd an
orthonormal basis of R2 that diagonalizes Q.

◦ We can read o� the associated matrix from the coe�cients as A =

[
4 −2
−2 7

]
.

◦ To diagonalize Q, we diagonalize A by �nding the eigenvalues and eigenvectors of A.

◦ The characteristic polynomial is p(t) = (t−4)(t−7)−4 = t2−11t+24 = (t−3)(t−8), so the eigenvalues
are λ = 3, 8.

◦ We can compute eigenvectors (2, 1) and (−1, 2) for λ = 3, 8 respectively, so upon normalizing these

eigenvectors, we see that we can take γ =
{

1√
5
(2, 1), 1√

5
(−1, 2)

}
◦ Explicitly, with Q =

1√
5

[
2 −1
1 2

]
, we have [Φ]γ = QT [Φ]βQ =

[
3 0
0 8

]
.

◦ In terms of the quadratic form, this says for x′ = 1√
5
(2x+ y) and y′ = 1√

5
(−x+ 2y), we have Q(x, y) =

4x2 − 4xy + 7y2 = 3(x′)2 + 8(y′)2. Note that by changing basis in this manner, we have eliminated the
cross-term −4xy in the original quadratic form Q.

• Example: Find an orthogonal change of basis that diagonalizes the quadratic form Q(x, y, z) = 5x2 + 4xy +
6y2 + 4yz + 7z2 over R3.

◦ We simply diagonalize the matrix for the corresponding bilinear form, which is A =

 5 2 0
2 6 2
0 2 7

 . The
characteristic polynomial is p(t) = det(tI3 − A) = t3 − 18t2 + 99t − 162 = (t − 3)(t − 6)(t − 9), so the
eigenvalues are λ = 3, 6, 9.

◦ Computing a basis for each eigenspace yields eigenvectors

 2
−2
1

,
 −2
−1
2

,
 1

2
2

 for λ = 3, 6, 9.

◦ Hence we may take Q =
1

3

 2 −2 1
−2 −1 2
1 2 2

, so that QT = Q−1 and QAQ−1 =

 3 0 0
0 6 0
0 0 9

 = D.

◦ Therefore the desired change of basis is x′ =
1

3
(2x− 2y+ z), y′ =

1

3
(−2x− y+ 2z), z′ =

1

3
(x+ 2y+ 2z),

and with this change of basis it is not hard to verify that, indeed, Q(x, y, z) = 3(x′)2 + 6(y′)2 + 9(z′)2.

5.3.3 Applications of Quadratic Forms, De�niteness

• One application of diagonalizing quadratic forms is that it allows us to describe the shape of the graph of the
quadratic form.

◦ For conics in R2, the general equation is Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. By diagonalizing, we
may eliminate the xy term, and so the quadratic term can be put into the form Ax2 + Cy2. We then
have various cases depending on the signs of A and C.

◦ If A and C are both zero then the conic degenerates to a line. If one is zero and the other is not,
then by rescaling and swapping variables we may assume A = 1 and C = 0, in which case the equation
x2 +Dx+ Ey + F = 0 yields a parabola upon solving for y.
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◦ If both A,C are nonzero, then we may complete the square to eliminate the linear terms, and then rescale
so that F = −1. The resulting equation then has the form A′x2 + C ′y2 = 1. If A′, C ′ have the same
sign, then the curve is an ellipse, while if A′, C ′ have the opposite sign, the curve is a hyperbola.

• Example: Diagonalize the quadratic form Q(x, y) = 2x2 − 4xy − y2. Use the result to describe the shape of
the conic section Q(x, y) = 1 in R2.

◦ The matrix associated to the corresponding bilinear form is A =

[
2 −2
−2 −1

]
.

◦ The characteristic polynomial is p(t) = det(tI2 −A) = t3 − t+ 6 with eigenvalues λ = 3,−2.

◦ We need to diagonalize A using an orthonormal basis of eigenvectors. Since the eigenvalues are distinct,
we simply compute a basis for each eigenspace: doing so yields eigenvectors (−2, 1) and (1, 2) for λ = 3,−2
respectively.

◦ Thus, we may diagonalize A via the orthogonal matrix Q =
1√
5

[
−2 1
1 2

]
, and the resulting diagonal-

ization is Q(x, y, z) = 3(x′)2 − 2(y′)2.

◦ In particular, since the change of basis is orthonormal, in the new coordinate system the equation

Q(x, y, z) = 1 reads simply as 3(x′)2 − 2(y′)2 = 1, which is the graph of a hyperbola .

• One of the main properties of a quadratic form that determines its behavior is whether it takes positive values,
negative values, or both:

• De�nition: A quadratic form Q is positive de�nite if Q(v) > 0 for every nonzero vector v ∈ V , it is
negative de�nite if Q(v) < 0 for every nonzero vector v ∈ V , and it is inde�nite if Q takes both positive
and negative values.

◦ Example: If V is a real inner product space, then the square of the norm function ||v||2 = 〈v,v〉 is a
positive-de�nite quadratic form on V . Indeed, it is not hard to see that the underlying bilinear pairing
Φ associated with Q is an inner product precisely when Q is a positive-de�nite quadratic form.

◦ Example: The quadratic form Q(x, y) = x2 + 2y2 is positive de�nite, since Q(x, y) > 0 for all (x, y) 6=
(0, 0).

◦ Example: The quadratic form Q(x, y, z) = −2x2−2xy−5y2 = −(x−y)2− (x+ 2y)2 is negative de�nite,
since the second expression shows that Q(x, y) < 0 for all (x, y) 6= (0, 0).

◦ Example: The quadratic form Q(x, y) = xy is inde�nite, since Q(1, 1) = 1 and Q(−1, 1) = −1, so Q
takes both positive and negative values.

◦ There are also a moderately useful weaker versions of these conditions: we say Q is positive semide�nite
if Q(v) ≥ 0 for all v ∈ V and negative semide�nite if Q(v) ≤ 0 for all v ∈ V .
◦ Example: The quadratic form Q(x, y) = x2 is positive semide�nite, since Q(x, y) ≥ 0 for all (x, y), but
it is not positive de�nite because Q(0, 1) = 0.

◦ It is easy to see that Q is positive (semi)de�nite if and only if −Q is negative (semi)de�nite, so for
example by the above we see that Q(x, y) = −x2 is negative semide�nite.

• By diagonalizing a quadratic form, we can easily determine its de�niteness:

• Proposition (De�niteness and Eigenvalues): If Q is a quadratic form on a �nite-dimensional vector space V
with associated matrix A, then Q is positive de�nite if and only if all eigenvalues of A are positive, Q is
positive semide�nite if and only if all eigenvalues of A are nonnegative, Q is negative de�nite if and only all
eigenvalues of A are negative, Q is negative semide�nite if and only if all eigenvalues of A are nonpositive,
and Q is inde�nite if and only if it has both a positive and a negative eigenvalue.

◦ Proof: Observe that de�niteness is una�ected by changing basis, because each of the de�niteness condi-
tions Q(v) > 0, Q(v) ≥ 0, Q(v) < 0, Q(v) ≤ 0 are statements about all vectors v in the vector space
V .

◦ Therefore, we may diagonalize Q without a�ecting its de�niteness. After diagonalizing, we have an
expression of the form Q(x1, x2, . . . , xn) = a1x

2
1 + a2x

2
2 + · · ·+ anx

2
n.
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◦ If any of the coe�cients are negative, then Q necessarily takes negative values (speci�cally, if ai < 0,
then Q evaluated at the ith standard unit vector will be ai).

◦ Likewise, if any of the coe�cients are positive then Q necessarily takes positive values, and if any
coe�cients are zero or have opposite signs then Q takes the value 0 at some nonzero vector.

◦ Assuming we use an orthogonal diagonalization, then since the coe�cients ai are simply the eigenvalues
of A, all of the claimed statements then follow immediately.

◦ Explicitly, if Q takes only positive values on nonzero vectors then no coe�cients ai can be zero or negative
(so they are all positive), if Q takes only nonnegative values then no coe�cients ai can be negative, and
likewise in the other two cases.

• Example: Determine the de�niteness of the quadratic form Q(x, y) = 2x2 + 4xy + 5y2 on R2.

◦ The associated matrix is

[
2 2
2 5

]
, whose characteristic polynomial is p(t) = (t − 2)(t − 5) − (2)(2) =

t2 − 7t+ 6 = (t− 6)(t− 1), so its eigenvalues are λ = 1, 6.

◦ Since both eigenvalues are positive, Q is positive de�nite .

• Example: Determine the de�niteness of the quadratic form Q(x, y) = 3x2 − 6xy − 5y2 on R2.

◦ The associated matrix is

[
3 −3
−3 −5

]
, whose characteristic polynomial is p(t) = (t−3)(t+5)−(−3)(−3) =

t2 − 2t− 24 = (t+ 6)(t− 4), so its eigenvalues are λ = −6, 4.

◦ Since one eigenvalue is positive and the other is negative, Q is inde�nite .

• Example: Determine the de�niteness of the quadratic form Q(x, y) = 3x2 − 2xy + 4xz + 3y2 − 4yz + 2z2 on
R3.

◦ The associated matrix is

 3 −1 2
−1 3 −2
2 −2 2

, whose characteristic polynomial is p(t) = t3 − 8t2 + 12t =

t(t− 2)(t− 6), so its eigenvalues are λ = 0, 2, 6.

◦ Since one eigenvalue is zero and the others are positive, Q is positive semide�nite .

• We can also view de�niteness as a property of symmetric matrices themselves by considering the de�niteness of
the associated quadratic form. In this lens, we can give another way to identify de�niteness using determinants:

• Theorem (Sylvester's Criterion): Suppose A is an n × n real matrix. For each 1 ≤ k ≤ n, de�ne the kth
principal minor Ak to be the upper-left k×k corner of A. Then A is positive de�nite if and only if det(Ak) > 0
for all k, and A is positive semide�nite if and only if det(Ak) ≥ 0 for all k.

◦ Since A is positive (semi)de�nite if and only if −A is negative (semi)de�nite, one can also use Sylvester's
criterion to identify negative de�nite and negative semide�nite matrices.

◦ We will not prove Sylvester's criterion, although it is not hard to see that the given condition is necessary,
since if A is positive de�nite we must have xTAx > 0 for all vectors x = [x1 x2 · · · xk 0 · · · 0]: this
means the matrix Ak must also be positive de�nite and therefore must have positive determinant. (A
similar observation holds when A is positive semide�nite.)

• Example: Determine the de�niteness of the matrix A =

 2 −1 2
−1 4 2
2 2 5

.
◦ The principal minors are [2],

[
2 −1
−1 4

]
, and

 2 −1 2
−1 4 2
2 2 5

, whose determinants respectively are

2, 7, and 3.

◦ Since all of the principal minors have positive determinants, the given matrix is positive de�nite .
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◦ Remark: To four decimal places, the eigenvalues are 6.8004, 4.0917, and 0.1078, so we see A is indeed
positive de�nite.

• One extremely useful practical application of classifying the de�niteness of a quadratic form is that it allows
us to classify critical points of functions of several variables in many cases.

◦ This type of calculation arises quite often in numerical optimization problems that employ step methods
to search for maximum or minimum values of functions.

◦ Such methods will usually terminate by �nding a critical point of the underlying function, at which
point it becomes necessary to classify the critical point's type in order to determine whether an actual
minimum or maximum has been found.

• This particular result from multivariable calculus is often called the �second derivatives test� :

• Theorem (Second Derivatives Test in Rn): Suppose f is a function of n variables x1, . . . , xn that is twice-
di�erentiable and P is a critical point of f , so that fxi

(P ) = 0 for each i. Let H be the Hessian matrix,
whose (i, j)-entry is the second-order partial derivative fxixj (P ). If H is positive de�nite then f has a local
minimum at P , if H is negative de�nite then f has a local maximum at P , and if H is inde�nite then f has
a saddle point at P . If H is positive or negative semide�nite, then the test is inconclusive.

◦ The idea of the proof (which we only outline) is to observe that because all of the partial derivatives of
f vanish at P , the value f(x1, . . . , xn)− f(P ) is closely approximated by the quadratic Taylor expansion
of f at P .

◦ This quadratic Taylor expansion is precisely the quadratic form whose associated matrix is H, and so
the behavior of f near P will be determined by the de�niteness of H.

◦ When H is positive-de�nite, this says f(x1, . . . , xn)− f(P ) is positive near P , meaning that P is a local
minimum. Likewise, when H is negative-de�nite, then f(x1, . . . , xn)− f(P ) is negative near P , meaning
that P is a local maximum, and when H is inde�nite, P is a saddle point since f takes values above and
below f(P ).

◦ The only minor issue occurs when one of the eigenvalues is zero: in that case, the quadratic Taylor
approximation does not determine the behavior of f as one approaches P along the direction of the
corresponding eigenvector (it would be necessary to look at higher derivatives of f).

• Example: Classify the critical point at (0, 0) for the function f(x, y) = x3 + 2x2 + xy + 4y2.

◦ We compute the Hessian matrix: we have fxx = 6x+ 4, fxy = fyx = 1, and fyy = 8, so evaluating these

at (0, 0) yields H =

[
4 1
1 8

]
.

◦ The characteristic polynomial of H is p(t) = det(tI2 −H) = t2 − 12t+ 31, whose roots are λ = 6±
√

5.

◦ Since the eigenvalues are both positive, the critical point is a local minimum .

◦ Alternatively, we could have used Sylvester's criterion, since the principal minors have determinants 4
and 31. Since these are both positive, we see that the Hessian matrix is positive-de�nite, so the critical
point is a local minimum.

5.3.4 Singular Values and Singular Value Decomposition

• Diagonalization is a very useful tool, but it su�ers from two main drawbacks: �rst, not all linear transfor-
mations T : V → V are diagonalizable, and second, we cannot diagonalize general linear transformations
T : V →W when V and W are di�erent.

◦ There are various tools, such as the Jordan canonical form, that can give a �near diagonalization� for
non-diagonalizable linear transformations T : V → V .

• We will instead discuss another decomposition that is in some sense a hybrid between QR factorization and
diagonalization, called singular value decomposition.
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◦ The main idea is as follows: if we have a linear transformation T : V → W where V and W are �nite-
dimensional inner product spaces, then we may construct orthonormal bases β of V and γ of W such
that the associated matrix A = [T ]γβ has its only nonzero entries in the �diagonal� positions ai,i.

◦ This procedure combines the ideas of diagonalization, in that we obtain a representation of T by an
essentially diagonal matrix (up to not being square), and the QR factorization, in that we perform
orthonormal changes of basis to simplify the form of the transformation.

◦ The main idea is to note that if A is any m× n matrix, then ATA is a symmetric m×m matrix (since
the transpose (ATA)T = AT (AT )T = ATA again).

◦ Moreover, the quadratic formQATA(v) = vT (ATA)v is positive semide�nite, since the quantity vT (ATA)v =
(Av)T (Av) = ||Av|| is necessarily nonnegative, so from our characterization of the de�niteness of
quadratic forms, we see that all of the eigenvalues of ATA are nonnegative.

◦ Therefore, since ATA is a symmetric n× n matrix with nonnegative eigenvalues, it can be orthogonally
diagonalized, and the diagonal entries of its diagonalization D are σ2

1 , σ
2
2 , . . . , σ

2
n for some nonnegative

real numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

◦ We can then use the orthonormal basis of eigenvectors of ATA to write down the desired decomposition
of A.

• To make this precise, we introduce some terminology:

• De�nition: If A is any m × n matrix, the singular values of A are the nonnegative real numbers σ1 ≥ σ2 ≥
· · · ≥ σn ≥ 0 such that σ2

1 , σ
2
2 , . . . , σ

2
n are the eigenvalues of ATA.

◦ By the above discussion, since ATA is a real symmetric n × n matrix that is positive semide�nite, its
eigenvalues are nonnegative real numbers. The (nonnegative) square roots of these numbers are the
singular values of A.

◦ We have previously shown that the rank of ATA is the same as the rank of A. Therefore, if A has rank
r, the singular values σ1, . . . , σr will be positive and the remaining ones σr+1, . . . , σn will be zero.

• Example: Find the singular values of the matrix A =


2 2
2 2
−1 1
1 −1

.

◦ We have ATA =

[
2 2 −1 1
2 2 1 −1

]
2 2
2 2
−1 1
1 −1

 =

[
10 6
6 10

]
with characteristic polynomial p(t) =

det(tI3 −A) = (t− 10)(t− 10)− (6)(6) = t2 − 20t+ 64 = (t− 4)(t− 16).

◦ Since the eigenvalues of ATA are λ = 4, 16, we see that the singular values of A are 4, 2 .

• Example: Find the singular values of the matrix A =

 1 1
1 −1
0 1

.

◦ We have ATA =

[
1 1 0
1 −1 1

] 1 1
1 −1
0 1

 =

[
2 0
0 3

]
with characteristic polynomial p(t) = det(tI3 −

A) = (t− 2)(t− 3).

◦ Since the eigenvalues of ATA are λ = 2, 3, we see that the singular values of A are
√

3,
√

2 .

• Example: Find the singular values of the matrix A =

[
1 2 1
2 1 1

]
.
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◦ We have ATA =

 1 2
2 1
1 1

[ 1 2 1
2 1 1

]
=

 5 4 3
4 5 3
3 3 2

 with characteristic polynomial p(t) = det(tI3−

A) = (t− 5)[t2 − 7t+ 1]− (−4)[−4t− 1] + (−3)[3t− 3] = t3 − 12t2 + 11t = t(t− 1)(t− 11).

◦ Since the eigenvalues of ATA are λ = 0, 1, 11, we see that the singular values of A are
√

11, 1, 0 .

• Our general result is that we can use the singular values of a matrix to write down a matrix associated to T
with respect to orthonormal bases that is particularly nice:

• Theorem (Singular Value Basis): Suppose T : Rn → Rm is a linear transformation of rank r with singular
values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then there exist orthonormal bases {v1, . . . ,vn} of Rn and {w1, . . . ,wm} of
Rm such that T (v1) = σ1w1, T (v2) = σ2w2, ... , T (vr) = σrwr, and T (vr+1) = T (vr+2) = · · · = T (vn) = 0.

◦ The main idea is to use the orthonormal basis {v1, . . . ,vn} of eigenvectors of ATA, where A is the matrix
associated to T .

◦ Proof: Suppose the matrix associated to T with respect to the standard bases of Rn and Rm is A.

◦ As noted in the discussion earlier, ATA is a positive-semide�nite symmetric n × n matrix of rank r.
By the real spectral theorem, Rn has an orthonormal basis of eigenvectors v1, . . .vr,vr+1, . . . ,vn with
associated eigenvalues σ2

1 , σ
2
2 , . . . , σ

2
r , 0, . . . , 0.

◦ Now note that 〈T (vi), T (vj)〉 = 〈Avi, Avj〉 = (Avi)
T (Avj) = vTi (ATA)vj = σ2

i 〈vi,vj〉.
◦ Therefore, for i 6= j, since vi,vj are orthonormal, the last term is zero, so T (vi) and T (vj) are orthonor-
mal. Furthermore, for i = j, we see that ||T (vi)|| = σi.

◦ This means the vectors w1 = T (v1)/σ1, w2 = T (v2)/σ2, ... , and wr = T (vr)/σr are orthonormal. By
extending this set to an orthonormal basis {w1, . . . ,wm} of Rm, we obtain the claimed result.

• We can recast the theorem above in terms of matrices, as follows:

• Theorem (Singular Value Decomposition): Suppose A is an m× n real matrix of rank r. If σ1 ≥ σ2 ≥ · · · ≥
σr > 0 are the nonzero singular values of A, then A can be written as a matrix product A = UΣV T where
U is an orthogonal n× n matrix, V is an orthogonal m×m matrix, and Σ is the n×m matrix whose �rst r
diagonal entries are σ1, . . . , σr and whose remaining entries are 0.

◦ Proof: Let T : Rn → Rm be the linear transformation with T (v) = Av.

◦ By the theorem above, we have orthonormal bases β = {v1, . . . ,vn} of Rn and γ = {w1, . . . ,wm} of Rm
such that T (v1) = σ1w1, T (v2) = σ2w2, ... , T (vr) = σrwr, and T (vr+1) = T (vr+2) = · · · = T (vn) = 0.

◦ This means the associated matrix [T ]γβ is the n×m matrix Σ whose �rst r diagonal entries are σ1, . . . , σr
and whose remaining entries are 0.

◦ Now let α be the standard basis of Rn and δ be the standard basis of Rm and note that [T ]δα = A.
Furthermore, since β is orthonormal the change-of-basis matrix [I]αβ is orthogonal hence so is its inverse

(also equal to its transpose) V = [I]βα, and since γ is orthonormal the change-of-basis matrix U = [I]δγ is
also orthogonal.

◦ Then A = [T ]δα = [I]δγ [T ]γβ [I]βα = UΣV T , as claimed.

• To calculate the singular value decomposition A = UΣV T of an m× n matrix A, follow these steps:

◦ Step 1: Find an orthonormal basis {v1, . . . ,vn} of Rn consisting of unit eigenvectors for the symmetric
matrix ATA with corresponding eigenvalues σ2

1 , . . . , σ
2
n.

◦ Step 2: Calculate the unit vectors wi = Avi/σi, and then use Gram-Schmidt (if necessary) to extend
this set to an orthonormal basis of Rm.
◦ Step 3: Write down the matrices U whose columns are the vectors wi, Σ whose diagonal elements are
the singular values σi, and V whose columns are the vectors vi. Then A = UΣV T .

• Example: Find the singular values, and a singular value decomposition, of A =

[
0 6
6 5

]
.
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◦ We have ATA =

[
36 30
30 61

]
with characteristic polynomial p(t) = (t − 36)(t − 61) − (30)(30) = t2 −

97t+ 1296 = (t− 16)(t− 81), so the singular values of A are σ1 =
√

81 = 9 and σ2 =
√

16 = 4.

◦ We can then �nd a basis for the 81-eigenspace of ATA as

{[
2
3

]}
and a basis for the 16-eigenspace of

ATA as

{[
−3
2

]}
, so after normalizing we can take v1 =

1√
13

[
2
3

]
and v2 =

1√
13

[
−3
2

]
.

◦ We also have w1 =
1

9
Av1 =

1√
13

[
2
3

]
and w2 =

1

4
Av2 =

1√
13

[
3
−2

]
; as expected we see that

{w1,w2} is an orthonormal set (and in fact an orthonormal basis) of R2.

◦ Putting all of this together, we get the matrices U =
1√
13

[
2 3
3 −2

]
, Σ =

[
9 0
0 4

]
, and V T =

1√
13

[
2 −3
3 2

]
.

• Example: Find a singular value decomposition of A =


2 2
2 2
−1 1
1 −1

.

◦ We previously found that the eigenvalues of ATA =

[
10 6
6 10

]
are λ = 16, 4 and so the singular values

of A are σ1 = 4 and σ2 = 2.

◦ We can then calculate a basis for the 16-eigenspace of ATA as

{[
1
1

]}
and a basis for the 4-eigenspace

of ATA as

{[
−1
1

]}
, so after normalizing we can take v1 =

1√
2

[
1
1

]
and v2 =

1√
2

[
−1
1

]
.

◦ We also have w1 =
1

4
Av1 =

1√
2


1
1
0
0

 and w2 =
1

2
Av2 =

1√
2


0
0
1
−1

; as expected we see that

{w1,w2} is an orthonormal set.

◦ By using Gram-Schmidt, we can extend {w1,w2} to an orthonormal basis {w1,w2,w3,w4} of R4 with

w3 =
1√
2


1
−1
0
0

 and w4 =
1√
2


0
0
1
1

.

◦ Putting all of this together, we get the matrices U =
1√
2


1 0 1 0
1 0 −1 0
0 1 0 1
0 −1 0 1

 , Σ =


4 0
0 2
0 0
0 0

 , and

V T =
1√
2

[
1 −1
1 1

]
.

◦ Remark: Note that the singular value decomposition is not unique here, since for example we could
choose other vectors w3,w4 to complete the orthonormal basis of R4.

• The singular value basis and associated decomposition have a convenient geometric interpretation in terms of
the action of the transformation T : Rn → Rm on the �unit sphere� ||v|| = 1 in Rn.

◦ To illustrate, consider the linear transformation T : R2 → R2 with associated standard matrix A =[
0 6
6 5

]
from the �rst example above.
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◦ The image of the unit circle ||v|| = 1 (i.e., x2 + y2 = 1) under T is an ellipse, shown below:

◦ We can see quite clearly from the second picture that the vectors Av1 and Av2 give the principal axes
of the ellipse.

◦ This observation can be veri�ed algebraically from the facts that β = {v1,v2} and γ = {w1,w2} are

orthonormal bases of R2 and the fact that [T ]γβ is the matrix

[
9 0
0 4

]
: then the image 9aw1 + 4bw2 of

any linear combination av1 + bv2 on the unit circle (i.e., with a2 + b2 = 1) has norm 81a2 + 16b2, and
the norm is clearly maximized when b = 0 and minimized when a = 0.

◦ This means that the major axis of the ellipse is parallel to w1 and has length σ1, while the minor axis
of the ellipse is parallel to w2 and has length σ2.

◦ It is not hard to see that analogous results hold in higher dimensions, for the same reasons: in general,
the image of the unit sphere ||v|| = 1 under a linear transformation T : Rn → Rm of rank r will be an
r-dimensional ellipsoid whose principal axes are the vectors σ1w1, σ2w2, ... , σrwr.

• This geometric interpretation of singular value decomposition has many practical applications, such as per-
forming principal component analysis and doing data compression.

◦ The main idea is that for anm×nmatrixA with singular values σ1, . . . , σr and corresponding orthonormal
bases {v1, . . . ,vn} and {w1, . . . ,wm}, if we multiply out the matrix product A = UΣV T , we can rephrase
the singular value decomposition as giving a sum A = σ1v1w

T
1 + σ2v2w

T
2 + · · ·+ σrvrw

T
r of a total of r

m× n matrices viw
T
i each of which has rank 1.

◦ Therefore, if we want to approximate A by a matrix of rank less than r, the best approximation will
be given by deleting the terms of the sum above that have the smallest norm, which are the terms with
smallest σi.

◦ In other words, the best approximation to A by a matrix of rank d is obtained by taking the initial terms
of the singular value sum above: σ1v1w

T
1 + σ2v2w

T
2 + · · ·+ σdvdw

T
d .

◦ In the situation where we have a set of data that is high-dimensional (i.e., lies inside Rn where n is
large), this gives an explicit procedure for projecting onto a smaller-dimensional subspace that loses as
little information as possible.

• We can illustrate these ideas by calculating the singular value decomposition of a matrix representing the 2-
dimensional grid of color intensity from a black-and-white photograph (taken from the standard set of sample
data included with Mathematica).

◦ The photograph used here is 512 pixels by 512 pixels, corresponding to a 512× 512 matrix A.

◦ We can then give compressed versions of the image �le by taking the initial terms of the singular value
sum.
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◦ Below are the image reconstructions using various numbers of singular values:

◦ The total amount of data required to store the full image is the equivalent to 5122 data points (one per
pixel). To store the decomposition with k singular values, on the other hand, requires only storing about
2k · 512 data points (each singular value matrix viw

T
i requires just the values of the vectors vi and wi).

◦ So, for example, to store and reconstruct the compressed image using 20 singular values only requires
about 40/512 ≈ 8% of the total amount of uncompressed data in the original image.

◦ The reason this sort of procedure works is because most of the information in the image is carried by the
�rst few singular values, which are much larger than the later ones. For this image, the �rst ten singular
values are 66679, 10490, 5904, 4144, 3501, 2853, 2664, 2420, 2384, and 2188, with most of the remaining
values being smaller:

◦ Therefore, taking just the �rst few singular values will capture the vast majority of information contained
in the data set.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2021. You may not reproduce or distribute this
material without my express permission.
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