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1 Matrices and Systems of Linear Equations

In this chapter, we will discuss the problem of solving systems of linear equations, reformulate the problem using
matrices, and then give the general procedure for solving such systems. We will then study basic matrix operations
(addition and multiplication) and discuss the problem of how to decide when a matrix has a multiplicative inverse
and (when it does) how to compute it. Finally, we introduce determinants, which provide a convenient way to
identify when a matrix is invertible, and we discuss some of their useful algebraic and geometric properties.

1.1 Systems of Linear Equations

• Our motivating problem is to study the solutions to a system of linear equations, such as the system

x + 3y = 5
3x + y = −1 .

◦ Recall that a linear equation is an equation of the form a1x1 + a2x2 + · · ·+ anxn = b, for some constants
a1, . . . an, b, and variables x1, . . . , xn.

◦ When we seek to �nd the solutions to a system of linear equations, this means �nding all possible values
of the variables such that all equations are satis�ed simultaneously.

• Example: One can check that the system

x + 3y = 5
3x + y = −1

in the two variables x, y has a solution (x, y) = (−1, 2). (In fact, this is the only solution.)

• Example: One can check that the system

2x1 − x2 + 3x3 = 6
x1 + x2 − 2x3 = 1
4x1 + x2 − x3 = 8

in the three variables x1, x2, x3 has as solutions (x1, x2, x3) = (2, 1, 1), (1, 8, 4), and, more generally, any
3-tuple of the form (2− t, 1 + 7t, 1 + 3t) for any real number t. (In fact, these are all the solutions.)
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1.1.1 Elimination, Matrix Formulation

• The traditional method for solving a system of linear equations (likely familiar from basic algebra) is by
elimination: we solve the �rst equation for one variable in terms of the others, and then plug in the result to
all the other equations to obtain a reduced system involving one fewer variable. Eventually, the system will
simplify either to a contradiction (e.g., 1 = 0), a unique solution, or an in�nite family of solutions.

• Example: Solve the system of equations

x + 3y = 5
3x + y = −1 .

◦ We can solve the �rst equation for x to obtain x = 5− 3y.

◦ Plugging in this relation to the second equation gives 3(5−3y)+y = −1, or 15−8y = −1, so that y = 2.

◦ Then since x = 5 − 3y, this means x = −1. So, as claimed earlier, this system has a unique solution

(x, y) = (−1, 2) .

• Another way to perform elimination is to add and subtract multiples of the equations, so to eliminate variables
(and remove the need to solve for each individual variable before eliminating it).

◦ In the example above, instead of solving the �rst equation for x, we could multiply the �rst equation by
−3 and then add it to the second equation, so as to eliminate x from the second equation.

◦ This yields the same overall result, but is less computationally di�cult.

• Example: Solve the system of equations

x + y + 3z = 4
2x + 3y − z = 1
−x + 2y + 2z = 1

.

◦ If we label the equations #1, #2, #3, then we can eliminate x by taking [#2]− 2[#1] and [#3] + [#1].
This gives the new system

x + y + 3z = 4
y − 7z = −7
3y + 5z = 5

.

◦ Now we can eliminate y by taking [#3]− 3[#2]. This yields

x − 2y + 3z = 4
y − 7z = −7

26z = 26
.

◦ Now the third equation immediately gives z = 1. Then the second equation requires y = 0, and the �rst

equation gives x = 1, so there is a unique solution (x, y, z) = (1, 0, 1) .

• This procedure of elimination can be simpli�ed even more, because we don't really need to write the variable
labels down every time. We only need to keep track of the coe�cients, which we can do by putting them into
an array.

◦ Example: The system
x + y + 3z = 4
2x + 3y − z = 1
−x + 2y + 2z = 1

can be written in simpli�ed form using the array 1 1 3
2 3 −1
−1 2 2

∣∣∣∣∣∣
4
1
1

 .
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◦ We can then do operations on the entries in the array that correspond to manipulations of the associated
system of equations.

• Since we will frequently work with arrays of di�erent sizes, it is useful to have a way to refer to them:

• De�nition: An m×n matrix is an array of numbers with m rows and n columns. A square matrix is one with
the same number of rows and columns: that is, an n× n matrix for some n.

◦ Examples:

[
4 1 −1
3 2 0

]
is a 2× 3 matrix, and

 π 0 0
0 π 0
0 0 9

 is a 3× 3 square matrix.

◦ When working with a coe�cient matrix, we will draw a line to separate the coe�cients of the variables
from the constant terms. This type of matrix is often called an augmented matrix.

• De�nition: If A is a matrix, the entry in the ith row and jth column of A is called the (i, j)-entry of A, and
will be denoted ai,j .

◦ Warning: It is easy to mix up the coordinates. Remember that the �rst coordinate speci�es the row,
and the second coordinate speci�es the column.

◦ Example: If A =

[
2 −1 4
3 0 5

]
, then the (2, 2)-entry is a2,2 = 0 and the (1, 3)-entry is a1,3 = 4.

• De�nition: In an n × n square matrix, the (i, i)-entries for 1 ≤ i ≤ n form the diagonal of the matrix. The
trace of a square matrix is the sum of its diagonal entries.

◦ Example: The diagonal entries of

[
4 1
3 2

]
are 4 and 2, so the trace of this matrix is 6.

• When doing elimination, each step involves one of the three elementary row operations on the rows of the
coe�cient matrix:

1. Interchange two rows.

2. Multiply all entries in a row by a nonzero constant.

3. Add a constant multiple of one row to another row.

• Each of these elementary row operations leaves unchanged the solutions to the associated system of linear
equations. The idea of elimination is to apply these elementary row operations to the coe�cient matrix until
it is in a simple enough form that we can simply read o� the solutions to the original system of equations.

• Example: Use elementary row operations to solve the system
x + y = 2
2x − 3y = 9

.

◦ The associated augmented coe�cient matrix is

[
1 1
2 −3

∣∣∣∣ 2
9

]
.

◦ Subtracting twice the �rst row from the second row produces

[
1 1
0 −5

∣∣∣∣ 2
5

]
.

◦ Scaling the second row by −1

5
then produces

[
1 1
0 1

∣∣∣∣ 2
−1

]
.

◦ Subtracting the second row from the �rst row yields

[
1 0
0 1

∣∣∣∣ 3
−1

]
.

◦ Now we can easily read o� the solutions: the �rst equation says x = 3 and the second says y = −1.
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1.1.2 Row-Echelon Form and Reduced Row-Echelon Form

• The procedure of applying elementary row operations to a matrix until it is in a simpler form, is called
row-reduction.

• We will now take a brief digression to discuss some standard forms of coe�cient matrices that arise frequently.
The most basic simple form is called row-echelon form:

• De�nition: A matrix is in row-echelon form if (i) all rows with at least one nonzero element are above any
row of all zero entries, and (ii) the �rst nonzero term in each row is always to the right of the �rst nonzero
term in the row above it. (The �rst nonzero term in each row is called the pivot.)

◦ A shorter way of writing the two conditions is (i) all rows without a pivot (the rows of all zeroes) are at
the bottom, and (ii) any row's pivot, if it has one, lies to the right of the pivot of the row directly above
it.

• Here are some examples of matrices in row-echelon form, where the pivot elements have been boxed:

◦

 1 2 3 4 5

0 1 2 3 4

0 0 1 0 1

,
 1 2 3 4 5

0 0 0 1 0

0 0 0 0 1

,
 1 2 3 4 5

0 0 0 1 0
0 0 0 0 0

,
 0 0 3 4 5

0 0 0 0 1
0 0 0 0 0

.
• Here are some examples of matrices not in row-echelon form:

◦

 1 2 3 4 5
1 1 2 3 4
0 0 1 0 1

: the pivot in the second row is not strictly to the right of the pivot element above

it.

◦

 0 0 3 4 5
0 0 0 1 0
0 0 1 0 1

: the pivot in the third row is not strictly to the right of the pivot element above it.

◦

 0 0 3 4 5
0 0 0 0 0
0 0 0 0 1

: the row of all zeroes is not at the bottom of the matrix.

• If the coe�cient matrix is in row-echelon form, it is easy to read o� the solutions to the corresponding system
of linear equations by working from the bottom up.

◦ Example: The augmented matrix

 1 1 3
0 1 −1
0 0 2

∣∣∣∣∣∣
4
1
4

 corresponding to the system

x + y + 3z = 4
y − z = 1

2z = 4
.

is in row-echelon form. The bottom equation immediately gives z = 2. Then the middle equation gives
y = 1 + z = 3, and the top equation gives x = 4− y − 3z = −5.

• Example: Use row operations to put the matrix


1 2 3 4
0 1 2 3
1 3 5 7
2 4 6 8

 into row-echelon form.

◦ We apply elementary row operations to clear out the �rst column, and then we can clear out the third
row. 

1 2 3 4
0 1 2 3
1 3 5 7
2 4 6 8

 R3−R1−→


1 2 3 4
0 1 2 3
0 1 2 3
2 4 6 8

 R4−2R1−→


1 2 3 4
0 1 2 3
0 1 2 3
0 0 0 0

 R3−R2−→


1 2 3 4
0 1 2 3
0 0 0 0
0 0 0 0

 .
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◦ The matrix is now in row-echelon form.

◦ Notice that there are other possible combinations of row operations we could have performed to put the
matrix into a row-echelon form.

◦ For example, we could have started by swapping rows 1 and 3, and then cleared out the �rst column and
the lower rows:

1 2 3 4
0 1 2 3
1 3 5 7
2 4 6 8

 R1↔R3−→


1 3 5 7
0 1 2 3
1 2 3 4
2 4 6 8

 R3−R1−→


1 3 5 7
0 1 2 3
0 −1 −2 −3
2 4 6 8

 R4−2R1−→


1 3 5 7
0 1 2 3
0 −1 −2 −3
0 −2 −4 −6



R3+R2−→


1 3 5 7
0 1 2 3
0 0 0 0
0 −2 −4 −6

 R4+2R2−→


1 3 5 7
0 1 2 3
0 0 0 0
0 0 0 0

 .
◦ Notice that we obtain a di�erent row-echelon form in this case.

• An even simpler form is called reduced row-echelon form:

• De�nition: A matrix is in reduced row-echelon form (RREF) if it is in row-echelon form, all pivot elements
are equal to 1, and each pivot element is the only nonzero term in its column.

◦ Here are some matrices in reduced row-echelon form (with pivot elements boxed):

 1 0 0 4 5

0 1 0 3 4

0 0 1 0 1

,
 1 2 3 0 5

0 0 0 1 0
0 0 0 0 0

,
 1 2 0 4 0

0 0 1 3 0

0 0 0 0 1

.
◦ Here are some examples of matrices not in reduced row-echelon form:

∗

 1 2 0 4 5
0 1 0 3 4
0 0 1 0 1

: the pivot in the second row has a nonzero entry in its column.

∗

 0 0 3 4 5
0 0 0 0 1
0 0 0 0 0

: the pivot in the �rst row is not equal to 1.

• Example: Use row operations to put the matrix

 1 0 2
3 1 1
5 2 0

 into reduced row-echelon form.

◦ Applying elementary row operations to clear out the �rst column, and then the bottom row, yields 1 0 2
3 1 1
5 2 0

 R2−3R1−→

 1 0 2
0 1 −5
5 2 0

 R3−5R1−→

 1 0 2
0 1 −5
0 2 −10

 R3−2R2−→

 1 0 2
0 1 −5
0 0 0

 .
• There are numerous ways to row-reduce a given matrix until it is in row-echelon form, and many di�erent
row-echelon forms are possible. However, it turns out that the reduced row-echelon form is always unique:

• Theorem: Every matrix has a unique reduced row-echelon form.

◦ We will not prove this theorem. However, it is useful from a theoretical standpoint to know that,
regardless of the way we perform row-reductions, we will always obtain the same reduced row-echelon
form when we are �nished.

• De�nition: The rank of a matrix is the number of nonzero rows in its (reduced) row-echelon form. Equivalently,
it is the number of pivots that appear when the matrix is in (reduced) row-echelon form.
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◦ Examples: The rank of

 1 2 3 4 5
0 1 2 3 4
0 0 1 0 1

 is 3, while the rank of

 1 2 3 0 5
0 0 0 1 0
0 0 0 0 0

 is 2.

1.1.3 Gaussian Elimination

• By using row operations on a coe�cient matrix, we can �nd the solutions to the associated system of equations,
since as we noted before each of the elementary row operations does not change the solutions to the system.

• The only remaining di�culty is interpreting the results we obtain once the coe�cient matrix is in row-echelon
form. There are three di�erent possible cases, which we will illustrate by using an augmented 3× 3 coe�cient
matrix in row-echelon form:

1. The system has a unique solution.

◦ Example:

 1 1 3
0 1 −1
0 0 2

∣∣∣∣∣∣
4
1
4

 whose corresponding system is
x + y + 3z = 4

y − z = 1
2z = 4

. The unique

solution is z = 2, y = 3, x = −5 as we can see by reading the system from the bottom up.

◦ Note that in this case, each of the columns on the left side of the matrix is a pivotal column.

2. The system is inconsistent (�overdetermined�) and has no solutions.

◦ Example:

 1 1 3
0 1 −1
0 0 0

∣∣∣∣∣∣
4
1
4

 whose corresponding system is
x + y + 3z = 4

y − z = 1
0 = 4

. The bot-

tom equation is contradictory.

◦ Note that in this case, the column on the right side of the matrix is a pivotal column.

3. The system has in�nitely many solutions (�underdetermined�).

◦ Example:

 1 1 3
0 1 −1
0 0 0

∣∣∣∣∣∣
4
1
0

 whose corresponding system is
x + y + 3z = 4

y − z = 1
0 = 0

. The bot-

tom equation is always true so there are really only two relations between the three variables x, y, z.

◦ If we take z = t to be an arbitrary parameter, then the equations require y = 1+ z = 1+ t and x =
4−y−3z = 3−4t, and it is equally easy to see that every triple of the form (x, y, z) = (3−4t, 1+t, t)
satis�es the equations.

◦ Note that in this case, there are nonpivotal columns on the left side of the matrix: speci�cally, the
column corresponding to the third variable z, which was also the variable we assigned to have an
arbitrary parameter value.

• Our observations about the pivotal columns will hold in general, and gives us a simple way to determine the
structure of the solution set:

• De�nition: If a variable is associated to a nonpivotal column, it is called a free variable. If a variable is
associated to a pivotal column, it is called a bound variable.

◦ Example: For the system
x + y + 3z = 4

y − z = 1
0 = 0

with matrix

 1 1 3
0 1 −1
0 0 0

∣∣∣∣∣∣
4
1
0

 , x and y are

bound variables and z is a free variable.

• Theorem (Solutions to Linear Systems): Suppose the augmented matrix for a system of linear equations is in
row-echelon form. If there is a pivot in the column on the right side (the column of constants) then the system
is inconsistent, and otherwise the system is consistent. In the latter case, if each column on the left side has
a pivot, the system will have a unique solution. Otherwise, the system has in�nitely many solutions and,
more speci�cally, the variable associated to each nonpivotal column is a free variable that can be assigned an
arbitrary value, and the bound variables associated to the pivotal columns can be written uniquely in terms
of these free variables.
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◦ The statement of the theorem is rather lengthy but it is really just an encapsulation of what we saw in
the three cases above.

◦ Proof: Suppose �rst that there is a pivot in the column of constants on the right side of the augmented
matrix, which we assume to be in reduced row-echelon form (nothing in the statement changes if we use
only the row-echelon form, but it is easier to see what is going on with the reduced row-echelon form).

◦ The only way there can be a pivot in the right-side column is if the coe�cient matrix has a row of the
form

[
0 0 0 0 0

∣∣ a ] for some nonzero constant a. The corresponding equation reads 0 = a,
which is impossible since a is not zero: this is a contradiction, so the system cannot have any solutions.

◦ Now suppose that the column of constants does not have a pivot. We claim that, if we assign each of
the free variables (the variables in the nonpivotal columns) an arbitrary parameter value, the system of
equations will uniquely specify each of the bound variables in terms of the free variables.

◦ To see this we simply read the equations from the bottom up: there will be some number of rows reading
0 = 0, and then, by the assumption that the matrix is in row-echelon form, each bound variable will
occur as the leading term of exactly one equation (namely, the equation corresponding to the row where
the pivot element for that variable's column is located).

◦ Each row that does not have all zero entries has exactly one pivot, and the corresponding equation will
de�ne the associated bound variable in terms of the free variables. So every bound variable is de�ned in
terms of the free variables, and every equation is satis�ed, so the solutions have been completely found.

◦ Finally, the system will have in�nitely many solutions if there are any free variables (since a free variable
can take an in�nite number of possible values), and will have exactly one solution if there are no free
variables. Having no free variables is equivalent to each variable being a bound variable, which happens
precisely when every column on the left side of the matrix has a pivot.

• Using the theorem above we can give an algorithm for solving a system of linear equations by putting the
coe�cient matrix in row-echelon form. This procedure is known as Gaussian elimination:

◦ Step 1: Convert the system to its augmented coe�cient matrix.

◦ Step 2: If all entries in the �rst column are zero, remove this column from consideration and repeat this
step until an entry in the �rst column is nonzero. Swap rows, if necessary, so that the upper-left entry
in the �rst column is nonzero.

◦ Step 3: Use row operations to clear out all entries in the �rst column below the �rst row.

◦ Step 4a: Repeat steps 2 and 3 on the submatrix obtained by ignoring the �rst row and �rst column,
until all remaining rows have all entries equal to zero.

∗ After following these steps, the matrix will now be in row-echelon form, and the system can be fairly
easily solved. To put the matrix in reduced row-echelon form, we have an optional extra step:

◦ Step 4b: Identify the �pivotal columns� (columns containing a leading row-term), and then perform row
operations to clear out all non-leading entries in each pivotal column.

◦ Step 5: Convert the matrix back to its corresponding system of equations and interpret the results:

∗ If there is a pivot in the column on the right side (the column of constants) then the system is
inconsistent. Otherwise, the system is consistent.

∗ If each column on the left side has a pivot, the system will have a unique solution. Read the system
from the bottom up to �nd it.

∗ If there are columns without a pivot, the corresponding variables are free variables. Introduce
appropriate parameters for the free variables, and use the equations from the bottom up to write
the other variables in terms of the free variables.

• Example: Solve the system x+ y + 3z = 4, 2x+ 3y − z = 1, −x+ 2y + 2z = 1 using Gaussian elimination.

◦ Given the system
x + y + 3z = 4
2x + 3y − z = 1
−x + 2y + 2z = 1
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we write it in matrix form to get  1 1 3
2 3 −1
−1 2 2

∣∣∣∣∣∣
4
1
1

 .
◦ We apply elementary row operations to clear out the �rst column: 1 1 3

2 3 −1
−1 2 2

∣∣∣∣∣∣
4
1
1

 R2−2R1−→

 1 1 3
0 1 −7
−1 2 2

∣∣∣∣∣∣
4
−7
1

 R3+R1−→

 1 1 3
0 1 −7
0 3 5

∣∣∣∣∣∣
4
−7
5

 .
◦ Now we are done with the �rst column and can focus on the other columns: 1 1 3

0 1 −7
0 3 5

∣∣∣∣∣∣
4
−7
5

 R3−3R2−→

 1 1 3
0 1 −7
0 0 26

∣∣∣∣∣∣
4
−7
26

 1
26R3−→

 1 1 3
0 1 −7
0 0 1

∣∣∣∣∣∣
4
−7
1

 .
◦ The system is in row-echelon form. To put it in reduced row-echelon form, we can work from the bottom
up: 1 1 3

0 1 −7
0 0 1

∣∣∣∣∣∣
4
−7
1

 R2+7R3−→

 1 1 3
0 1 0
0 0 1

∣∣∣∣∣∣
4
0
1

 R1−R2−→

 1 0 3
0 1 0
0 0 1

∣∣∣∣∣∣
4
0
1

 R2−3R3−→

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1
0
1

 .
◦ From here we see that the right-hand column is not pivotal, so the system has a solution. Furthermore,
every column on the left side has a pivot, so there are no free variables and so the system has a unique
solution.

◦ If we convert back we immediately see that the unique solution is x = 1, y = 0, z = 1 . (Note of course

that this is the same answer we got when we did elimination without using a matrix.)

• Example: Solve the system a− b+ c− d+ e = 5, −a+ b− c+ d = 4, 2d+ 3e = 3 using Gaussian elimination.

◦ The coe�cient matrix is  1 −1 1 −1 1
−1 1 −1 1 0
0 0 0 2 3

∣∣∣∣∣∣
5
4
3

 .
◦ We put it in row-echelon form: 1 −1 1 −1 1

−1 1 −1 1 0
0 0 0 2 3

∣∣∣∣∣∣
5
4
3

 R2+R1−→

 1 −1 1 −1 1
0 0 0 0 1
0 0 0 2 3

∣∣∣∣∣∣
5
9
3

 R2⇔R3−→

 1 −1 1 −1 1
0 0 0 2 3
0 0 0 0 1

∣∣∣∣∣∣
5
3
9

 .
◦ Now we put it in reduced row-echelon form: 1 −1 1 −1 1

0 0 0 2 3
0 0 0 0 1

∣∣∣∣∣∣
5
3
9

 R2−3R3−→

 1 −1 1 −1 1
0 0 0 2 0
0 0 0 0 1

∣∣∣∣∣∣
5
−24
9

 1
2R2−→

 1 −1 1 −1 1
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣
5
−12
9


R1−R3−→

 1 −1 1 −1 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣
−4
−12
9

 R1+R2−→

 1 −1 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣
−16
−12
9

 .
◦ From here we see that the right-hand column is not pivotal, so the system has a solution. Furthermore,
columns 1, 4, and 5 are pivotal and columns 2 and 3 are nonpivotal, so a, d, e are bound variables and
b, c are free variables.

◦ To write down the general solution we set b = t1 and c = t2 for parameters t1 and t2, and then solve for
a, d, e in terms of these parameters: the third equation gives e = 9, the second gives d = −12, and the
�rst gives a− b+ c = −16, so that a = t1 − t2 − 16.
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◦ Thus the general solution to the system is (a, b, c, d, e) = (t1 − t2 − 16, t1, t2, −12, −16) , where t1 and

t2 are arbitrary parameters.

• Example: Solve the system x+ y − 2z = 3, −x+ 3y − 5z = 1, 3x− y + z = 2 using Gaussian elimination.

◦ We row-reduce the coe�cient matrix: 1 1 −2
−1 3 −5
3 −1 1

∣∣∣∣∣∣
3
1
2

 R2+R1−→

 1 1 −2
0 4 −7
3 −1 1

∣∣∣∣∣∣
3
4
2

 R3−3R1−→

 1 1 −2
0 4 −7
0 −4 7

∣∣∣∣∣∣
3
4
−7

 R2+R3−→

 1 1 −2
0 4 −7
0 0 0

∣∣∣∣∣∣
3
4
−3

 .
◦ From here we see that the right-hand column is pivotal, so the system has no solution . (The corre-
sponding row is the contradictory equation 0 = −3.)

1.2 Matrix Operations: Addition and Multiplication

• We will now discuss some algebraic operations we can do with matrices.

• Like with vectors, we can add and subtract matrices of the same dimension, and we can also multiply a matrix
by a scalar. Each of these operations is done �componentwise�: to add or subtract, we just add or subtract
the corresponding entries of the two matrices. To multiply by a scalar, we just multiply each entry by that
scalar.

◦ Example: If A =

[
1 6
2 2

]
and B =

[
3 0
0 2

]
, then A + B =

[
1 + 3 6 + 0
2 + 0 2 + 2

]
=

[
4 6
2 4

]
, 2A =[

2 · 1 2 · 6
2 · 2 2 · 2

]
=

[
2 12
4 4

]
, and A− 1

3
B =

[
0 6
2 4

3

]
.

• We also have a transposition operation, where we interchange the rows and columns of the matrix:

• De�nition (Matrix Transpose): If A is an n ×m matrix, then the transpose of A, denoted AT , is the m × n
matrix whose (i, j)-entry is equal to the (j, i)-entry of A.

◦ Example: If A =

[
1 2 3
4 5 6

]
, then AT =

 1 4
2 5
3 6

.
• Matrix multiplication, however, is NOT performed componentwise. Instead, the product of two matrices is
the �row-column product�.

• De�nition (Matrix Product): If A is an m × n matrix and B is an n × q matrix, then the matrix product

A · B, often written simply as AB, is the m × q matrix whose (i, j)-entry is the sum (AB)i,j =
n∑

k=1

ai,kbk,j ,

the sum of products of corresponding entries from from the ith row of A with the jth column of B.

◦ This product is sometimes called the row-column product to emphasize the fact that it is a product
involving the rows of A with the columns of B.

◦ Important Note: In order for the matrix product to exist, the number of columns of A must equal the
number of rows of B. In particular, if A and B are the same size, their product exists only if they are
square matrices. Also, if AB exists, then BA may not necessarily exist.

◦ A shorter way to summarize the de�nition of the matrix product is to use the associated idea of a dot
product of two vectors: if v = 〈a1, a2, · · · , an〉 and w = 〈b1, b2, · · · , bn〉 are two vectors, then their dot
product is de�ned to be the sum a1b1 + a2b2 + · · · + anbn. Then the (i, j) entry of the matrix product
AB is the dot product of the ith row of A with the jth column of B (each thought of as vectors).

• Example: If A =

[
−1 1 2
0 1 1

]
and B =

 1 2
2 0
3 3

, �nd AB and BA.
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◦ Since A is a 2× 3 matrix and B is a 3× 2 matrix, we see that AB is de�ned and will be a 2× 2 matrix.

◦ The (1, 1) entry of AB is (−1)(1) + (1)(2) + (2)(3) = 7.

◦ The (1, 2) entry of AB is (−1)(2) + (1)(0) + (2)(3) = 4.

◦ The (2, 1) entry of AB is (0)(1) + (1)(2) + (1)(3) = 5.

◦ The (2, 2) entry of AB is (0)(2) + (1)(0) + (1)(3) = 3.

◦ Putting all of this together gives AB =

[
7 4
5 3

]
.

◦ We see that BA =

 1 2
2 0
3 3

[ −1 1 2
0 1 1

]
is also de�ned and will be a 3× 3 matrix.

◦ The (1, 1) entry of BA is (1)(−1) + (2)(0) = −1, the (1, 2) entry is (1)(1) + (2)(1) = 3, and the (1, 3)
entry is (1)(2) + (2)(1) = 4.

◦ In a similar way we can compute the other six entries: the result is BA =

 −1 3 4
−2 2 4
−3 6 9

 .

• The de�nition of matrix multiplication seems very peculiar at �rst. Ultimately, it is de�ned the way it is in
order to make changes of variables in a system of equations work correctly. It also allows us to rewrite a
system of linear equations as a single �matrix equation�. (We will return to these ideas later.)

• Example: The system of equations
x + y = 7
2x − 2y = −2 can be rewritten as a single matrix equation[

1 1
2 −2

] [
x
y

]
=

[
7
−2

]
since the product on the left-hand side is the column matrix

[
x+ y

2x− 2y

]
.

• Example: Consider what happens if we are given the equations x1 = y1 + y2, x2 = 2y1− y2 and the equations
y1 = 3z1 − z2, y2 = z1 − z2, and want to express x1 and x2 in terms of z1 and z2.

◦ It is straightforward to plug in and check that x1 = 4z1 − 2z2 and x2 = 5z1 − z2.

◦ In terms of matrices, the original system is

[
x1
x2

]
=

[
1 2
2 −1

] [
y1
y2

]
and

[
y1
y2

]
=

[
3 −1
1 −1

] [
z1
z2

]
.

◦ Plugging the second into the �rst would then give

[
x1
x2

]
=

[
1 2
2 −1

] [
3 −1
1 −1

] [
z1
z2

]
.

◦ Indeed, we have the matrix product

[
1 2
2 −1

] [
3 −1
1 −1

]
=

[
4 −2
5 −1

]
, so the de�nition of matrix

multiplication makes everything consistent with what we'd want to happen by making variable substi-
tutions.

• If we restrict our attention to square matrices, then matrices under addition and multiplication obey some,
but not all, of the algebraic properties that real numbers do.

• Proposition (Properties of Matrix Arithmetic): Suppose A, B, and C are matrices. Then the following
properties hold:

1. Matrix multiplication distributes over addition, on both sides: (A+B)C = AC +BC and A(B + C) =
AB +AC, when A,B,C are matrices of appropriate dimensions.

2. Matrix multiplication is associative: (AB)C = A(BC), if A,B,C are of the proper dimensions.

◦ In particular, the nth power of a square matrix for any positive integer n is well de�ned, where we
set A1 = A and An = A · An−1 for n ≥ 2. The natural properties of exponents then hold, such as
AmAn = Am+n and (Am)n = Amn.

3. The transpose of the product of two matrices is the product of their transposes in reverse order: (AB)T =
BT AT .
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4. If A is an n× n matrix, then the n× n zero matrix Zn, whose entries are all zeroes, has the properties
Zn +A = A = A+ Zn and ZnA = Zn = AZn.

◦ This zero matrix plays the role of the number 0 (the additive identity) for n × n matrices. For

example, the 2× 2 zero matrix is

[
0 0
0 0

]
.

◦ In contrast to real (or complex) numbers, where x2 = 0 implies x = 0, there exist nonzero matrices

whose square is nonetheless the zero matrix. One such matrix is A =

[
0 1
0 0

]
: it is easy to check

that A2 is the zero matrix, but of course A itself is nonzero.

5. If A is an n×n matrix, then the n×n identity matrix In, whose diagonal entries are 1s and whose other
entries are 0s, has the property that InA = AIn = A. More generally, if B is an m × n matrix, then
ImB = B = BIn.

◦ This identity matrix plays the role of the number 1 (the multiplicative identity) for n×nmatrices. For

example, the 2×2 identity matrix is I2 =

[
1 0
0 1

]
and the 3×3 identity matrix is I3 =

 1 0 0
0 1 0
0 0 1

.
◦ To illustrate the 2 × 2 case, observe that

[
1 0
0 1

]
·
[
a b
c d

]
=

[
a b
c d

]
=

[
a b
c d

]
·
[

1 0
0 1

]
for any 2× 2 matrix

[
a b
c d

]
.

◦ Proofs: All of these properties can be derived from the de�nition of matrix multiplication, although the
argument for associativity is quite tedious.

• Although matrix arithmetic shares many properties with the arithmetic of real numbers, there is one very
important di�erence: in general, matrix multiplication is NOT commutative!

◦ In other words, AB typically isn't equal to BA, even if A and B are both square matrices.

◦ Almost any pair of randomly selected matrices will give a counterexample, such as A =

[
1 2
3 4

]
and

B =

[
2 3
4 5

]
: we have AB =

[
10 13
22 29

]
while BA =

[
11 16
19 28

]
.

◦ It is generally true that algebraic identities that don't use commutativity will still hold for matrices. For
example, we can write (A + B)2 = (A + B)(A + B) = A(A + B) + B(A + B) = A2 + AB + BA + B2

using the distributive law only.

◦ However, unless AB = BA, it will not be the case that (A+B)2 = A2 + 2AB +B2.

• Each of the elementary row operations on an n × n matrix corresponds to left-multiplication by the matrix
obtained by applying the corresponding row operation to the identity matrix:

1. Interchanging the ith and jth rows is equivalent to multiplying by the matrix which is the identity matrix,
except that the ith and jth rows have been interchanged.

◦ Example: The 3×3 matrix with rows 2 and 3 swapped is

 1 0 0
0 0 1
0 1 0

, and indeed we can compute 1 0 0
0 0 1
0 1 0

 a b c
d e f
g h i

 =

 a b c
g h i
d e f

.
2. Multiplying all entries in the ith row by the constant α is equivalent to multiplying by the matrix which

is the identity matrix, except that the (i, i) entry is α rather than 1.

◦ Example: The 2 × 2 matrix with row 2 doubled is

[
1 0
0 2

]
, and indeed

[
1 0
0 2

] [
a b
c d

]
=[

a b
2c 2d

]
.
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3. Adding α times the jth row to the ith row is equivalent to multiplying by the matrix which is the identity
matrix, except the (i, j) entry is α rather than 0.

◦ Example: The 2×2matrix with twice row 2 added to row 1 is

[
1 2
0 1

]
, and indeed

[
1 2
0 1

] [
a b
c d

]
=[

a+ 2c b+ 2d
c d

]
.

• The matrices appearing above have a special name:

• De�nition: An elementary row matrix is a matrix obtained by performing a single elementary row operation
on the identity matrix.

◦ Examples: The matrices

[
1 2
0 1

]
,

[
2 0
0 1

]
,

 1 0 0
0 0 1
0 1 0

, and
 1 0 0

0 1 0
0 3 1

 are elementary matrices

associated to the operations �add twice row 2 to row 1�, �double row 1�, �swap rows 2 and 3�, and �add
3 times row 2 to row 3�, respectively.

1.3 Inverse Matrices and Determinants

• In this section we will discuss some important quantities relevant to matrix multiplication: the inverse of a
matrix and the determinant of a matrix.

1.3.1 The Inverse of a Matrix

• Given a square n× n matrix A, we might like to know whether it has a multiplicative inverse.

• De�nition: If A is an n×n square matrix, then we say A is invertible (or nonsingular) if there exists an n×n
matrix A−1, the inverse matrix, such that AA−1 = A−1A = In, where In is the n× n identity matrix. If no
such matrix A−1 exists, we say A is not invertible (or singular).

◦ Example: The matrix A =

[
2 5
1 3

]
has inverse matrix A−1 =

[
3 −5
−1 2

]
, since we can compute[

2 5
1 3

] [
3 −5
−1 2

]
=

[
1 0
0 1

]
=

[
3 −5
−1 2

] [
2 5
1 3

]
.

• Not every matrix has a multiplicative inverse.

◦ Obviously,

[
0 0
0 0

]
does not have a multiplicative inverse, since

[
0 0
0 0

]
times any matrix is

[
0 0
0 0

]
,

so it cannot be the identity matrix.

◦ Also,

[
1 1
1 1

]
·
[
a b
c d

]
=

[
a+ c b+ d
a+ c b+ d

]
, which is never equal to the identity matrix for any choice

of a, b, c, d since the top and bottom rows are always equal. Thus,

[
1 1
1 1

]
does not have an inverse

either.

• Here are a few basic properties of inverse matrices:

• Proposition (Basic Properties of Inverses): Suppose A and B are n× n matrices.

1. If A is invertible, then its inverse is unique (i.e., it only has one possible inverse matrix).

◦ Proof: Suppose B1 and B2 both had AB1 = In = B1A and AB2 = In = B2A.

◦ Then B1 = B1In = B1(AB2) = (B1A)B2 = InB2 = B2 and so B1 = B2.

2. If A and B are invertible with inverses A−1 and B−1, then AB is also invertible with inverse B−1A−1.
More generally, if A1, A2, . . . , An are all invertible, then (A1A2 · · ·An)

−1 = (An)
−1 · · · (A2)

−1(A1)
−1.
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◦ More simply, the inverse of a product is the product of the inverses in reverse order.

◦ Proof: For the case of 2 matrices, we compute (AB)(B−1A−1) = A(BB−1)A−1 = A(In)A
−1 =

AA−1 = In, and also (B−1A−1)(AB) = B−1(A−1A)B = B−1(In)B = B−1B = In.

◦ Thus, the product of AB and B−1A−1 in either order is the identity matrix, so they are inverses.

◦ The same argument can be used to show that (A1A2 · · ·An)
−1 = (An)

−1 · · · (A2)
−1(A1)

−1.

3. If A has a row or column of all zeroes, then A is not invertible.

◦ Proof: Suppose �rst that A has all entries in its ith row equal to zero. Then for any n×n matrix B,
the product AB will have all entries in its ith row equal to zero, so it cannot be the identity matrix.

◦ Similarly, if A has all entries in its ith column equal to zero, then for any n×n matrix B, the product
BA will have all entries in its ith column equal to zero.

4. The 2 × 2 matrix

[
a b
c d

]
is invertible if and only if ad − bc 6= 0, and if so, the inverse is given by

1

ad− bc

[
d −b
−c a

]
.

◦ Proof: This follows simply from solving the system of equations for e, f, g, h in terms of a, b, c, d that

arises from comparing entries in the product

[
a b
c d

] [
e f
g h

]
=

[
1 0
0 1

]
: one obtains precisely

the solution given above.

◦ If ad = bc then the system is inconsistent and there is no solution; otherwise there is exactly one
solution as given.

• Using row operations we can give a simple criterion for deciding whether a matrix is invertible:

• Theorem (Invertible Matrices): An n×n matrix A is invertible if and only if it is row-equivalent to the identity
matrix In.

◦ Proof: Consider the reduced row-echelon form of the matrix A. Because A is a square matrix, the
reduced row-echelon form is either the identity matrix, or a matrix with a row of all zeroes.

◦ Suppose A is row-equivalent to the identity matrix. Each elementary row operation corresponds to left-
multiplication by an invertible matrix, so there are elementary matrices Ei with 1 ≤ i ≤ k such that
EkEk−1 · · ·E1A = In.

◦ So if we let B = EkEk−1 · · ·E1, then B is invertible (its inverse is B−1 = E−11 · · ·E
−1
k−1E

−1
k ) and BA = In.

◦ Multiplying the expressionBA = In on the left byB−1 and on the right byB produces AB = B−1B = In,
so we see AB = BA = In. Thus B is the inverse of A, as claimed.

◦ Now suppose that A is not row-equivalent to the identity matrix. Then its reduced row-echelon form
Ared must contain a row of all zero entries. From our results above we see that Ared cannot be invertible,
and since A = E1E2 . . . EkAred, then if A had an inverse B then Ared would have an inverse, namely
BE1E2 · · ·Ek.

• From the proof of this theorem we see that if A has an inverse, we can compute it as the composition of
the appropriate row operations that convert A into the identity matrix. Explicitly, in order to compute the
inverse of an n×n matrix A using row reduction (or to see if it is non-invertible), we can perform the following
procedure, called Gauss-Jordan elimination:

◦ Step 1: Set up a �double� matrix [A |In] where In is the identity matrix.

◦ Step 2: Perform row operations to put A in reduced row-echelon form. (Carry the computations through
on the entire matrix, but only pay attention to the left side when deciding what operations to do.)

◦ Step 3: If A can be row-reduced to the n×n identity matrix, then row-reducing A will produce the double
matrix [In

∣∣A−1] . If A cannot be row-reduced to the n× n identity matrix, then A is not invertible.

• Example: Find the inverse of the matrix A =

 1 0 −1
2 −1 1
0 2 −5

.
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◦ First, we set up the starting matrix

 1 0 −1
2 −1 1
0 2 −5

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

.
◦ Now we perform row operations to row-reduce the matrix on the left: 1 0 −1

2 −1 1
0 2 −5

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 R2−2R1−→

 1 0 −1
0 −1 3
0 2 −5

∣∣∣∣∣∣
1 0 0
−2 1 0
0 0 1

 R3+2R2−→

 1 0 −1
0 −1 3
0 0 1

∣∣∣∣∣∣
1 0 0
−2 1 0
−4 2 1


R2−3R3−→
R1+R3

 1 0 0
0 −1 0
0 0 1

∣∣∣∣∣∣
−3 2 1
10 −5 −3
−4 2 1

 (−1)R2−→

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
−3 2 1
−10 5 3
−4 2 1

 .

◦ We have row-reduced A to the identity matrix, so A is invertible and A−1 =

 −3 2 1
−10 5 3
−4 2 1

 .

1.3.2 The Determinant of a Matrix

• We might like to know, without performing all of the row-reductions, if a given large matrix is invertible. This
motivates the idea of the determinant, which will tell us precisely when a matrix is invertible.

• De�nition: The determinant of a square matrix A, denoted det(A) or |A|, is de�ned inductively. For a
1 × 1 matrix [a] it is just the constant a. For an n × n matrix we compute the determinant via �cofactor
expansion�: de�ne A(1,k) to be the matrix obtained from A by deleting the 1st row and kth column. Then

det(A) =

n∑
k=1

(−1)k+1a1,k det(A
(1,k)).

◦ The best way to understand determinants is to work out some examples.

• Example: The determinant

∣∣∣∣ a b
c d

∣∣∣∣ is given by

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

◦ So, as particular cases,

∣∣∣∣ 1 2
3 4

∣∣∣∣ = (1)(4)− (2)(3) = −2 and

∣∣∣∣ 1 1
2 2

∣∣∣∣ = (1)(2)− (1)(2) = 0 .

• Example: The determinant

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ is given by

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣ − a2

∣∣∣∣ b1 b3
c1 c3

∣∣∣∣ +
a3

∣∣∣∣ b1 b2
c1 c2

∣∣∣∣.
◦ As a particular case,

∣∣∣∣∣∣
1 2 4
−1 1 0
−2 1 3

∣∣∣∣∣∣ = 1

∣∣∣∣ 1 0
1 3

∣∣∣∣−2 ∣∣∣∣ −1 0
−2 3

∣∣∣∣+4

∣∣∣∣ −1 1
−2 1

∣∣∣∣ = 1(3)−2(−3)+4(1) = 13 .

• There is a nice way to interpret the determinant geometrically:

• Proposition: If v1,v2 are vectors in R2, then the determinant of the matrix whose rows are v1,v2 is the signed
area of the parallelogram formed by v1,v2. Furthermore, if w1,w2,w3 are vectors in R3, then the determinant
of the matrix whose rows are w1,w2,w3 is the signed volume of the parallelepiped (skew box) formed by
w1,w2,w3.

◦ Note that a signed area (and a signed volume) can be negative: the sign indicates the relative orientation
of the vectors. For two vectors, the signed area is positive if the second vector is counterclockwise from
the �rst one and negative otherwise. For three vectors, the signed volume is positive if the vectors are
arranged per the right-hand rule: align the �ngers of the right hand along the �rst vector and then curl
them into the direction of the second vector; the orientation is positive if the thumb is pointing in the
direction of the third vector, and negative if it is pointing in the opposite direction.
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◦ Here are pictures of the appropriate regions:

◦ The proof is a straightforward geometric calculation, which we omit.

• Example: Find the volume of the skew box formed by the vectors w1 = 〈1, 0, 1〉, w2 = 〈2, 1, 1〉, and w3 =
〈0, 2, 2〉.

◦ We simply compute the appropriate determinant:

∣∣∣∣∣∣
1 0 1
2 1 1
0 2 2

∣∣∣∣∣∣ = 1

∣∣∣∣ 1 1
2 2

∣∣∣∣− 0

∣∣∣∣ 2 1
0 2

∣∣∣∣+ 1

∣∣∣∣ 2 1
0 2

∣∣∣∣ =
0− 0 + 4 = 4 .

• The determinant behaves in a very predictable way under the elementary row operations (showing these results
requires a more careful technical analysis of the determinant and so we will omit the details):

1. Interchanging two rows multiplies the determinant by −1.

◦ Example:

∣∣∣∣ 3 2
−1 1

∣∣∣∣ = 5 while

∣∣∣∣ −1 1
3 2

∣∣∣∣ = −5.
2. Multiplying all entries in one row by a constant scales the determinant by the same constant.

◦ Example:

∣∣∣∣ 3 2
−1 1

∣∣∣∣ = 5 while

∣∣∣∣ 9 6
−1 1

∣∣∣∣ = 3 · 5 = 15.

3. Adding or subtracting a scalar multiple of one row to another leaves the determinant unchanged.

◦ Example:

∣∣∣∣ 3 2
−1 1

∣∣∣∣ = 5 while

∣∣∣∣ 3 + 2(−1) 2 + 2(1)
−1 1

∣∣∣∣ = ∣∣∣∣ 1 4
−1 1

∣∣∣∣ = 5.

• From the above analysis we can deduce a number of other properties of determinants:

• Proposition (Properties of Determinants): Suppose A and B are n× n matrices.

1. If A has a row or column of all zeroes, then det(A) = 0.

◦ Example:

∣∣∣∣ 3 2
0 0

∣∣∣∣ = 0 and

∣∣∣∣ 3 0
−1 0

∣∣∣∣ = 0.

◦ Proof: For rows, this follows by observing that the matrix is unchanged upon multiplying the row
of zeroes by the scalar 0.

◦ For columns, applying the de�nition will yield n − 1 smaller determinants, each of which will have
a column containing all zeroes, so the result follows recursively.

2. If A is row-equivalent to a matrix with a row or column of all zeroes, then det(A) = 0.

◦ Proof: Applying an elementary row operation will scale the determinant by a nonzero constant, and
thus cannot change a nonzero determinant into a zero determinant or vice versa.

3. If one row or column of A is a scalar multiple of another, then its determinant is zero. In particular, if
two rows are equal, the determinant is zero.

◦ Example:

∣∣∣∣∣∣
3 2 1
6 4 2
1 −1 1

∣∣∣∣∣∣ = 0 (rows 1,2) and

∣∣∣∣∣∣
1 2 3
0 4 0
1 1 3

∣∣∣∣∣∣ = 0 (columns 1,3).
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◦ Proof: This follows by using a single row operation and applying property (2).

4. The determinant is multiplicative: det(AB) = det(A) det(B).

◦ Example: If A =

[
1 −1
2 0

]
with det(A) = 2 and B =

[
1 1
−1 2

]
with det(B) = 3, then AB =[

2 −1
2 2

]
with det(AB) = 6.

◦ Example: If A =

[
3 2
−1 1

]
with det(A) = 5 and B =

[
1 −2
3 4

]
with det(B) = 10, then

AB =

[
9 2
2 6

]
with det(AB) = 50.

◦ Proof: This can be shown by row-reducing the matrix A and using the facts about how the elementary
row operations a�ect the determinant. The argument is fairly tedious so we omit the precise details.

5. The determinant of any upper-triangular matrix (a matrix whose entries below the diagonal are all
zeroes) is equal to the product of the diagonal entries. In particular, the determinant of the identity
matrix is 1.

◦ Example:

∣∣∣∣∣∣
6 −1 3
0 2 0
0 0 3

∣∣∣∣∣∣ = 36.

◦ Proof: Using the de�nition of the determinant will produce n smaller determinants, and each deter-
minant except the �rst one has �rst column all zeroes (and is therefore zero), so the result follows
recursively.

6. The matrix A is invertible precisely when det(A) 6= 0.

◦ Proof: Apply elementary row operations to put A in reduced row-echelon form. As noted in (2),
applying row operations does not change whether det(A) is zero or not.

◦ If A is invertible then the reduced row-echelon form is the identity matrix, and the determinant
calculations will yield a nonzero result by (2).

◦ If A is not invertible, then the reduced row-echelon form will have a row of all zeroes, and the
determinant of such a matrix is zero by (1).

7. If A is invertible, then det(A−1) =
1

det(A)
.

◦ Proof: Apply det(AB) = det(A) det(B) when B = A−1: we get 1 = det(In) = det(AA−1) =
det(A) det(A−1).

8. The determinant of the transpose matrix is the same as the original determinant: det(AT ) = det(A).

◦ Example:

∣∣∣∣ 3 2
−1 1

∣∣∣∣ = 5 and

∣∣∣∣ 3 −1
2 1

∣∣∣∣ = 5 also.

◦ Proof: This can be shown recursively using the de�nition of the determinant and how it transforms
under row operations.

9. The determinant is �linear� in columns: ifA =

 | | | | |
a1 · · · ai−1 ai ai+1 · · · an
| | | | |

, B =

 | | | | |
a1 · · · ai−1 bi ai+1 · · · an
| | | | |

,
and C =

 | | | | |
a1 · · · ai−1 ci ai+1 · · · an
| | | | |

, where the aj are column vectors and ai = bi + ci,

then det(A) = det(B) + det(C). The same property also holds for rows.

◦ Example: If A =

[
1 2
2 5

]
, where we decompose the second column as

[
2
5

]
=

[
0
2

]
+

[
2
3

]
:

then B =

[
1 0
2 2

]
and C =

[
1 2
2 3

]
. We compute det(A) = 1, det(B) = 2, det(C) = −1, and

indeed det(A) = det(B) + det(C).

◦ Proof: This can be shown recursively using the de�nition of the determinant.
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• By exploiting properties of determinants, we can often calculate determinants of products and powers of
matrices very easily.

• Example: Suppose that A =

[
3 4
1 2

]
and B =

[
4 −1
1 2

]
. Find det(A−1), det(AB), det(B2), det(2A), and

det(A4B3A−1B−2).

◦ We start by calculating det(A) = 3 · 2− 1 · 4 = 2 and det(B) = 4 · 2− 1 · (−1) = 9.

◦ Then by the properties of determinants above, we have det(A−1) =
1

det(A)
=

1

2
, det(AB) = det(A) det(B) =

18 , and det(B2) = det(B)2 = 81 .

◦ For det(2A), note that 2A is obtained by doubling each row of A, and each time we double a row,

we double the determinant. Therefore, det(2A) = 22 det(A) = 8 . Alternatively, we could note that
2A = (2I2)A so that det(2A) = det(2I2) det(A) = 8 since det(2I2) = 4 because 2I2 is diagonal with
diagonal entries 2,2.

◦ In the same way, det(A4B3A−1B−2) = det(A)4 det(B)3 det(A)−1 det(B)−2 = det(A)3 det(B) = 72 .

1.3.3 Cofactor Expansions and the Adjugate

• There are a few other results about determinants that require an additional de�nition to state:

• De�nition: If A is a square n× n matrix, de�ne A(j,k) to be the matrix obtained from A by deleting the jth
row and kth column. The (j, k) cofactor of A, C(j,k), is de�ned to be (−1)j+k det(A(j,k)).

◦ Example: The (1, 1) cofactor of

 6 −1 3
0 2 0
3 0 3

 is (−1)1+1

∣∣∣∣ 2 0
0 3

∣∣∣∣ = (−1)26 = 6, and the (2, 3) cofactor

is (−1)2+3

∣∣∣∣ 6 −1
3 0

∣∣∣∣ = (−1)53 = −3.

• Theorem (Expansion by Minors): If A is a square n× n matrix, then for any �xed j, det(A) =

n∑
k=1

aj,kC
(j,k)

and also det(A) =

n∑
i=1

ai,jC
(i,j).

◦ The statement of this theorem requires some unpacking. Essentially, the idea is that we can compute the
determinant by expanding along any row, rather than just the �rst row (as in the original de�nition), or
along any column.

◦ The only di�culty is remembering which terms have which sign (plus or minus). Each term has a
particular sign based on its location in the matrix, as follows: the (1, 1) entry has a plus sign, and the

remaining elements are �lled in in an alternating �checkerboard� pattern:

 + − +
− + −
+ − +

.
• The calculation of the determinant this way is called �expansion by minors�.

◦ Expanding along the second row:

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = −b1
∣∣∣∣ a2 a3
c2 c3

∣∣∣∣+ b2

∣∣∣∣ a1 a3
c1 c3

∣∣∣∣− b3 ∣∣∣∣ a1 a2
c1 c2

∣∣∣∣.
◦ Expanding down the third column:

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a3

∣∣∣∣ b1 b2
c1 c2

∣∣∣∣− b3 ∣∣∣∣ a1 a2
c1 c2

∣∣∣∣+ c3

∣∣∣∣ a1 a2
b1 b2

∣∣∣∣.
• When choosing a row or column to expand along, it is best to choose one with many zeroes, as this will reduce
the number of smaller determinants that need to be evaluated.
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• Example: Find the determinant

∣∣∣∣∣∣∣∣
1 2 3 4
0 1 0 0
2 0 1 1
0 3 4 0

∣∣∣∣∣∣∣∣.
◦ We will start by expanding along the second row: this will give us a single 3× 3 determinant, which we
can then evaluate by expanding along its bottom row:∣∣∣∣∣∣∣∣

1 2 3 4
0 1 0 0
2 0 1 1
0 3 4 0

∣∣∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣∣
1 3 4
2 1 1
0 4 0

∣∣∣∣∣∣ = (−4)
∣∣∣∣ 1 4
2 1

∣∣∣∣ = (−4)(−7) = 28 .

• Although expansion by minors (or even just the de�nition of the determinant) gives a recursive method for
computing any n× n determinant, these methods are quite slow unless the matrix has many zero entries.

◦ Evaluating an n × n determinant using the de�nition requires computing n total (n − 1) × (n − 1)
determinants, each of which requires evaluating (n− 1) total (n− 2)× (n− 2) determinants.

◦ Continuing in this way, we see that evaluating an n×n determinant from the de�nition requires n! total
computations (where we say a 1× 1 determinant is one computation).

◦ Since 5! = 120, it is already quite unreasonable to compute a 5 × 5 determinant by hand using this
method, while a 10× 10 determinant (note 10! = 3628800) is entirely out of reach, and even a computer
would have trouble with a 30× 30 determinant (30! = 2.65 · 1032).

• Row-reduction is a far more e�cient method for computing large determinants.

◦ It is su�cient to row-reduce a matrix to put it into row-echelon form, since any row-echelon matrix
is upper-triangular, and the determinant of an upper triangular matrix is simply the product of the
diagonal entries.

◦ Row-reducing an n×n matrix requires approximately n2 individual multiplications, although due to the
fact that the sizes of the entries in the matrix can grow quite large (if one is trying to avoid introducing
denominators), the total number of calculations is on the order of n3.

◦ For n = 5, one can typically row-reduce a matrix by hand to compute a determinant, and even a 10× 10
determinant (approximately a few hundred computations) would not be impossible by hand. A computer
can easily deal with a 1000× 1000 determinant using row-reductions.

• Example: Find the determinant

∣∣∣∣∣∣∣∣
1 2 −1 3
3 7 0 4
−2 1 1 2
−1 3 16 5

∣∣∣∣∣∣∣∣.

◦ By row-reducing,

∣∣∣∣∣∣∣∣
1 2 −1 3
3 7 0 4
−2 1 1 2
−1 3 16 5

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 3 −7
0 5 −1 8
0 5 15 8

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 3 −7
0 0 −16 43
0 0 0 36

∣∣∣∣∣∣∣∣ = −576 .

• Example: Find the determinant

∣∣∣∣∣∣∣∣
2 1 −1 1
0 2 1 1
4 0 −1 2
2 2 1 1

∣∣∣∣∣∣∣∣.

◦ By row-reducing,

∣∣∣∣∣∣∣∣
2 1 −1 1
2 3 0 2
6 −1 −5 1
2 2 1 5

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
2 1 −1 1
0 2 1 1
0 −4 −2 −2
0 1 2 4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
2 1 −1 1
0 2 1 1
0 0 0 0
0 1 2 4

∣∣∣∣∣∣∣∣ = 0 .

• There is also a formula for the inverse of a matrix in terms of its cofactors:
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• Theorem (Matrix Inverse Formula): If the matrix A is invertible, so that det(A) 6= 0, we have the formula

A−1 =
1

det(A)
[adj(A)], where adj(A) is the matrix whose (i, j)-entry is given by the (j, i) cofactor C(j,i) of

A.

◦ The name adj(A) is short for adjugate. (Some authors refer to this matrix as the �adjoint�, but that
term is usually reserved to mean something else in modern usage.)

◦ Proof: Since A is invertible and the inverse of a matrix is unique, it is su�cient to show that the product
A · adj(A) is equal to det(A) times the identity matrix.

◦ First consider the (k, k) entry in the product A·adj(A): it is the sum
n∑

l=1

ak,lC
(k,l), which is the expansion

of the determinant of the matrix A along the kth row. So the (k, k) entry is equal to det(A) for each k.

◦ Now consider the (i, j) entry of the product, for i 6= j: it is the sum

n∑
i=1

ai,lC
(j,l), which is the expansion

of the determinant of the matrix obtained by replacing the jth row of A with the ith one, along its ith
row. This determinant is zero since the matrix has two equal rows.

• Example: Use the adjugate formula to compute the inverse of the matrix A =

 1 0 −1
2 −1 1
0 2 −5

.
◦ First, we have det(A) = 1

∣∣∣∣ −1 1
2 −5

∣∣∣∣− 0

∣∣∣∣ 2 1
0 −5

∣∣∣∣− 1

∣∣∣∣ 2 −1
0 2

∣∣∣∣ = 3− 4 = −1.

◦ Now we compute all of the entries of the adjugate matrix:

adj(A)T =


+

∣∣∣∣ −1 1
2 −5

∣∣∣∣ − ∣∣∣∣ 2 1
0 −5

∣∣∣∣ +

∣∣∣∣ 2 −1
0 2

∣∣∣∣
−
∣∣∣∣ 0 −1
2 −5

∣∣∣∣ +

∣∣∣∣ 1 −1
0 −5

∣∣∣∣ −
∣∣∣∣ 1 0
0 2

∣∣∣∣
+

∣∣∣∣ 0 −1
−1 1

∣∣∣∣ − ∣∣∣∣ 1 −1
2 1

∣∣∣∣ +

∣∣∣∣ 1 0
2 −1

∣∣∣∣

 =

 3 10 4
−2 −5 −2
−1 −3 −1

 .

◦ Thus, we have adj(A) =

 3 −2 −1
10 −5 −3
4 −2 −1

. Since det(A) = −1, we thus obtain A−1 =

 −3 2 1
−10 5 3
−4 2 1

 .

◦ We can of course check this answer by computing AA−1 and verifying it is the identity matrix (which it
is).

• Although the adjugate formula does give an explicit formula for the inverse, it is not computationally useful
for large matrices: it is much faster to compute A−1 using row reductions.

◦ Using the adjugate formula requires �nding an n× n determinant and n2 total (n− 1)× (n− 1) deter-
minants, so even for a 3× 3 matrix, the adjugate formula is far less e�cient than row reduction.

◦ However, the adjugate formula does yield one important piece of information: if the entries of the matrix
are integers, the entries of the inverse will be rational numbers whose denominators are (at largest) given
by the determinant of the original matrix.

1.3.4 Matrices and Systems of Linear Equations, Revisited

• As an application of the utility of the matrix approach, let us revisit systems of linear equations.

• First suppose we have a system of k equations in n variables:

a1,1x1 + · · ·+ an,1xn = c1
...

...

a1,kx1 + · · ·+ an,kxn = ck
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◦ Let A =

 a1,1 · · · an,1
...

. . .
...

a1,k · · · an,k

 be the matrix of coe�cients, x =

 x1
...
xk

 the column vector of variables,

and c =

 c1
...
ck

 the coe�cient vector.

◦ Then we can rewrite the system as the much simpler matrix equation Ax = c. We can use our results
about matrices to say things about the solutions to such systems.

• De�nition: A matrix equation Ax = c is homogeneous if c is the zero vector, and it is nonhomogeneous
otherwise.

• Proposition: Suppose xp is one solution to the matrix equation Ax = c. Then the general solution to this
equation may be written as x = xp + xhom, where xhom is a solution to the homogeneous equation Ax = 0.

◦ This proposition says that if we can �nd one solution to the original system, then we can �nd all of them
just by solving the homogeneous system.

◦ Proof: To see this, �rst observe that if Axp = c and Axhom = 0, then

A(xp + xhom) = Axp +Axhom = c+ 0 = c

and so xp + xhom is also a solution to the original system.

◦ Conversely, if x1 and x2 are two solutions to the original system, then A(x2−x1) = Ax2−Ax1 = c−c = 0,
so that x2 − x1 is a solution to the homogeneous system.

• We now mention a few properties of the solutions to a homogeneous equation Ax = 0:

• Proposition (Homogeneous Systems): The zero vector 0 is always a solution to any homogeneous equation
Ax = 0. Also, if x1 and x2 are two solutions, then x1 + x2 is also a solution, as is rx1 for any real number
scalar r.

◦ Proof: We clearly have A0 = 0 so 0 is a solution.

◦ Next, if x1 and x2 are solutions, then Ax1 = Ax2 = 0: then A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0, so
x1 + x2 is also a solution,

◦ Finally, we also have A(rx1) = r(Ax1) = r0 = 0, so rx1 is also a solution.

• We can use some of our results about inverses and determinants when the coe�cient matrix is square.

• If A is not invertible, then the homogeneous system has in�nitely many solutions (as the reduced row-echelon
form of A must have a row of all zeroes, and hence at least one free variable). The original system can then
either have no solutions or in�nitely many solutions, as we saw.

◦ In this case we cannot really hope to write down a formula for the solutions, although of course we can
still compute them using Gauss-Jordan elimination.

• In the event that the coe�cient matrix is invertible we can write down the solutions to the system using
determinants:

• Theorem (Cramer's Rule): If A is an invertible n× n matrix, then the matrix equation Ax = c has a unique

solution x = A−1c. Speci�cally, the ith element of x is given by xi =
det(Ci)

det(A)
, where Ci is the matrix obtained

by replacing the ith column of A with the column vector c.

◦ Proof: Suppose A is invertible: then we can multiply both sides of the equation Ax = c on the left by
A−1 to see that A−1(Ax) = A−1c.

◦ We can then write x = Inx = (A−1A)x = A−1(Ax) = A−1c. In particular, we see that the solution is
unique, since A−1 is unique.
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◦ For the other part, we use the adjugate formula for A−1: recall that we showed A−1 =
1

det(A)
adj(A),

so we see x =
adj(A)c

det(A)
.

◦ Upon writing out the product in the numerator we see that the ith element is xi =

n∑
k=1

ci(−1)k+i det(A(i,k)),

and this is the expansion by minors along the ith column for the determinant of the matrix Ci.

◦ Therefore, xi =
det(Ci)

det(A)
as claimed.

• Example: Solve the system of equations 3x+ z = 0, x+ 2y − 3z = 1, 2x− 2y − z = 2 using Cramer's rule.

◦ The coe�cient matrix is C =

 3 0 1
1 2 −3
2 −2 −1

 whose determinant is det(C) = 3

∣∣∣∣ 2 −3
−2 −1

∣∣∣∣+1

∣∣∣∣ 1 2
2 −2

∣∣∣∣ =
−30.
◦ Since this matrix is invertible the system will have a unique solution.

◦ We have C1 =

 0 0 1
1 2 −3
2 −2 −1

, C2 =

 3 0 1
1 1 −3
2 2 −1

, and C3 =

 3 0 0
1 2 1
2 −2 2

, and the respective

determinants are det(C1) = 1

∣∣∣∣ 1 2
2 −2

∣∣∣∣ = −6, det(C2) = 3

∣∣∣∣ 1 −3
2 −1

∣∣∣∣+ 1

∣∣∣∣ 1 1
2 2

∣∣∣∣ = 15, and det(C3) =

3

∣∣∣∣ 2 1
−2 2

∣∣∣∣ = 18.

◦ Thus, by Cramer's rule, the solution is (x, y, z) =

(
−6
−30

,
15

−30
,
18

−30

)
=

(
1

5
,−1

2
,−3

5

)
.

• As with the other formulas involving determinants, Cramer's rule is not particularly useful for practical
computation, at least when the coe�cients of the system are real numbers.

◦ In addition to requiring the coe�cient matrix to be square and invertible, the total amount of computation
is much larger: solving an n × n system with Cramer's rule requires computing n + 1 total n × n
determinants, while (in comparison) solving the system via row-reduction directly requires only row-
reducing one n× n matrix.

◦ We will remark that if the coe�cients of the system are functions (as can arise, for example, in solving
certain kinds of di�erential equations), then Cramer's rule can end up being more useful.

• Cramer's rule does have one useful theoretical consequence: if the entries of the matrix A are integers, the
solution vector to the system will have rational number entries whose denominators divide det(A).

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2021. You may not reproduce or distribute this
material without my express permission.
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