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2 Vector Spaces

In this chapter we will introduce the notion of an abstract vector space, which is a generalization of the ideas
inherent in studying vectors in 2- or 3-dimensional space (which we discuss �rst, as motivation). We emphasize the
treatment of vectors in Rn, but also discuss other vector spaces that are of use in many applications. We develop
vector spaces from an axiomatic perspective, discuss the notions of span and linear independence, and ultimately
explain why every vector space possesses a linearly independent spanning set called a �basis�. We close with a
discussion of aspects of vector spaces arising in the context of matrices: row spaces, column spaces, and nullspaces.

2.1 Vectors in Rn

• A vector, as we typically think of it, is a quantity which has both a magnitude and a direction. This is in
contrast to a scalar, which carries only a magnitude.

◦ Real-valued vectors are extremely useful in just about every aspect of the physical sciences, since a great
deal of quantities in Newtonian physics are vectors: position, velocity, acceleration, momentum, forces,
etc. There is also �vector calculus� (namely, calculus in the context of vector �elds) which is typically
part of a multivariable calculus course; it has many applications to physics as well.

2.1.1 Vectors and Vector Operations

• A vector is a quantity which has both a magnitude and a direction.

◦ This is in contrast to a scalar, which carries only a magnitude.

• We denote the n-dimensional vector from the origin to the point (a1, a2, · · · , an) as v = 〈a1, a2, · · · , an〉,
where the ai are scalars.
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◦ We use the angle brackets 〈·〉 rather than parentheses (·) so as to emphasize the di�erence between
a vector and the coordinates of a point in space. We will, however, view coordinates of vectors and
coordinates of points as essentially interchangeable.

◦ We also write vectors in boldface (v, not v), so that we can tell them apart from scalars. When writing
by hand, it is hard to di�erentiate boldface, so the notation ~v is also sometimes used.

• The typical way to think of vectors is as directed line segments: the length of the line segment gives the
magnitude of the vector, and the direction the segment is pointing gives the direction of the vector.

◦ As a warning, we remark that vectors are a little bit di�erent from directed line segments, because we
don't care where a vector starts: we only care about the di�erence between the starting and ending
positions.

◦ Thus, the directed segment whose start is (0, 0) and end is (1, 1) and the segment starting at (1, 1) and
ending at (2, 2) represent the same vector 〈1, 1〉. This distinction is rarely necessary in most applications,
but it is a useful thing to keep in mind when visualizing vectors, since we can view any vector as having
any arbitrary starting point we choose.

• We can add vectors (provided they are of the same dimension!) in the obvious way, one component at a time:

• De�nition: If v = 〈a1, · · · , an〉 and w = 〈b1, · · · , bn〉 of the same length, then their sum is v + w =
〈a1 + b1, · · · , an + bn〉.

◦ We can justify this using our geometric idea of what a vector does: v moves us from the origin to the point
(a1, · · · , an). Then w tells us to add 〈b1, · · · , bn〉 to the coordinates of our current position, and so w
moves us from (a1, · · · , an) to (a1+b1, · · · , an+bn). So the net result is that the sum vector v+w moves
us from the origin to (a1 + b1, · · · , an + bn), meaning that it is just the vector 〈a1 + b1, · · · , an + bn〉.
◦ Geometrically, we can think of vector addition using a parallelogram whose pairs of parallel sides are v
and w and whose diagonal is v +w:

• We can also 'scale' a vector by a scalar, one component at a time:

• De�nition: If r is a scalar and v = 〈a1, . . . , an〉 is a vector, then the scalar multiple rv is de�ned as r v =
〈ra1, · · · , ran〉.

◦ Again, we can justify this by our geometric idea of what a vector represents: if v moves us some amount

in a direction, then
1

2
v should move us half as far in that direction.

◦ Analogously, 2v should move us twice as far in that direction, while −v should move us exactly as far,
but in the opposite direction.

• Example: If v = 〈−1, 2, 2〉 and w = 〈3, 0,−4〉, �nd 2w, v +w, and v − 2w.

◦ We have 2w = 〈2 · 3, 2 · 0, 2 · (−4)〉 = 〈6, 0,−8〉 , v +w = 〈−1 + 3, 2 + 0, 2 + (−4)〉 = 〈2, 2,−2〉 .

◦ Then v − 2w = 〈−1, 2, 2〉 − 〈6, 0,−8〉 = 〈−7, 2, 10〉 .
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• Arithmetic of vectors satis�es several algebraic properties that follow from the de�nition:

◦ Addition of vectors is commutative (v +w = w + v) and associative (u+ (v +w) = (u+ v) +w).

◦ There is a zero vector 0 (namely, the vector with all entries zero), and every vector v has an additive
inverse −v with v + (−v) = 0.

◦ Scalar multiplication distributes over addition of vectors (r(v +w) = rv + rw) and scalars ((r + s)v =
rv + sv).

2.1.2 The Dot Product

• We now analyze lengths and angles between vectors.

• De�nition: We de�ne the norm (also called the length or magnitude) of the vector v = 〈a1, . . . , an〉 as
||v|| =

√
(a1)2 + · · ·+ (an)2.

◦ This is just an application of the distance formula: the norm of the vector 〈a1, . . . , an〉 is just the length
of the line segment joining the origin (0, . . . , 0) to the point (a1, . . . , an).

◦ Example: For v = 〈−1, 2, 2〉 and w = 〈3, 0,−4〉, we have ||v|| =
√

(−1)2 + 22 + 22 = 3 , and ||w|| =√
32 + 02 + (−4)2 = 5 .

◦ If r is a scalar, we can see immediately from the de�nition that ||r v|| = |r| ||v||, since we can just factor

out a
√
r2 = |r| from each term under the square root.

• From any nonzero vector we can construct a unit vector (that is, a vector of length 1) in the same direction
of v just by scaling v by 1 over its length.

• De�nition: If v is a nonzero vector, the vector u =
v

||v||
, called the normalization of v, is a unit vector in the

same direction as v.

◦ Example: For v = 〈−1, 2, 2〉, since ||v|| = 3, we see that u1 =

〈
−1

3
,
2

3
,
2

3

〉
is a unit vector in the same

direction as v.

◦ Example: For w = 〈3, 0,−4〉, since ||w|| = 5, we see that u2 =

〈
3

5
, 0,−4

5

〉
is a unit vector in the

direction of w.

• But another thing we might want to know about two vectors is the angle θ between them. This motivates the
de�nition of the dot product:

• De�nition: The dot product of two vectors v1 = 〈a1, . . . , an〉 and v2 = 〈b1, . . . , bn〉 is de�ned to be the scalar
v1 · v2 = a1b1 + a2b2 + · · ·+ anbn.

◦ Note that the dot product of two vectors is a scalar, not a vector! For this reason, the dot product is
sometimes called the scalar product.

◦ Example: The dot product 〈1, 2〉 · 〈3, 4〉 is (1)(3) + (2)(4) = 11 .

◦ Example: The dot product 〈−1, 2, 2〉 · 〈3, 0,−4〉 is (−1)(3) + (2)(0) + (2)(−4) = −11 .

• The dot product possesses several numerous properties reminiscent of standard multiplication.

• Proposition (Properties of Dot Products): For any vectors v,v1,v2,w, and any scalar r, the following prop-
erties hold:

1. The dot product distributes over addition: (v1 + v2) ·w = (v1 ·w) + (v2 ·w).

2. The dot product distributes through scaling: (rv) ·w = r(v ·w) = v · (rw).

3. The dot product is commutative: v ·w = w · v.
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4. The dot product of a vector with itself is the square of the norm: v · v = ||v||2. (In particular, v · v ≥ 0
for all vectors v.)

◦ Proofs: Each of these properties is a simple algebraic calculation from the de�nition of the dot
product.

• There is a fundamental relation between the dot product and the angle between two vectors:

• Theorem (Dot Product): For vectors v1 and v2 forming an angle θ between them, we have v1 · v2 =
||v1|| ||v2|| cos(θ).

◦ Proof: Apply the Law of Cosines in the triangle formed by v1, v2, and v2−v1: this yields ||v2 − v1||2 =

||v1||2 + ||v2||2 − 2 ||v1|| ||v2|| cos(θ).
◦ Since ||w||2 = w · w for any vector v, we can then convert the statement above to one involving dot
products, and then apply the various properties of dot products:

||v2 − v1||2 = (v2 − v1) · (v2 − v1)

= (v2 · v2)− (v1 · v2)− (v2 · v1) + (v1 · v1)

= ||v2||2 − 2(v1 · v2) + ||v1||2 .

◦ Then, by comparing the expression above to the Law of Cosines expression and cancelling terms, we are
left with v1 · v2 = ||v1|| ||v2|| cos(θ), as desired.

• Using the Dot Product Theorem, we can compute the angle between two vectors:

• Example: Compute the angle between the vectors v =
〈
2, 1,
√
3
〉
and w =

〈
0,
√
3, 1
〉
.

◦ We compute v · w = (2)(0) + (1)(
√
3) + (

√
3)(1) = 2

√
3, and ||v|| =

√
22 + 12 + (

√
3)2 = 2

√
3 and

||w|| =
√
(
√
3)2 + 02 + 12 = 2.

◦ Then by the Dot Product Theorem, the angle θ between the vectors satis�es 2
√
3 = 2 · 2

√
3 · cos(θ),

meaning that θ = cos−1
(
1

2

)
=

π

3
.

• Example: Compute the angle between the vectors v = 〈0, 2, 1, 2〉 and w = 〈3, 4, 0,−12〉.

◦ We have v·w = 0+8+0−24 = −16, ||v|| =
√
02 + 22 + 12 + 22 = 3, and ||w|| =

√
32 + 42 + 02 + (−12)2 =

13.

◦ Then by the Dot Product Theorem, the angle θ between the vectors satis�es −16 = 3 · 13 · cos(θ), so

θ = cos−1
(
−16

39

)
.

• Using the Dot Product Theorem, we can see that the sign and magnitude of the dot product is (roughly)
measuring whether the vectors are pointing in the same direction:

◦ If v1 and v2 are nonzero vectors, then both ||v1|| and ||v2|| are positive, so by the theorem above, the
value v1 · v2 = ||v1|| ||v2|| cos(θ) will have the same sign as cos(θ).

◦ If 0 ≤ θ < π

2
, the dot product v1 ·v2 will be positive. Furthermore, the smaller θ is, the larger the value

of v1 ·v2 will be. Thus, a large positive value for the dot product indicates that the vectors are pointing
in roughly the same direction.

◦ Inversely, if
π

2
< θ ≤ π, the dot product v1 · v2 will be negative, and the larger θ is, the larger negative

v1 · v2 will be. Thus, a large negative value for the dot product indicates that the vectors are pointing
in roughly opposite directions.
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2.2 The Formal De�nition of a Vector Space

• The two operations of addition and scalar multiplication (and the various algebraic properties they satisfy)
are the most fundamental properties of vectors in Rn. We would like to investigate other collections of things
which possess those same properties.

• De�nition: A (real) vector space is a collection V of vectors together with two binary operations, addition of
vectors (+) and scalar multiplication of a vector by a real number (·), satisfying the following axioms:

[V1] Addition is commutative: v +w = w + v for any vectors v and w.

[V2] Addition is associative: (u+ v) +w = u+ (v +w) for any vectors u, v, and w.

[V3] There exists a zero vector 0, with v + 0 = v = 0+ v for any vector v.

[V4] Every vector v has an additive inverse −v, with v + (−v) = 0 = (−v) + v.

[V5] Scalar multiplication is consistent with regular multiplication: α · (β · v) = (αβ) · v for any scalars α, β
and vector v.

[V6] Addition of scalars distributes: (α+ β) · v = α · v + β · v for any scalars α, β and vector v.

[V7] Addition of vectors distributes: α · (v +w) = α · v + α ·w for any scalar α and vectors v and w.

[V8] The scalar 1 acts like the identity on vectors: 1 · v = v for any vector v.

• Remark: One may also consider vector spaces where the collection of scalars is something other than the real
numbers: for example, there exists an equally important notion of a complex vector space, whose scalars are
the complex numbers. (The axioms are the same, except we allow the scalars to be complex numbers.)

◦ We will primarily work with real vector spaces, in which the scalars are the real numbers.

◦ The most general notion of a vector space involves scalars from a �eld, which is a collection of numbers
which possess addition and multiplication operations which are commutative, associative, and distribu-
tive, with an additive identity 0 and multiplicative identity 1, such that every element has an additive
inverse and every nonzero element has a multiplicative inverse.

◦ Aside from the real and complex numbers, another example of a �eld is the rational numbers (�fractions�).

◦ One can formulate an equally interesting theory of vector spaces over any �eld.

• Here are some examples of vector spaces:

• Example: The vectors in Rn are a vector space, for any n > 0. (This had better be true!)

◦ For simplicity we will demonstrate all of the axioms for vectors in R2; there, the vectors are of the form
〈x, y〉 and scalar multiplication is de�ned as α · 〈x, y〉 = 〈αx, αy〉.
◦ [V1]: We have 〈x1, y1〉+ 〈x2, y2〉 = 〈x1 + x2, y1 + y2〉 = 〈x2, y2〉+ 〈x1, y1〉.
◦ [V2]: We have (〈x1, y1〉+ 〈x2, y2〉)+〈x3, y3〉 = 〈x1 + x2 + x3, y1 + y2 + y3〉 = 〈x1, y1〉+(〈x2, y2〉+ 〈x3, y3〉).
◦ [V3]: The zero vector is 〈0, 0〉, and clearly 〈x, y〉+ 〈0, 0〉 = 〈x, y〉.
◦ [V4]: The additive inverse of 〈x, y〉 is 〈−x,−y〉, since 〈x, y〉+ 〈−x,−y〉 = 〈0, 0〉.
◦ [V5]: We have α1 · (α2 · 〈x, y〉) = 〈α1α2x, α1α2y〉 = (α1α2) · 〈x, y〉.
◦ [V6]: We have (α1 + α2) · 〈x, y〉 = 〈(α1 + α2)x, (α1 + α2)y〉 = α1 · 〈x, y〉+ α2 · 〈x, y〉.
◦ [V7]: We have α · (〈x1, y1〉+ 〈x2, y2〉) = 〈α(x1 + x2), α(y1 + y2)〉 = α · 〈x1, y1〉+ α · 〈x2, y2〉.
◦ [V8]: Finally, we have 1 · 〈x, y〉 = 〈x, y〉.

• Example: The set of m× n matrices for any m and any n, forms a vector space.

◦ The various algebraic properties we know about matrix addition give [V1] and [V2] along with [V5]-[V8].

◦ The �zero vector� in this vector space is the zero matrix (with all entries zero), and [V3] and [V4] follow
easily.
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◦ Note of course that in some cases we can also multiply matrices by other matrices. However, the
requirements for being a vector space don't care that we can multiply matrices by other matrices! (All
we need to be able to do is add them and multiply them by scalars.)

• Example: The complex numbers (the numbers of the form a+ bi for real a and b, and where i2 = −1) are a
vector space.

◦ The axioms all follow from the standard properties of complex numbers. As might be expected, the �zero
vector� is just the complex number 0 = 0 + 0i.

◦ Again, note that the complex numbers have �more structure� to them, because we can also multiply
two complex numbers, and the multiplication is also commutative, associative, and distributive over
addition. However, the requirements for being a vector space don't care that the complex numbers have
these additional properties.

• Example: The collection of all real-valued functions on any part of the real line is a vector space, where we
de�ne the �sum� of two functions as (f + g)(x) = f(x) + g(x) for every x, and �scalar multiplication� as
(α · f)(x) = α f(x).

◦ To illustrate: if f(x) = x and g(x) = x2, then f + g is the function with (f + g)(x) = x+ x2, and 2f is
the function with (2f)(x) = 2x.

◦ The axioms follow from the properties of functions and real numbers. The �zero vector� in this space is
the zero function; namely, the function z which has z(x) = 0 for every x.

◦ For example (just to demonstrate a few of the axioms), for any value x in [a, b] and any functions f and
g, we have

∗ [V1]: (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

∗ [V6]: α · (f + g)(x) = α f(x) + α g(x) = (αf)(x) + (αg)(x).

∗ [V8]: (1 · f)(x) = f(x).

• Example: The �zero space� with a single element 0, with 0 + 0 = 0 and α · 0 = 0 for every α, is a vector
space.

◦ All of the axioms in this case eventually boil down to 0 = 0.

◦ This space is rather boring: since it only contains one element, there's really not much to say about it.

• Purely for ease of notation, it will be useful to de�ne subtraction:

• De�nition: The di�erence of two vectors v,w in a vector space V is de�ned to be v −w = v + (−w).

◦ The di�erence has the fundamental property we would expect: by axioms [V2] and [V3], we can write
(v −w) +w = (v + (−w)) +w = v + ((−w) +w) = v + 0 = v.

• There are many simple algebraic properties that can be derived from the axioms which (therefore) hold in
every vector space.

• Theorem (Basic Properties of Vector Spaces): In any vector space V , the following are true:

1. Addition has a cancellation law: for any vector v, if a+ v = b+ v then a = b.

◦ Proof: By [V1]-[V4] we have (a+ v) + (−v) = a+ (v + (−v)) = a+ 0 = a.

◦ Similarly we also have (b+ v) + (−v) = b+ (v + (−v)) = b+ 0 = b.

◦ Finally, since a+ v = b+ v then a = (a+ v) + (−v) = (b+ v) + (−v) = b so a = b.

2. The zero vector is unique: if a+ v = v for some vector v, then a = 0.

◦ Proof: By [V3], v = 0+ v, so we have a+ v = 0+ v. Then by property (1) we conclude a = 0.

3. The additive inverse is unique: for any vector v, if a+ v = 0 then a = −v.
◦ Proof: By [V4], 0 = (−v) + v, so a+ v = (−v) + v. Then by property (1) we conclude a = −v.

4. The scalar 0 times any vector gives the zero vector: 0 · v = 0 for any vector v.
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◦ Proof: By [V6] and [V8] we have v = 1 · v = (0 + 1) · v = 0 · v + 1 · v = 0 · v + v.

◦ Thus, by [V3], we have 0+ v = 0 · v + v so by property (1) we conclude 0 = 0 · v.
5. Any scalar times the zero vector is the zero vector: α · 0 = 0 for any scalar α.

◦ Proof: By [V5] and [V8] we have α · 0 = α · (0+ 0) = α · 0+ α · 0.
◦ Thus, by [V3], we have 0+α ·0 = α · (0+0) = α ·0+α ·0, so by property (1) we conclude 0 = α ·0.

6. The scalar −1 times any vector gives the additive inverse: (−1) · v = −v for any vector v.

◦ Proof: By property (4) and [V6]-[V8] we have v+(−1) ·v = 1 ·v+(−1) ·v = (1+(−1)) ·v = 0 ·v = 0.

◦ But now by property (3), since v + (−1) · v = 0, we see that (−1) · v = −v.
7. The additive inverse of the additive inverse is the original vector: −(−v) = v for any vector v.

◦ Proof: By property (5) twice and [V7]-[V8], −(−v) = (−1) · (−v) = (−1) · [(−1) · v] = (−1)2 · v =
1 · v = v.

8. The only scalar multiples equal to the zero vector are the trivial ones: if α · v = 0, then either α = 0 or
v = 0.

◦ Proof: If α = 0 then we are done. Otherwise, if α 6= 0, then since α is a real number, it has a
multiplicative inverse α−1.

◦ Then by property (5) and [V5], [V8], we have 0 = α−1 · 0 = α−1 · (α · v) = (α−1α) · v = 1 · v = v.

9. The additive inverse is obtained by subtraction from the zero vector: −v = 0− v for any vector v.

◦ Proof: By the de�nition of subtraction and [V3], 0− v = 0+ (−v) = −v.
10. Negation distributes over addition: −(v +w) = (−v) + (−w) = −v −w.

◦ Proof: By property (6) and [V7], −(v+w) = (−1) · (v+w) = (−1) · v+ (−1) ·w = (−v) + (−w).

◦ Also, by the de�nition of subtraction, −v −w = (−v) + (−w). So all three quantities are equal.

11. Any sum of vectors can be associated or rearranged in any order without changing the sum.

◦ The precise details of this argument are technical and we will omit them. However, this result allows
us to freely rearrange sums of vectors.

• The results above are useful, and at the very least they suggest that the notation for vector spaces is sensible:
for example, the scalar multiple (−1) · v is in fact the same as the additive inverse −v, as the notation very
strongly suggests should be true. However, we do not seem to have gotten very far.

◦ It might seem that the axioms we have imposed do not really impose much structure aside from rather
simple properties like the ones listed above: after all, each individual axiom does not say very much on
its own.

◦ But in fact, we will show that the axioms taken collectively force V to have a very strong and regular
structure. In particular, we will be able to describe all of the elements of any vector space in a precise
and simple way.

2.3 Subspaces

• De�nition: A subspaceW of a vector space V is a subset of the vector space V which, under the same addition
and scalar multiplication operations as V , is itself a vector space.

• Example: Show that the set of diagonal 2× 2 matrices is a subspace of the vector space of all 2× 2 matrices.

◦ To do this directly from the de�nition, we need to verify that all of the vector space axioms hold for the

matrices of the form

[
a 0
0 b

]
for some a, b.

◦ First we need to check that the addition operation and scalar multiplication operations actually make

sense: we see that

[
a 0
0 b

]
+

[
c 0
0 d

]
=

[
a+ c 0
0 b+ d

]
is also a diagonal matrix, and p ·

[
a 0
0 b

]
=[

pa 0
0 pb

]
is a diagonal matrix too, so the sum and scalar multiplication operations are well-de�ned.
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◦ Then we have to check the axioms, which is rather tedious. Here are some of the veri�cations:

◦ [A1] Addition is commutative:

[
a 0
0 b

]
+

[
c 0
0 d

]
=

[
c 0
0 d

]
+

[
a 0
0 b

]
.

◦ [A3] The zero element is the zero matrix, since

[
a 0
0 b

]
+

[
0 0
0 0

]
=

[
a 0
0 b

]
.

◦ [A4] The additive inverse of

[
a 0
0 b

]
is

[
−a 0
0 −b

]
since

[
a 0
0 b

]
+

[
−a 0
0 −b

]
=

[
0 0
0 0

]
.

◦ [M1] Scalar multiplication is consistent with regular multiplication: p · q ·
[
a 0
0 b

]
=

[
pqa 0
0 pqb

]
=

pq ·
[
a 0
0 b

]
.

• It is very time-consuming to verify all of the axioms for a subspace, and much of the work seems to be
redundant. Conveniently, we can clean up the repetitive nature of the veri�cations:

• Theorem (Subspace Criterion): A subset W of a vector space V is a subspace of V if and only if W has the
following three properties:

[S1] W contains the zero vector of V .

[S2] W is closed under addition: for any w1 and w2 in W , the vector w1 +w2 is also in W .

[S3] W is closed under scalar multiplication: for any scalar α and w in W , the vector α ·w is also in W .

◦ Proof: Each of these conditions is necessary for W to be a subspace: the de�nition of binary operation
requires [S2] and [S3] to hold, because when we add or scalar-multiply elements of W , we must obtain a
result that is in W . For [S1], W must contain a zero vector 0W , and then we can write 0V = 0V +0W =
0W , so W contains the zero vector of V .

◦ Now suppose each of [S1]-[S3] holds for W . Since all of the operations are therefore de�ned, axioms
[V1]-[V2] and [V5]-[V8] will hold in W because they hold in V . Axiom [V3] for W follows from [S1] since
0W = 0V . Finally, for [V4], for any vector w in W , by our basic properties we know that (−1) ·w = −w,
so since (−1) ·w is in W by [S3], we see that −w is in W .

• Any vector space automatically has two subspaces: the entire space V , and the �trivial� subspace consisting
only of the zero vector.

◦ These examples are rather uninteresting, since we already know V is a vector space, and the subspace
consisting only of the zero vector has very little structure.

• Very often, if we want to check that something is a vector space, it is often much easier to verify that it
is a subspace of something else we already know is a vector space, which is easily done using the subspace
criterion. In order to show that a subset is not a subspace, it is su�cient to �nd a single example in which
any one of the three criteria fails.

• Example: Determine whether the set of vectors of the form 〈t, t, t〉 forms a subspace of R3.

◦ We check the parts of the subspace criterion.

◦ [S1]: The zero vector is of this form: take t = 0.

◦ [S2]: We have 〈t1, t1, t1〉 + 〈t2, t2, t2〉 = 〈t1 + t2, t1 + t2, t1 + t2〉, which is again of the same form if we
take t = t1 + t2.

◦ [S3]: We have α · 〈t1, t1, t1〉 = 〈αt1, αt1, αt1〉, which is again of the same form if we take t = αt1.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of vectors of the form
〈
t, t2

〉
forms a subspace of R2.

◦ We try checking the parts of the subspace criterion.

◦ [S1]: The zero vector is of this form: take t = 0.
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◦ [S2]: For this criterion we try to write
〈
t1, t

2
1

〉
+
〈
t2, t

2
2

〉
=
〈
t1 + t2, t

2
1 + t22

〉
, but this does not have the

correct form, because in general t21 + t22 6= (t1 + t2)
2. (These quantities are only equal if 2t1t2 = 0.)

◦ From here we can �nd a speci�c counterexample: the vectors 〈1, 1〉 and 〈2, 4〉 are in the subset, but their

sum 〈3, 5〉 is not. Thus, this subset is not a subspace .

◦ Note that all we actually needed to do here was �nd a single counterexample, of which there are many.
Had we noticed earlier that 〈1, 1〉 and 〈2, 4〉 were in the subset but their sum 〈3, 5〉 was not, that would
have been su�cient to conclude that the given set was not a subspace.

• Example: Determine whether the set of vectors of the form 〈s, t, 0〉 forms a subspace of R3.

◦ We check the parts of the subspace criterion.

◦ [S1]: The zero vector is of this form: take s = t = 0.

◦ [S2]: We have 〈s1, t1, 0〉 + 〈s2, t2, 0〉 = 〈s1 + s2, t1 + t2, 0〉, which is again of the same form, if we take
s = s1 + s2 and t = t1 + t2.

◦ [S3]: We have α · 〈s1, t1, 0〉 = 〈αs1, αt1, 0〉, which is again of the same form, if we take s = αs1 and
t = αt1.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of vectors of the form 〈x, y, z〉 where 2x − y + z = 0 forms a subspace
of R3.

◦ [S1]: The zero vector is of this form, since 2(0)− 0 + 0 = 0.

◦ [S2]: If 〈x1, y1, z1〉 and 〈x2, y2, z2〉 have 2x1−y1+z1 = 0 and 2x2−y2+z2 = 0 then adding the equations
shows that the sum 〈x1 + x2, y1 + y2, z1 + z2〉 also lies in the space.

◦ [S3]: If 〈x1, y1, z1〉 has 2x1 − y1 + z1 = 0 then scaling the equation by α shows that 〈αx1, αx2, αx3〉 also
lies in the space.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of vectors of the form 〈x, y, z〉 where x, y, z ≥ 0 forms a subspace of R3.

◦ [S1]: The zero vector is of this form: take t = 0.

◦ [S2]: If 〈x1, y1, z1〉 and 〈x2, y2, z2〉 have x1, y1, z1 ≥ 0 and x2, y2, z2 ≥ 0, then x1 + x2 ≥ 0, y1 + y2 ≥ 0,
and z1 + z2 ≥ 0, so 〈x1 + x2, y1 + y2, z1 + z2〉 also lies in the space.

◦ [S3]: If 〈x, y, z〉 has x, y, z ≥ 0, then it is not necessarily true that αx, αy, αz ≥ 0: speci�cally, this is not
true when α = −1.

◦ From here we can �nd a speci�c counterexample: the vector 〈1, 1, 1〉 is in the subset, but the scalar

multiple −1 · 〈1, 1, 1〉 = 〈−1,−1,−1〉 is not in the subset. Thus, this subset is not a subspace .

• Example: Determine whether the set of 2 × 2 matrices of trace zero is a subspace of the space of all 2 × 2
matrices.

◦ [S1]: The zero matrix has trace zero.

◦ [S2]: Since tr(A+B) = tr(A) + tr(B), we see that if A and B have trace zero then so does A+B.

◦ [S3]: Since tr(αA) = αtr(A), we see that if A has trace zero then so does αA.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of 2 × 2 matrices of determinant zero is a subspace of the space of all
2× 2 matrices.

◦ [S1]: The zero matrix has determinant zero.

◦ [S3]: Since det(αA) = α2 det(A) when A is a 2 × 2 matrix, we see that if A has determinant zero then
so does αA.
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◦ [S2]: If A and B have determinant zero, then there does not appear to be a nice way to compute the
determinant of A+B in general.

◦ We can in fact �nd a counterexample: if A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
then det(A) = det(B) = 0,

but det(A+B) = 1. Thus, this subset is not a subspace .

• Here are a few more examples of subspaces of vector spaces which will be of interest to us:

• Example: The collection of solution vectors 〈x1, · · · , xn〉 to any homogeneous system of linear equations forms
a subspace of Rn.

◦ It is possible to check this directly by working with equations. But it is much easier to use matrices:

write the system in matrix form, as Ax = 0, where x =

 x1
...
xn

 is a solution vector.

◦ [S1]: We have A0 = 0, by the properties of the zero vector.

◦ [S2]: If x and y are two solutions, the properties of matrix arithmetic imply A(x + y) = Ax + Ay =
0+ 0 = 0 so that x+ y is also a solution.

◦ [S3]: If α is a scalar and x is a solution, then A(α · x) = α · (Ax) = α · 0 = 0, so that α · x is also a
solution.

• Example: The collection of continuous functions on [a, b] is a subspace of the space of all functions on [a, b].

◦ [S1]: The zero function is continuous.

◦ [S2]: The sum of two continuous functions is continuous, from basic calculus.

◦ [S3]: The product of continuous functions is continuous, so in particular a constant times a continuous
function is continuous.

• Example: The collection of n-times di�erentiable functions on [a, b] is a subspace of the space of continuous
functions on [a, b], for any positive integer n.

◦ The zero function is di�erentiable, as are the sum and product of any two functions which are di�eren-
tiable n times.

• Example: The collection of all polynomials is a vector space.

◦ Observe that polynomials are functions on the entire real line. Therefore, it is su�cient to verify the
subspace criteria.

◦ The zero function is a polynomial, as is the sum of two polynomials, and any scalar multiple of a
polynomial.

• Example: The collection of all polynomials of degree at most n, denoted Pn(R), is a vector space.

◦ From above, we know that the collection of all polynomials (of any degree) is a vector space. So we only
need to verify the subspace criteria.

◦ The zero function has degree at most n, as does the sum of two polynomials of degree at most n, and
any scalar multiple of a polynomial of a polynomial of degree at most n.

• Example: The collection of solutions to the (homogeneous, linear) di�erential equation y′′+6y′+5y = 0 form
a vector space.

◦ We show this by verifying that the solutions form a subspace of the space of all functions.

◦ [S1]: The zero function is a solution.

◦ [S2]: If y1 and y2 are solutions, then y′′1 + 6y′1 + 5y1 = 0 and y′′2 + 6y′2 + 5y2 = 0, so adding and using
properties of derivatives shows that (y1+ y2)

′′+6(y1+ y2)
′+5(y1+ y2) = 0, so y1+ y2 is also a solution.
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◦ [S3]: If α is a scalar and y1 is a solution, then scaling y′′1 + 6y′1 + 5y1 = 0 by α and using properties of
derivatives shows that (αy1)

′′ + 6(αy1)
′ + 5(αy1) = 0, so αy1 is also a solution.

◦ Note that we did not need to know how to solve the di�erential equation to answer the question.

◦ For completeness, the solutions are y = Ae−x+Be−5x for any constants A and B. (From this description,
if we wanted to, we could directly verify that such functions form a vector space.)

• This last example helps explain how the study of vector spaces and linear algebra is useful for the study of
di�erential equations: namely, because the solutions to the given homogeneous linear di�erential equation
form a vector space.

◦ It is true more generally that the solutions to an arbitrary homogeneous linear di�erential equation
y(n) + Pn(x) · y(n−1) + · · ·+ P1(x) · y = 0 will form a vector space.

◦ Most of the time we cannot explicitly write down the solutions to this di�erential equation; nevertheless,
if we can understand the structure of a general vector space, we can still say something about what the
solutions look like.

◦ The reason this is a useful idea is that, once we know some more facts about vector spaces, they will
automatically apply to the set of solutions to a homogeneous linear di�erential equation. Thus, we will
not need to �reinvent the wheel� (so to speak) by proving these properties separately, because they are
automatic from the vector space structure of the solution set.

• One thing we would like to know, now that we have the de�nition of a vector space and a subspace, is what
else we can say about elements of a vector space: that is, we would like to know what kind of structure the
elements of a vector space have.

◦ In some of the earlier examples we saw that, in Rn and a few other vector spaces, subspaces could all be
written down in terms of one or more parameters. We will develop this idea in the next few sections.

2.4 Linear Combinations and Span

• De�nition: Given a set v1,v2, . . . ,vn of vectors in a vector space V , we say a vectorw in V is a linear combination
of v1,v2, . . . ,vn if there exist scalars a1, · · · , an such that w = a1 · v1 + a2 · v2 + · · ·+ an · vn.

◦ Example: In R2, the vector 〈1, 1〉 is a linear combination of 〈1, 0〉 and 〈0, 1〉, because 〈1, 1〉 = 1 · 〈1, 0〉+
1 · 〈0, 1〉.
◦ Example: In R4, the vector 〈4, 0, 5, 9〉 is a linear combination of 〈1, 0, 0, 1〉, 〈0, 1, 0, 0〉, and 〈1, 1, 1, 2〉,
because 〈4, 0, 5, 9〉 = 1 · 〈1,−1, 2, 3〉 − 2 · 〈0, 1, 0, 0〉+ 3 · 〈1, 1, 1, 2〉.

◦ Non-Example: In R3, the vector 〈0, 0, 1〉 is not a linear combination of 〈1, 1, 0〉 and 〈0, 1, 1〉 because there
exist no scalars a1 and a2 for which a1 · 〈1, 1, 0〉 + a2 · 〈0, 1, 1〉 = 〈0, 0, 1〉: this would require a common
solution to the three equations a1 = 0, a1 + a2 = 0, and a2 = 1, and this system has no solution.

• De�nition: We de�ne the span of a collection of vectors v1,v2, . . . ,vn in V , denoted span(v1,v2, . . . ,vn), to
be the set W of all vectors which are linear combinations of v1,v2, . . . ,vn. Explicitly, the span is the set of
vectors of the form a1 · v1 + · · ·+ an · vn, for some scalars a1, · · · , an.

◦ For technical reasons, we de�ne the span of the empty set to be the zero vector.

• Example: The span of the vectors 〈1, 0, 0〉 and 〈0, 1, 0〉 in R3 is the set of vectors of the form a · 〈1, 0, 0〉+ b ·
〈0, 1, 0〉 = 〈a, b, 0〉.

◦ Equivalently, the span of these vectors is the set of vectors whose z-coordinate is zero, which (geometri-
cally) forms the plane z = 0.

• Example: Determine whether the vectors 〈2, 3, 3〉 and 〈4,−1, 3〉 are in span(v,w), where v = 〈1,−1, 2〉 and
w = 〈2, 1,−1〉.

◦ For 〈2, 3, 3〉 we must determine whether it is possible to write 〈2, 3, 3〉 = a · 〈1,−1, 2〉 + b · 〈2, 1,−1〉 for
some a and b.
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◦ Equivalently, we want to solve the system 2 = a+ 2b, 3 = −a+ b, 3 = 2a− b.
◦ Row-reducing the associated coe�cient matrix gives 1 2

−1 1
2 −1

∣∣∣∣∣∣
2
3
3

 R2+R1−→
R3−2R1

 1 2
0 3
0 −5

∣∣∣∣∣∣
2
5
−3

 R3+
5
3R1−→

 1 2
0 3
0 0

∣∣∣∣∣∣
2
5

16/3


and we obtain a contradiction. Thus, 〈2, 3, 3〉 is not in the span .

◦ Similarly, for 〈4,−1, 3〉 we want to solve 〈4,−1, 3〉 = c · 〈1,−1, 2〉+ d · 〈2, 1,−1〉.
◦ Row-reducing the associated coe�cient matrix gives 1 2

−1 1
2 −1

∣∣∣∣∣∣
4
−1
3

 R2+R1−→
R3−2R1

 1 2
0 3
0 −5

∣∣∣∣∣∣
4
3
−5

 R3+
5
3R1−→

 1 2
0 3
0 0

∣∣∣∣∣∣
4
3
0


from which we can easily obtain the solution d = 1, c = 2.

◦ Since 〈4,−1, 3〉 = 2 · 〈1,−1, 2〉+ 1 · 〈2, 1,−1〉 we see that 〈4,−1, 3〉 is in the span .

• Here are some basic properties of the span:

• Proposition (Span is a Subspace): For any set S of vectors in V , the set span(S) is a subspace of V .

◦ Proof: We check the subspace criterion. If S is empty, then by de�nition span(S) = {0} and {0} is a
subspace of V .

◦ Now assume S is not empty. Let v be any vector in S: then 0 · v = 0 is in span(S).

◦ The span is closed under addition because we can write the sum of any two linear combinations as another
linear combination: (a1 ·v1 + · · ·+ an ·vn)+ (b1 ·v1 + · · ·+ bn ·vn) = (a1 + b1) ·v1 + · · ·+(an + bn) ·vn.

◦ Finally, we can write any scalar multiple of a linear combination as a linear combination: α · (a1v1 +
· · ·+ anvn) = (αa1) · v1 + · · ·+ (αan) · vn.

• Proposition (Minimality of Span): For any vectors v1, . . . ,vn in V , if W is any subspace of V that contains
v1, . . . ,vn, then W contains span(v1, . . . ,vn). In other words, the span is the smallest subspace containing
the vectors v1, . . . ,vn.

◦ Proof: Consider any elementw in span(v1,v2, . . . ,vn): by de�nition, we can writew = a1·v1+· · ·+an·vn

for some scalars a1, · · · , an.
◦ Because W is a subspace, it is closed under scalar multiplication, so each of a1 ·v1, · · · , an ·vn lies in W .

◦ Furthermore, also becauseW is a subspace, it is closed under addition. Thus, the sum a1 ·v1+· · ·+an ·vn

lies in W .

◦ Thus, every element of the span lies in W , as claimed.

• Corollary: If S and T are two sets of vectors in V with S ⊆ T , then span(S) is a subspace of span(T ).

◦ Proof: Since the span is always a subspace, we know that span(T ) is a subspace of V containing all the
vectors in S. By the previous proposition, span(T ) therefore contains every linear combination of vectors
from S, which is to say, span(T ) contains span(S).

• Sets whose span is the entire space have a special name:

• De�nition: Given a set S of vectors in a vector space V , if span(S) = V then we say that S is a spanning set
(or generating set) for V .

◦ There are a number of di�erent phrases we use for this idea: we also say that the vectors v1, . . . ,vn span
or generate the vector space V .

◦ Spanning sets are very useful because they allow us to describe every vector in V in terms of the vectors
in S.
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◦ Explicitly, every vector in V is a linear combination of the vectors in S, which is to say, every vector w
in V can be written in the form w = a1 · v1 + · · ·+ an · vn for some scalars a1, . . . , an and some vectors
v1,v2, . . . ,vn in S.

• Example: Show that the vectors 〈1, 0, 0〉, 〈0, 1, 0〉, and 〈0, 0, 1〉 span R3.

◦ For any vector 〈a, b, c〉, we can write 〈a, b, c〉 = a · 〈1, 0, 0〉 + b · 〈0, 1, 0〉 + c · 〈0, 0, 1〉, so it is a linear
combination of the three given vectors.

• Example: Show that the matrices

[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
span the vector space of 2× 2 matrices of

trace zero.

◦ Recall that we showed earlier that the space of matrices of trace zero is a vector space (since it is a
subspace of the vector space of all 2× 2 matrices).

◦ A 2× 2 matrix

[
a b
c d

]
has trace zero when a+ d = 0, or equivalently when d = −a.

◦ So any matrix of trace zero has the form

[
a b
c −a

]
= a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
.

◦ Since any matrix of trace zero is therefore a linear combination of the matrices

[
1 0
0 −1

]
,

[
0 1
0 0

]
,[

0 0
1 0

]
, we conclude that they are a spanning set.

• Example: Determine whether the vectors 〈1, 2〉, 〈2, 4〉, 〈3, 1〉 span R2.

◦ For any vector 〈p, q〉, we want to determine whether there exist some scalars a, b, c such that 〈p, q〉 =
a · 〈1, 2〉+ b · 〈2, 4〉+ c · 〈3, 1〉.
◦ Equivalently, we want to check whether the system p = a+2b+3c, q = 2a+4b+ c has solutions for any
p, q.

◦ Row-reducing the associated coe�cient matrix gives[
1 2 3
2 4 1

∣∣∣∣ pq
]

R2−2R1−→
[

1 2 3
0 0 −5

∣∣∣∣ p
q − 2p

]
and since this system is non-contradictory, there is always a solution: indeed, there are in�nitely many.

(One solution is c =
2

5
p− 1

5
q, b = 0, a = −1

5
p+

3

5
q.)

◦ Since there is always a solution for any p, q, we conclude that these vectors do span R2 .

• Example: Determine whether the vectors 〈1,−1, 3〉, 〈2, 2,−1〉, 〈3, 4, 7〉 span R3.

◦ For any vector 〈p, q, r〉, we want to determine whether there exist some scalars a, b, c such that 〈p, q, r〉 =
a · 〈1,−1, 3〉+ b · 〈2, 2,−1〉+ c · 〈3, 1, 2〉.

◦ Row-reducing the associated coe�cient matrix gives 1 1 −1
−1 0 2
3 1 −5

∣∣∣∣∣∣
p
q
r

 R2+R1−→
R3−3R1

 1 1 −1
0 1 1
0 −2 −2

∣∣∣∣∣∣
p

q + p
r − 3p

 R3+2R2−→

 1 1 −1
0 1 1
0 0 0

∣∣∣∣∣∣
p

q + p
r + 2q − p

 .
◦ Now, if r+2q− p 6= 0, the �nal column will have a pivot and the system will be contradictory. This can
certainly occur: for example, we could take r = 1 and p = q = 0.

◦ Since there is no way to write an arbitrary vector in R3 as a linear combination of the given vectors, we

conclude that these vectors do not span R3 .

• We can generalize the idea in the above examples to give a method for determining whether a collection of
vectors in Rn will span Rn.
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• Theorem (Spanning Sets in Rn): A collection of k vectors v1, . . . ,vk in Rn will span Rn if and only if, for
every vector b, there is at least one vector x satisfying the matrix equation Mx = b, where M is the matrix
whose columns are the vectors v1, . . . ,vk. Such a solution x exists for any b if and only if M has rank n:
that is, when a row-echelon form of M has n pivotal columns.

◦ Proof: Write each vi =

 m1,i

...
mn,i

 as a column matrix.

◦ Then a1·v1+· · ·+ak·vk =

 m1,1

...
mn,1

 a1+· · ·+
 m1,k

...
mn,k

 ak =M

 a1
...
ak

, whereM =

 m1,1 · · · m1,k

...
. . .

...
mn,1 · · · mn,k


is the matrix whose columns are the vectors v1, . . . ,vk.

◦ So the statement that, for any b, there exist scalars a1, . . . , ak such that a1 · v1 + · · · + ak · vk = b is

equivalent to the statement that there is a solution x =

 a1
...
ak

 to the matrix equation Mx = b.

◦ For the second part of the theorem, consider the matrix equation Mx = b, and perform row operations
to put M in row-echelon form.

◦ By our theorems on systems of linear equations, this system will have at least one solution precisely when
there is no pivot in the augmented column of coe�cients.

◦ Since b can be chosen arbitrarily, so can the column of constants in the augmented matrix once we put
it in row-echelon form.

◦ Since the augmented matrix has at most n pivots (since it has n rows), the only way we can prevent
having a pivot in the column of constants is to have all the pivots in the matrix M itself: thus, M must
have n pivots. From the de�nition of rank, this is equivalent to saying M has rank n.

• Example: Determine whether the vectors 〈1, 0, 3, 2〉, 〈2, 2,−1, 1〉, 〈3, 4, 3, 2〉, 〈−1, 2, 6,−1〉 span R4.

◦ By the theorem above, we simply need to row-reduce the matrix whose columns are the given vectors:
1 2 3 −1
0 2 4 2
3 −1 3 6
2 1 2 −1

 R3−3R1−→
R4−2R1


1 2 3 −1
0 2 4 2
0 −7 −6 9
0 −3 −4 1

 −→ · · · −→


1 0 0 −1
0 1 0 −3
0 0 1 2
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0

 .
◦ From this reduced row-echelon form, we see that the matrix has rank 3, so the vectors do not span R4 .

• For other vector spaces, we can apply the same sorts of ideas to determine whether a particular set of vectors
is a spanning set.

• Example: Determine whether the polynomials 1, 1 + x2, x4, 1 + x2 + x4 span the space W of polynomials of
degree at most 4 satisfying p(x) = p(−x).

◦ It is straightforward to verify that this set W is a subspace of the vector space of polynomials. (We omit
this veri�cation.)

◦ A polynomial of degree at most 4 has the form p(x) = a+ bx+ cx2+dx3+ex4, and having p(x) = p(−x)
requires a− bx+ cx2 − dx3 + ex4 = a+ bx+ cx2 + dx3 + ex4, or equivalently b = d = 0.

◦ Thus, the desired polynomials are those of the form p(x) = a+ cx2 + ex4 for arbitrary coe�cients a, c,
and e.

◦ Since we can write a+ cx2+ ex4 = (a− c) ·1+ c · (1+x2)+ e ·x4+0 · (1+x2+x4), the given polynomials

do span W .

◦ Note that we could also have written a+ cx2+ex4 = (a− c) ·1+(c−e) · (1+x2)+0 ·x4+e · (1+x2+x4),
so the polynomials in W can be written as a linear combination of the vectors in the spanning set in
more than one way. (In fact, they can be written as a linear combination in in�nitely many ways.)

◦ This example underlines another important point: if span(S) = V , it is possible that any given vector
in V can be written as a linear combination of vectors in S in many di�erent ways.
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2.5 Linear Independence and Linear Dependence

• De�nition: We say a �nite set of vectors v1, . . . ,vn is linearly independent if a1 ·v1+ · · ·+an ·vn = 0 implies
a1 = · · · = an = 0. Otherwise, we say the collection is linearly dependent. (The empty set of vectors is by
de�nition linearly independent.)

◦ In other words, v1, . . . ,vn are linearly independent precisely when the only way to form the zero vector as
a linear combination of v1, . . . ,vn is to have all the scalars equal to zero (the �trivial� linear combination).
If there is a nontrivial linear combination giving the zero vector, then v1, . . . ,vn are linearly dependent.

◦ Note: For an in�nite set of vectors, we say it is linearly independent if every �nite subset is linearly
independent, per the de�nition above. Otherwise, if some �nite subset displays a dependence, we say
the in�nite set is dependent.

• Example: The matrices

[
2 3
2 −4

]
,

[
−1 −1
−1 2

]
, and

[
0 3
0 0

]
are linearly dependent, because 3·

[
2 3
2 −4

]
+

6 ·
[
−1 −1
−1 2

]
+ (−1) ·

[
0 3
0 0

]
=

[
0 0
0 0

]
.

• Example: Determine whether the vectors 〈1, 1, 0〉, 〈0, 2, 1〉 in R3 are linearly dependent or linearly independent.

◦ Suppose that we had scalars a and b with a · 〈1, 1, 0〉+ b · 〈0, 2, 1〉 = 〈0, 0, 0〉.
◦ Comparing the two sides requires a = 0, a+ 2b = 0, b = 0, which has only the solution a = b = 0.

◦ Thus, by de�nition, these vectors are linearly independent .

• Example: Determine whether the vectors 〈1, 1, 0〉, 〈2, 2, 0〉 in R3 are linearly dependent or linearly independent.

◦ Suppose that we had scalars a and b with a · 〈1, 1, 0〉+ b · 〈2, 2, 0〉 = 〈0, 0, 0〉.
◦ Comparing the two sides requires a+ 2b = 0, a+ 2b = 0, 0 = 0, which has (for example) the nontrivial
solution a = 1, b = −2.
◦ Thus, we see that we can write 2 · 〈1, 1, 0〉 + (−1) · 〈2, 2, 0〉 = 〈0, 0, 0〉, and this is a nontrivial linear

combination giving the zero vector meaning that these vectors are linearly dependent .

• Example: Determine whether the polynomials 1 + x2, 2− x+ x2, and 1 + x+ 2x2 are linearly dependent or
linearly independent.

◦ Suppose that we had scalars a, b, and c with a(1 + x2) + b(2− x+ x2) + c(1 + x+ 2x2) = 0.

◦ Equivalently, this says (a + 2b + c) + (−b + c)x + (a + b + 2c)x2 = 0. This will be true precisely when
each coe�cient is zero, which requires a+ 2b+ c = 0, −b+ c = 0, and a+ b+ 2c = 0.

◦ Solving this system reveals a nonzero solution with a = −3 and b = c = 1: thus, the polynomials are

linearly dependent . Explicitly, −3(1 + x2) + 1(2− x+ x2) + 1(1 + x+ 2x2) = 0.

• Here are a few basic properties of linear dependence and independence that follow from the de�nition:

◦ Any set containing the zero vector is linearly dependent. (Choose zero coe�cients for the other vectors,
and a nonzero coe�cient for the zero vector.)

◦ Any set containing a linearly dependent set is linearly dependent. (Any dependence in the smaller set
gives a dependence in the larger set.)

◦ Any subset of a linearly independent set is linearly independent. (Any dependence in the smaller set
would also give a dependence in the larger set.)

◦ Any set containing a single nonzero vector is linearly independent. (If a 6= 0 and a · v = 0, then
scalar-multiplying by 1/a yields v = 0. Thus, no nonzero multiple of a nonzero vector can be the zero
vector.)

• The case of a set with two vectors is nearly as simple:
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• Proposition (Dependence of Two Vectors): In any vector space V , the two vectors v1 and v2 are linearly
dependent if one is a scalar multiple of the other, and they are linearly independent otherwise.

◦ Proof: If v1 = α · v2 then we can write 1 · v1 + (−α) · v2 = 0, and similarly if v2 = α · v1 then we can
write (−α) · v1 + 1 · v2 = 0. In either case the vectors are linearly dependent.

◦ If the vectors are dependent, then suppose a · v1 + b · v2 = 0 where a, b are not both zero. If a 6= 0 then
we can write v1 = (−b/a) · v2, and if b 6= 0 then we can write v2 = (−a/b) · v1. At least one of these
cases must occur, so one of the vectors is a scalar multiple of the other as claimed.

• It is more a delicate problem to determine whether a larger set of vectors is linearly independent. Typically,
answering this question will reduce to determining whether a set of linear equations has a solution.

• Example: Determine whether the vectors 〈1, 0, 2, 2〉, 〈2,−2, 3, 0〉, 〈0, 3, 1, 3〉, and 〈0, 4, 1, 2〉 in R4 are linearly
dependent or linearly independent.

◦ Suppose that we had scalars a,b,c,d with a · 〈1, 0, 2, 2〉 + b · 〈2,−2, 3, 0〉 + c · 〈0, 3, 1, 3〉 + d · 〈0, 4, 1, 2〉 =
〈0, 0, 0, 0〉.

◦ This is equivalent to saying a+ 2b = 0, −2b+ 3c+ 4d = 0, 2a+ 3b+ c+ d = 0, and 2a+ 3c+ 2d = 0.

◦ To search for solutions we can convert this system into matrix form and then row-reduce it:
1 2 0 0
0 −2 3 4
2 3 1 1
2 0 3 2

∣∣∣∣∣∣∣∣
0
0
0
0

 R3−2R1−→
R4−2R1


1 2 0 0
0 −2 3 4
0 −1 1 1
0 −4 3 2

∣∣∣∣∣∣∣∣
0
0
0
0

 −→ · · · −→


1 0 0 −2
0 1 0 1
0 0 1 2
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0


from which we can obtain a nonzero solution d = 1, c = −2, b = −1, a = 2.

◦ So we see 2 · 〈1, 0, 2, 2〉 + (−1) · 〈2,−2, 0, 3〉 + (−2) · 〈0, 3, 3, 1〉 + 1 · 〈0, 4, 2, 1〉 = 〈0, 0, 0, 0〉, and this is a

nontrivial linear combination giving the zero vector meaning that these vectors are linearly dependent .

• We can generalize the idea in the above example to give a method for determining whether a collection of
vectors in Rn is linearly independent:

• Theorem (Dependence of Vectors in Rn): A collection of k vectors v1, . . . ,vk in Rn is linearly dependent if
and only if there is a nonzero vector x satisfying the matrix equation Mx = 0, where M is the matrix whose
columns are the vectors v1, . . . ,vk.

◦ Proof: Write each vi =

 m1,i

...
mn,i

 as a column matrix.

◦ Then a1·v1+· · ·+ak·vk =

 m1,1

...
mn,1

 a1+· · ·+
 m1,k

...
mn,k

 ak =M

 a1
...
ak

, whereM =

 m1,1 · · · m1,k

...
. . .

...
mn,1 · · · mn,k


is the matrix whose columns are the vectors v1, . . . ,vk.

◦ So the linear combination a1 · v1 + · · · + ak · vk is the zero vector precisely when the matrix product

Mx = 0, where x =

 a1
...
ak

.
◦ By de�nition, the vectors v1, . . . ,vk will be linearly dependent when there is a nonzero x satisfying this
matrix equation, and they will be linearly independent when the only solution is x = 0.

• The terminology of �linear dependence� arises from the fact that if a set of vectors is linearly dependent, one
of the vectors is necessarily a linear combination of the others (i.e., it �depends� on the others):

• Proposition (Dependence and Linear Combinations): A set S of vectors is linearly dependent if and only if
one of the vectors is a linear combination of (some of) the others.

16



◦ To avoid trivialities, we remark here that if S = {0} then the result is still correct, since the set of linear
combinations (i.e., the span) of the empty set is the zero vector.

◦ Proof: If v is a linear combination of other vectors in S, say v = a1 · v1 + a2 · v2 + · · ·+ an · vn, then we
have a nontrivial linear combination yielding the zero vector, namely (−1) ·v+a1 ·v1+ · · ·+an ·vn = 0.

◦ Conversely, suppose there is a nontrivial linear combination of vectors in S giving the zero vector, say,
b1 ·v1+b2 ·v2+ · · ·+bn ·vn = 0. Since the linear combination is nontrivial, at least one of the coe�cients
is nonzero, say, bi. Then bi · vi = (−b1) · v1 + · · ·+ (−bi−1) · vi−1 + (−bi+1) · vi+1 + · · ·+ (−bn) · vn.

◦ By scalar-multiplying both sides by 1/bi (which exists because bi 6= 0 by assumption) we see that

vi = (−b1
bi
) · v1 + · · ·+ (−bi−1

bi
) · vi−1 + (−bi+1

bi
) · vi+1 + · · ·+ (−bn

bi
) · vn.

◦ Thus, one of the vectors is a linear combination of the others, as claimed.

• Example: Write one of the linearly dependent vectors 〈1,−1〉, 〈2, 2〉, 〈2, 1〉 as a linear combination of the
others.

◦ If we search for a linear dependence, we require a 〈1,−1〉+ b 〈2, 2〉+ c 〈2, 1〉 = 〈0, 0〉.

◦ By row-reducing the matrix

[
1 2 2
−1 2 1

∣∣∣∣ 0
0

]
we �nd the solution 2 〈1,−1〉+3 〈2, 2〉−4 〈2, 1〉 = 〈0, 0〉.

◦ Rearranging to solve for 〈1,−1〉 then yields 〈1,−1〉 = −3

2
〈2, 2〉+ 2 〈2, 1〉 .

◦ In fact, we could have solved for any of the vectors that had a nonzero coe�cient in the linear dependence,

so for example we could also have have written 〈2, 2〉 = −2

3
〈1,−1〉+ 4

3
〈2, 1〉 , or 〈2, 1〉 = 1

2
〈1,−1〉+ 3

4
〈2, 2〉 .

• Linear independence and span are related in a number of other ways as well. Here are two:

• Theorem (Independence and Span): Let S be a linearly independent subset of the vector space V , and v be
any vector in V not in S. Then the set S ∪ {v} is linearly dependent if and only if v is in span(S).

◦ Proof: If v is in span(S), then one vector (namely v) in S∪{v} can be written as a linear combination of
the other vectors (namely, the vectors in S). So by our earlier proposition, S∪{v} is linearly dependent.

◦ Conversely, suppose that S∪{v} is linearly dependent, and consider a nontrivial dependence. If the coef-
�cient of v were zero, then we would obtain a nontrivial dependence among the vectors in S (impossible,
since S is linearly independent).

◦ Thus, the coe�cient of v is not zero: say, a · v + b1 · v1 + · · · + bn · vn = 0 with a 6= 0 and for some
v1,v2, . . . ,vn in S.

◦ Then v = (−b1
a
) · v1 + · · ·+ (−bn

a
) · vn is a linear combination of the vectors in S, so v is in span(S).

• Theorem (Characterization of Linear Independence): The set S = {v1, . . . ,vn} is linearly independent if and
only if every vector w in span(S) may be written as a linear combination w = a1 ·v1+ · · ·+an ·vn for unique
scalars a1, a2, . . . , an.

◦ Proof: First suppose the decomposition is always unique. Then a1 · v1 + · · · + an · vn = 0 implies
a1 = · · · = an = 0, because 0 · v1 + · · ·+ 0 · vn = 0 is by assumption the only decomposition of 0, so the
vectors are linearly independent.

◦ Now suppose that we had two ways of decomposing a vector w, say as w = a1 · v1 + · · ·+ an · vn and as
w = b1 · v1 + · · ·+ bn · vn.

◦ By subtracting, we obtain (a1 − b1) · v1 + · · ·+ (an − bn) · vn = w −w = 0.

◦ But now because v1, . . . ,vn are linearly independent, we see that all of the scalar coe�cients a1 −
b1, · · · , an−bn are zero. But this says a1 = b1, a2 = b2, . . . , an = bn, meaning that the two decompositions
are actually the same.
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2.6 Bases and Dimension

• We will now combine the ideas of a spanning set and a linearly independent set, and use the resulting objects
to study the structure of vector spaces.

2.6.1 De�nition and Basic Properties of Bases

• De�nition: A linearly independent set of vectors which spans V is called a basis for V .

◦ Terminology Note: The plural form of the (singular) word �basis� is �bases�.

• Example: Show that the vectors 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉 form a basis for R3.

◦ The vectors certainly span R3, since we can write any vector 〈a, b, c〉 = a · 〈1, 0, 0〉+b · 〈0, 1, 0〉+c · 〈0, 0, 1〉
as a linear combination of these vectors.

◦ Furthermore, the vectors are linearly independent, because a · 〈1, 0, 0〉+ b · 〈0, 1, 0〉+ c · 〈0, 0, 1〉 = 〈a, b, c〉
is the zero vector only when a = b = c = 0.

◦ Thus, these three vectors are a linearly independent spanning set for R3, so they form a basis.

• We can use this same idea to write down a basis for Rn:

• De�nition: The standard basis of Rn consists of the vectors e1, e2, . . . , en where ei has a 1 in the ith coordinate
and 0s elsewhere.

◦ It is easy to check (as above) that these n vectors are linearly independent and span Rn.

• A particular vector space can have several di�erent bases:

• Example: Show that the vectors 〈1, 1, 1〉, 〈2,−1, 1〉, 〈1, 2, 1〉 also form a basis for R3.

◦ Solving the system of linear equations determined by x · 〈1, 1, 1〉+ y · 〈2,−1, 1〉+ z · 〈1, 2, 1〉 = 〈a, b, c〉 for
x, y, z will yield the solution x = −3a− b+ 5c, y = a− c, z = 2a+ b− 3c.

◦ Therefore, 〈a, b, c〉 = (−3a− b+ 5c) · 〈1, 1, 1〉+ (a− c) · 〈2,−1, 1〉+ (2a+ b− 3c) · 〈1, 2, 1〉, so these three
vectors span R3.

◦ Furthermore, solving the system x · 〈1, 1, 1〉+ y · 〈2,−1, 1〉+ z · 〈1, 2, 1〉 = 〈0, 0, 0〉 yields only the solution
x = y = z = 0, so these three vectors are also linearly independent.

◦ So 〈1, 1, 1〉, 〈2,−1, 1〉, 〈1, 2, 1〉 are a linearly independent spanning set for R3, so they also form a basis.

• Example: Find a basis for the vector space of 2× 3 (real) matrices.

◦ A general 2× 3 matrix has the form

[
a b c
d e f

]
= a

[
1 0 0
0 0 0

]
+ b

[
0 1 0
0 0 0

]
+ c

[
0 0 1
0 0 0

]
+

d

[
0 0 0
1 0 0

]
+ e

[
0 0 0
0 1 0

]
+ f

[
0 0 0
0 0 1

]
.

◦ This decomposition suggests that we can take the set of six matrices[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 1
0 0 0

]
,

[
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]
as a basis.

◦ Indeed, they certainly span the space of all 2×3 matrices, and they are also linearly independent, because
the only linear combination giving the zero matrix is the one with a = b = c = d = e = f = 0.

• Non-Example: Show that the vectors 〈1, 1, 0〉 and 〈1, 1, 1〉 are not a basis for R3.

◦ These vectors are linearly independent, since neither is a scalar multiple of the other.

◦ However, they do not span R3 since, for example, it is not possible to obtain the vector 〈1, 0, 0〉 as a
linear combination of 〈1, 1, 0〉 and 〈1, 1, 1〉.
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◦ Explicitly, since a · 〈1, 1, 0〉+ b · 〈1, 1, 1〉 = 〈a+ b, a+ b, b〉, there are no possible a, b for which this vector
can equal 〈1, 0, 0〉, since this would require a+ b = 1 and a+ b = 0 simultaneously.

• Non-Example: Show that the vectors 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉 are not a basis for R3.

◦ These vectors do span R3, since we can write any vector 〈a, b, c〉 = a · 〈1, 0, 0〉+ b · 〈0, 1, 0〉+ c · 〈0, 0, 1〉+
0 · 〈1, 1, 1〉.

◦ However, these vectors are not linearly independent, since we have the explicit linear dependence 1 ·
〈1, 0, 0〉+ 1 · 〈0, 1, 0〉+ 1 · 〈0, 0, 1〉+ (−1) · 〈1, 1, 1〉 = 〈0, 0, 0〉.

• Having a basis allows us to describe all the elements of a vector space in a particularly convenient way:

• Proposition (Characterization of Bases): The set of vectors v1,v2, . . . ,vn forms a basis of the vector space V
if and only if every vector w in V can be written in the form w = a1 · v1 + a2 · v2 + · · ·+ an · vn for unique
scalars a1, a2, . . . , an.

◦ This proposition says that if we have a basis v1,v2, . . . ,vn for V , then we can describe all of the other
vectors in V in a particularly simple way (as a linear combination of v1,v2, . . . ,vn) that is unique. A
useful way to interpret this idea is to think of the basis vectors v1,v2, . . . ,vn as �coordinate directions�
and the coe�cients a1, a2, . . . , an as �coordinates�.

◦ Proof: Suppose v1,v2, . . . ,vn is a basis of V . Then by de�nition, the vectors v1,v2, . . . ,vn span the
vector space V : every vector w in V can be written in the form w = a1 · v1 + a2 · v2 + · · ·+ an · vn for
some scalars a1, a2, . . . , an.

◦ Furthermore, since the vectors v1,v2, . . . ,vn are linearly independent, by our earlier proposition every
vector w in their span (which is to say, every vector in V ) can be uniquely written in the form w =
a1 · v1 + a2 · v2 + · · ·+ an · vn, as claimed.

◦ Conversely, suppose every vector w in V can be uniquely written in the form w = a1 ·v1+a2 ·v2+ · · ·+
an · vn. Then by de�nition, the vectors v1,v2, . . . ,vn span V .

◦ Furthermore, by our earlier proposition, because every vector in span(v1,v2, . . . ,vn) can be uniquely
written as a linear combination of v1,v2, . . . ,vn, the vectors v1,v2, . . . ,vn are linearly independent:
thus, they are a linearly independent spanning set for V , so they form a basis.

2.6.2 Existence of Bases

• We now turn our attention to the question of constructing bases for general vector spaces.

• Theorem (Spanning Sets and Bases): If V is a vector space, then any spanning set for V contains a basis of
V .

◦ In the event that the spanning set is in�nite, the argument is rather delicate and technical (and requires
an ingredient known as the axiom of choice), so we will only treat the case of a �nite spanning set
consisting of the vectors v1,v2, . . . ,vn.

◦ Proof (�nite spanning set case): Suppose {v1, . . . ,vn} spans V . We construct an explicit subset that is
a basis for V .

◦ Start with an empty collection S0 of elements. Now, for each 1 ≤ k ≤ n, perform the following procedure:

∗ Check whether the vector vk is contained in the span of Sk−1. (Note that the span of the empty set
is the zero vector.)

∗ If vk is not in the span of Sk−1, let Sk = Sk−1 ∪ {vk}. Otherwise, let Sk = Sk−1.

◦ We claim that the set Sn is a basis for V . Roughly speaking, the idea is that the collection of elements
which we have not thrown away will still be a generating set (since removing a dependent element will
not change the span), but the collection will also now be linearly independent (since we threw away
elements which were dependent).

◦ To see that S is linearly independent, observe that if vk is included in Sk, then vk is linearly independent
from the vectors already in Sk−1 (as it is not in the span of Sk−1). Thus, each time we add a new vector,
we preserve the linear independence, so when the procedure terminates, Sn will be linearly independent.
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◦ To see that Sn spans V , the idea is to observe that the span of S is the same as the span of v1,v2, . . . ,vn.

◦ Explicitly, consider any vector vk that is not in Sn: it was not included in Sk during the construction,
so it must have been contained in the span of the vectors already in Sk−1. Therefore, adding vk to Sn

will not change the span. Doing this for each vector vk not in S will not change the span and will yield
the set {v1,v2, . . . ,vn}, so we conclude span(S) = span(v1,v2, . . . ,vn) = V .

• By removing elements from a spanning set, we can construct a basis for any vector space.

• Theorem (Bases of Vector Spaces): Every vector space V has a basis.

◦ Proof: Let S to be any spanning set for V . (For example, we could take S to be the set of all vectors in
V .) Then since S spans V , it contains a basis for V .

◦ Remark: That a basis always exists is incredibly helpful, and is without a doubt the most useful fact
about vector spaces. Vector spaces in the abstract are very hard to think about, but a vector space with
a basis is something very concrete, since the existence of a basis allows us to describe all the vectors in
a precise and regular form.

• The above procedure allows us to construct a basis for a vector space by �dropping down� by removing linearly
dependent vectors from a spanning set. We can also construct bases for vector spaces by �building up� from
a linearly independent set.

• Theorem (Building-Up Theorem): Given any linearly independent set of vectors in V , there exists a basis of
V containing those vectors. In short, any linearly independent set of vectors can be extended to a basis.

◦ Proof: Let S be a set of linearly independent vectors. (In any vector space, the empty set is always
linearly independent.)

1. If S spans V , then we are done, because then S is a linearly independent generating set; i.e., a basis.

2. If S does not span V , there is an element v in V which is not in the span of S. Put v in S: then by
hypothesis, the new S will still be linearly independent.

3. Repeat the above two steps until S spans V .

◦ If V is ��nite-dimensional� (see below), then we will always be able to construct a basis in a �nite number
of steps. In the case where V is �in�nite-dimensional�, matters are trickier, and we will omit the very
delicate technical details required to deal with this case.

• Now that we have several ways of constructing bases, we can use them to study linear independence and span:

• Theorem (Bases and Dependence): Suppose V has a basis with n elements. If m > n, then any set of m
vectors of V is linearly dependent.

◦ Proof: Suppose B is a basis with n elements and A is a set of m vectors with m > n. Then since
B is a basis, we can write every element ai in A as a linear combination of the elements of B, say as
ai =

∑n
j=1 ci,j · bj for 1 ≤ i ≤ m.

◦ We would like to see that there is some choice of scalars dk, not all zero, such that
∑n

k=1 dk · ak = 0:
this will show that the vectors ai are linearly dependent.

◦ So consider a linear combination
∑n

k=1 dk · ak = 0: if we substitute in for the vectors in B, then we
obtain a linear combination of the elements of B equalling the zero vector. Since B is a basis, this means
each coe�cient of bj in the resulting expression must be zero.

◦ If we tabulate the resulting system, we can check that it is equivalent to the matrix equation Cd = 0,

where C is the m × n matrix of coe�cients with entries ci,j , and d =

 d1
...
dn

 is the n × 1 matrix with

entries the scalars dk.

◦ Since C is a matrix that has more rows than columns, by the assumption that m > n, we see that the
homogeneous system Cd = 0 has a nonzero solution for d. (There is at most one pivot per column, and
so there must be at least one row that does not have a pivot.)
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◦ But then we have
∑n

k=1 dk · ak = 0 for some scalars dk not all of which are zero, meaning that the set
A is linearly dependent.

• Using the result above, we can deduce the fundamental fact that any two bases of a vector space must have
the same size:

• Theorem (Bases of Vector Spaces): Every vector space has a basis, and any two bases of V contain the same
number of elements.

◦ Proof: We already showed above that every vector space has a basis.

◦ For the other statement, if every basis of V is in�nite, we are done. Now suppose that V has some �nite
basis, and choose B to be a basis of minimal size.

◦ Suppose B has n elements, and consider any other basis B′ of V . By the previous theorem about bases
and linear independence, if B′ contains more than n vectors, it would be linearly dependent, which is
impossible.

◦ Thus, B′ has at most n elements, but since B had minimal size, B′ cannot have fewer than n elements.
Thus B′ has exactly n elements; since B′ was arbitrary, this means every basis of V has n elements.

2.6.3 Dimension

• De�nition: If V is a vector space, the number of elements in any basis of V is called the dimension of V and
is denoted dim(V ).

◦ Our results above assure us that the dimension of a vector space is always well-de�ned: every vector
space has a basis, and any other basis will have the same number of elements.

• Here are a few examples:

◦ Example: The dimension of Rn is n, since the n standard unit vectors form a basis. (This at least
suggests that the term �dimension� is reasonable, since it is the same as our usual notion of dimension.)

◦ Example: The dimension of the vector space Mm×n(R) of m×n matrices is mn, because there is a basis
consisting of the mn matrices Ei,j , where Ei,j is the matrix with a 1 in the (i, j)-entry and 0s elsewhere.

◦ Example: The dimension of the vector space P (R) of all polynomials is ∞, because the (in�nite list of)
polynomials 1, x, x2, x3, · · · are a basis for the space.

◦ Example: The dimension of the vector space Pn(R) of polynomials of degree at most n is n+1, because
{1, x, x2, . . . , xn} is a basis for the space.

◦ Example: The dimension of the zero space is 0, because the empty set (containing 0 elements) is a basis.

◦ Example: The dimension of the space of complex numbers is 2, since the set {1, i} forms a basis.

• Proposition (Dimension of Subspaces): If W is a subspace of V , then dim(W ) ≤ dim(V ).

◦ Proof: Choose any basis of W : it is a linearly independent set of vectors in V , so it is contained in some
basis of V by the Building-Up Theorem.

• The result above tells us that a subspace of a �nite-dimensional vector space will also be �nite-dimensional,
and thus have a �nite basis. The most direct way of computing the dimension of a vector space or subspace
is simply to �nd a basis explicitly.

• Example: Find the dimension of the vector space V of 3× 3 matrices A satisfying AT = −A.

◦ If A =

 a b c
d e f
g h i

 is such a matrix, then AT = −A requires

 a d g
b e h
c f i

 = −

 a b c
d e f
g h i

, so that
a = e = i = 0, b = d, c = g, and h = f .

◦ Then A =

 0 b c
−b 0 f
−c −f 0

 = b ·

 0 1 0
−1 0 0
0 0 0

+ c ·

 0 0 1
0 0 0
−1 0 0

+ f ·

 0 0 0
0 0 1
0 −1 0

.
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◦ Thus, the three matrices

 0 1 0
−1 0 0
0 0 0

 ,
 0 0 1

0 0 0
−1 0 0

 ,
 0 0 0

0 0 1
0 −1 0

 form a basis for the space

(the calculation above shows that they span it, and they are clearly linearly independent), so dim(V ) = 3.

• In general, �nite-dimensional vector spaces are much better-behaved than in�nite-dimensional vector spaces.
We will therefore usually focus our attention on �nite-dimensional spaces, since in�nite-dimensional spaces
can have occasional counterintuitive properties. For example:

• Example: The dimension of the vector space of all real-valued functions on the interval [0, 1] is ∞, because it
contains the in�nite-dimensional vector space of polynomials.

◦ We have not actually written down a basis for the vector space of all real-valued functions on the interval
[0, 1], although (per our earlier results) this vector space does have a basis.

◦ There is a good reason for this: it is not possible to give a simple description of such a basis.

◦ The set of functions fa(x) =

{
1 if x = a

0 if x 6= a
, for real numbers a, does not form a basis for the space of

real-valued functions: although this in�nite set of vectors is linearly independent, it does not span the
space, since (for example) the constant function f(x) = 1 cannot be written as a �nite linear combination
of these functions.

2.6.4 Finding Bases for Rn, Row Spaces, Column Spaces, and Nullspaces

• The fact that every vector space has a basis is extremely useful from a theoretical standpoint. We will now
discuss some practical methods for �nding bases for particular vector spaces that often arise in computational
applications of linear algebra.

◦ Our results provide two di�erent methods for constructing a basis for a given vector space.

◦ One way is to �build� a linearly independent set of vectors into a basis by adding new vectors one at a
time (choosing a vector not in the span of the previous vectors) until a basis is obtained.

◦ Another way is to �reduce� a spanning set by removing linearly dependent vectors one at a time (�nding
and removing a vector that is a linear combination of the others) until a basis is obtained.

• Proposition (Bases, Span, Dependence): If V is an n-dimensional vector space, then any set of fewer than
n vectors cannot span V , and any set of more than n vectors is linearly dependent. Furthermore, a set of
exactly n vectors is a basis if and only if it spans V , if and only if it is linearly independent.

◦ Proof: Suppose �rst that S is a set of fewer than n vectors in V .

◦ Then since S spans span(S) by de�nition, S contains a basis T for span(S), and T is a linearly independent
set of fewer than n vectors in V .

◦ Thus, we can extend T to a basis of V , which necessarily contains n elements, strictly more than in T .
So there is some vector v in this extended basis that is not in T : then v is not in span(S), so S does not
span V .

◦ Now suppose that S is a set of more than n vectors in V that is linearly independent. We would then
be able to extend S to a basis of V , but this is impossible because any basis contains only n elements.

◦ Finally, suppose S contains exactly n vectors. If S is a basis, it is by de�nition a spanning set and linearly
independent, so it remains to show that if S spans V then it is a basis, and if S is linearly independent
then it is a basis.

◦ If S spans V , then S contains a basis: but since the basis must have n elements, the basis is the entire
set S. If S is linearly independent, then S is contained in a basis of V : but we cannot add any more
vectors without making the set linearly dependent, so S must already be a basis.

• Example: Determine whether the vectors 〈1, 2, 2, 1〉, 〈3,−1, 2, 0〉, 〈−3, 2, 1, 1〉 span R4.

◦ They do not span : since R4 is a 4-dimensional space, any spanning set must contain at least 4 vectors.
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• Example: Determine whether the vectors 〈1, 2, 1〉, 〈1, 0, 3〉, 〈−3, 2, 1〉, 〈1, 1, 4〉 are linearly independent.

◦ They are not linearly independent : since R3 is a 3-dimensional space, any 4 vectors in R3 are automat-

ically linearly dependent.

• We can also characterize bases of Rn:

• Theorem (Bases of Rn): A collection of k vectors v1, . . . ,vk in Rn is a basis if and only if k = n and the n×n
matrix M , whose columns are the vectors v1, . . . ,vn, is an invertible matrix.

◦ Remark: The statement that B is invertible is equivalent to saying that det(M) 6= 0. This gives a rapid
computational method for determining whether a given set of vectors forms a basis.

◦ Proof: Since Rn has a basis with n elements, any basis must have n elements by our earlier results, so
k = n.

◦ Now suppose v1, . . . ,vn are vectors in Rn. For any vector w in Rn, consider the problem of �nding
scalars a1, · · · , an such that a1 · v1 + · · ·+ an · vn = w.

◦ This vector equation is the same as the matrix equationMa = w, whereM is the matrix whose columns
are the vectors v1, . . . ,vn, a is the column vector whose entries are the scalars a1, . . . , an, and w is
thought of as a column vector.

◦ By our earlier results, v1, . . . ,vn is a basis of Rn precisely when the scalars a1 . . . , an are unique. In turn
this is equivalent to the statement that Ma = w has a unique solution a for any w.

◦ From our study of matrix equations, this equation has a unique solution precisely whenM is an invertible
matrix, as claimed.

• Example: Determine whether the vectors 〈1, 2, 1〉, 〈2,−1, 2〉, 〈3, 3, 1〉 form a basis of R3.

◦ By the theorem, we only need to determine whether the matrix M =

 1 2 3
2 −1 3
1 2 1

 is invertible.

◦ We compute det(M) = 1

∣∣∣∣ −1 3
2 1

∣∣∣∣− 2

∣∣∣∣ 2 3
1 1

∣∣∣∣+ 3

∣∣∣∣ 2 −1
1 2

∣∣∣∣ = 10 which is nonzero.

◦ Thus, M is invertible, so these vectors do form a basis of R3 .

• Associated to any matrix M are three spaces that often arise when doing matrix algebra and studying the
solutions to systems of linear equations.

• De�nition: If M is an m × n matrix, the row space of M is the subspace of Rn spanned by the rows of M ,
the column space of M is the subspace of Rm spanned by the columns of M , and the nullspace of M is the
set of vectors x in Rn for which Mx = 0.

◦ By de�nition the row space and column spaces are subspaces of Rn and Rm respectively, since the span
of any set of vectors is a subspace.

◦ It is also simple to verify that the nullspace is a subspace of Rm via the subspace criterion.

• We have already studied in detail the procedure for solving a matrix equation Mx = 0, which requires
row-reducing the matrix M . It turns out that we can obtain a basis for the row and column spaces from a
row-echelon form of M as well:

• Theorem (Bases for Row and Column Spaces): If M is an m × n matrix, let E be any row-echelon form of
M . If r is the number of pivots in E, then the row space and column space are both r-dimensional and the
nullspace is (n − r)-dimensional. Furthermore, a basis for the row space is given by the nonzero rows of E,
while a basis for the column space is given by the columns of M that correspond to the pivotal columns of E.

◦ For the column space, we also remark that another option would be to row-reduce the transpose matrix
MT , since the columns of M are the rows of MT . This will produce a basis that is easier to work with,
but it is not actually necessary to perform the extra calculations.
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◦ Proof: First consider the row space, which by de�nition is spanned by the rows of M .

◦ Observe that each elementary row operation does not change the span of the rows of M : for any
vectors vi and vj , we have span(vi,vj) = span(vj ,vi), span(cv) = span(v) for any nonzero c, and
span(vi,vj) = span(vi + cvj ,vj) for any c.

◦ So we may put M into a row-echelon form E without altering the span. Now we claim that the nonzero
rows r1, . . . , rr of E are linearly independent. Ultimately, this is because of the presence of the pivot
elements: if a1 · r1 + · · · + ar · rr = 0 then each of the vectors r1, ... , rr will have a leading coe�cient
in an entry that is zero in all of the subsequent vectors, so the only solution to the associated system of
linear equations is a1 = · · · = ar = 0.

◦ Now consider the column space. Observe �rst that the set of solutions x to the matrix equation Mx = 0
is the same as the set of solutions to the equation Ex = 0, by our analysis of row-operations.

◦ Now if we write x =

 a1
...
an

 and expand out each matrix product in terms of the columns of M and E,

we will see that Mx = a1 · c1 + · · ·+ an · cn and Ex = a1 · e1 + · · ·+ an · en where the ci are the columns
of M and the ei are the columns of E.

◦ Combining these two observations shows that, for any scalars a1, . . . , an, we have a1 ·c1+ · · ·+an ·cn = 0
if and only if a1 · e1 + · · ·+ an · en = 0.

◦ What this means is that any linear dependence between the columns of M gives a linear dependence
between the corresponding columns of E (with the same coe�cients), and vice versa. So it is enough
to determine a basis for the column space of E: then a basis for the column space of M is simply the
corresponding columns in M .

◦ All that remains is to observe that the set of pivotal columns for E forms a basis for the column space of
E: the pivotal columns are linearly independent by the same argument given above for rows, and every
other column lies in their span (speci�cally, any column lies in the span of the pivotal columns to its left,
since each row has a pivotal element).

◦ Finally, the statement about the dimensions of the row and column spaces follows immediately from
our descriptions, and the statement about the dimension of the nullspace follows by observing that the
matrix equation Mx = 0 has r bound variables and n− r free variables.

• Example: Find a basis for the row space, the column space, and the nullspace of the matrixM =

 1 0 2 1
0 1 −1 2
1 1 1 3

,
as well as the dimension of each space.

◦ We begin by row-reducing the matrix M : 1 0 2 1
0 1 −1 2
1 1 1 3

 R3−R1−→

 1 0 2 1
0 1 −1 2
0 1 −1 2

 R3−R2−→

 1 0 2 1
0 1 −1 2
0 0 0 0

 .
◦ The row space is spanned by the two vectors 〈1, 0, 2, 1〉 , 〈0, 1,−1, 2〉 .

◦ Since columns 1 and 2 have pivots, these columns

 1
0
1

 ,
 0

1
1

 give a basis for the column space.

◦ For the nullspace, there are two free variables corresponding to columns 3 and 4. Solving the correspond-
ing system (with variables x1, x2, x3, x4 and free parameters a, b) yields the solution set 〈x1, x2, x3, x4〉 =
〈−2a− b, a− 2b, a, b〉 = a 〈−2, 1, 1, 0〉+ b 〈−1,−2, 0, 1〉.

◦ Thus, a basis for the nullspace is given by 〈−2, 1, 1, 0〉 , 〈−1,−2, 0, 1〉 .

◦ The row space, column space, and nullspace all have dimension 2 .

24



• Example: Find a basis for the row space, the column space, and the nullspace ofM =

 1 −1 0 2 1
−2 2 0 −3 1
1 −1 0 3 8

.
◦ We begin by row-reducing the matrix M : 1 −1 0 2 1

−2 2 0 −3 1
1 −1 0 3 8

 R2+2R1−→
R3−R1

 1 −1 0 2 1
0 0 0 1 3
0 0 0 2 7

 R3−2R2−→

 1 −1 0 2 1
0 0 0 1 3
0 0 0 0 1

 .
◦ The row space is spanned by the three vectors 〈1,−1, 0, 2, 1〉 , 〈0, 0, 0, 1, 3〉 , 〈0, 0, 0, 0, 1〉 .

◦ The pivotal columns

 1
−2
1

 ,
 2
−3
3

 ,
 1

1
8

 give a basis for the column space.

◦ For the nullspace, there are two free variables corresponding to columns 2 and 3. Solving the cor-
responding system (with variables x1, x2, x3, x4, x5 and free parameters a, b) yields the solution set
〈x1, x2, x3, x4, x5〉 = 〈a, a, b, 0, 0〉 = a 〈1, 1, 0, 0, 0〉 + b 〈0, 0, 1, 0, 0〉, so a basis for the nullspace is given

by 〈1, 1, 0, 0, 0〉 , 〈0, 0, 1, 0, 0〉 .

• As particular applications, we can use these ideas to give algorithms for reducing a spanning set to a basis
and for building a basis from a linearly independent set.

◦ To reduce a spanning set to a basis, we write down the associated matrix (whose columns are the elements
of the spanning set) and then row-reduce it: the pivotal columns give a basis for the column space.

◦ To build a linearly independent set S into a basis, we �rst append a basis to S, and then (listing the
vectors in S �rst) reduce this spanning set to a basis as above.

• Example: Find a subset of S = {〈1, 0, 1, 2〉 , 〈3, 0, 3, 6〉 , 〈2, 1, 2, 1〉 , 〈3, 1, 3, 3〉} that is a basis for span(S).

◦ We simply row-reduce the matrix whose columns are the vectors in S:
1 3 2 3
0 0 1 1
1 3 2 3
2 6 1 3

 R3−R1−→
R4−2R2


1 3 2 3
0 0 1 1
0 0 0 0
0 0 −3 −3

 R4+3R2−→


1 3 2 3
0 0 1 1
0 0 0 0
0 0 0 0

 .
◦ Since the �rst and third columns are pivotal, we conclude that the vectors 〈1, 0, 1, 2〉 , 〈2, 1, 2, 1〉 are a

basis for the column space, which is the same as span(S).

• Example: Extend the set S = {〈1, 0,−2, 0〉 , 〈2, 1, 0, 0〉} to a basis for R4.

◦ We extend S to a spanning set, and then reduce to a basis. The easiest method is simply to append
some other basis to S. Let us append the standard basis {e1, e2, e3, e4}: we therefore want to reduce
S′ = {〈1, 0,−2, 0〉 , 〈2, 1, 0, 0〉 , e1, e2, e3, e4} to a basis.

◦ To do this, row-reduce the matrix whose columns are the vectors of S′:
1 2 1 0 0 0
0 1 0 1 0 0
−2 0 0 0 1 0
0 0 0 0 0 1

 R3+2R1−→


1 2 1 0 0 0
0 1 0 1 0 0
0 4 2 0 1 0
0 0 0 0 0 1

 R3−4R2−→


1 2 1 0 0 0
0 1 0 1 0 0
0 0 2 −4 1 0
0 0 0 0 0 1


◦ Since columns 1, 2, 3, and 6 are pivotal, we conclude that {〈1, 0,−2, 0〉 , 〈2, 1, 0, 0〉 , 〈1, 0, 0, 0〉 , 〈0, 0, 0, 1〉}
is a basis for R4 extending the set S.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2021. You may not reproduce or distribute this
material without my express permission.
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