- 1. Identify each statement as either true or false, where the vector spaces U, V, W are finite-dimensional, the bases α, β, γ are ordered, and that S, T are linear transformations.
 - (a) In \mathbb{R}^3 , the orthogonal complement of the *xy*-plane is the *z*-axis.
 - (b) If A is any $m \times n$ matrix, the orthogonal complement of the row space of A is the column space of A.
 - (c) If W is a subspace of V where $\dim(W) = 4$ and $\dim(V) = 9$, then $\dim(W^{\perp}) = 5$.
 - (d) If $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ is an orthonormal basis for V and $W = \operatorname{span}(\mathbf{e}_1, \mathbf{e}_2)$, then $W^{\perp} = \operatorname{span}(\mathbf{e}_3, \mathbf{e}_4)$.
 - (e) If $\{\mathbf{e}_1, \mathbf{e}_2\}$ is an orthonormal basis for V and $W = \operatorname{span}(2\mathbf{e}_1 + \mathbf{e}_2)$, then $W^{\perp} = \operatorname{span}(2\mathbf{e}_1 \mathbf{e}_2)$.
 - (f) If **v** is orthogonal to \mathbf{w}_1 and \mathbf{w}_2 , and $W = \operatorname{span}(\mathbf{w}_1, \mathbf{w}_2)$, then **v** is in W^{\perp} .
 - (g) The orthogonal projection of (1, 2, 3) into the subspace spanned by (1, 1, 0) is (2, 2, 0).
 - (h) If $\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp}$ where \mathbf{w} is in W and \mathbf{w}^{\perp} is in W^{\perp} , then $||\mathbf{v}||^2 = ||\mathbf{w}||^2 + ||\mathbf{w}^{\perp}||^2$.
 - (i) The closest vector to (1, 2, 3) inside the plane x + y + z = 0 in \mathbb{R}^3 is (-1, 0, 1).
 - (j) If $A\mathbf{x} = \mathbf{c}$ is an inconsistent system of linear equations, then the best approximation of a solution is given by the solutions $\hat{\mathbf{x}}$ of $A^T \hat{\mathbf{x}} = A^T A \mathbf{c}$.
 - (k) If \mathbf{w}^{\perp} is a vector in W^{\perp} , then the orthogonal projection of \mathbf{w}^{\perp} onto W is \mathbf{w}^{\perp} itself.
 - (l) If P is the standard matrix associated to an orthogonal projection, then $P^2 = P$.
 - (m) If $T: V \to V$ and λ is a scalar, the set of vectors \mathbf{v} with $T(\mathbf{v}) = \lambda \mathbf{v}$ is a subspace of V.
 - (n) The eigenvalues of any matrix with real entries are always real numbers.
 - (o) Any $n \times n$ matrix always has n distinct eigenvalues.
 - (p) If the characteristic polynomial for A is $p(t) = t(t-1)^2$, then 0 is an eigenvalue of A.
 - (q) If the characteristic polynomial of A is $p(t) = t(t-1)^2$, then the 1-eigenspace of A has dimension 2.
 - (r) If \mathbf{v}_1 is an eigenvector with eigenvalue λ_1 and \mathbf{v}_2 is an eigenvector with eigenvalue λ_2 , then $\mathbf{v}_1 + \mathbf{v}_2$ is an eigenvector with eigenvalue $\lambda_1 + \lambda_2$.
 - (s) If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are eigenvectors with distinct eigenvalues λ_1 , λ_2 , and λ_3 , then the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
 - (t) A linear map $T: V \to V$ is diagonalizable if and only if V has a basis of eigenvectors of T.
 - (u) If A is invertible, then A is diagonalizable.
 - (v) If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.
 - (w) If an $n \times n$ matrix has fewer than n distinct eigenvalues, then it is not diagonalizable.
 - (x) If the characteristic polynomial for A is $p(t) = t^3 t$, then $A^3 A$ is the zero matrix.
 - (y) Every real symmetric matrix has real eigenvalues and is diagonalizable.
 - (z) If M is an $n \times n$ matrix with orthonormal columns, then $M^T M$ is the identity matrix.
- 2. For each of the given subspaces W, find a basis for its orthogonal complement W^{\perp} :
 - (a) W = span[(1,2,3), (0,1,2)] inside $V = \mathbb{R}^3$ under the standard dot product.
 - (b) $W = \operatorname{span}[(1, 1, 1, 1), (1, 1, -1, -1)]$ inside $V = \mathbb{R}^4$ under the standard dot product.
 - (c) W = the plane 2x + y + 3z = 0 inside $V = \mathbb{R}^3$ under the standard dot product.
 - (d) $W = \operatorname{span}(\mathbf{e}_1, \mathbf{e}_2)$ inside $V = \operatorname{span}(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$, where $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is an orthonormal basis of V.
- 3. Find a basis for the subspace of \mathbb{R}^4 consisting of all vectors orthogonal to $\mathbf{v} = (1, 2, 3, 4)$.

- 4. Let $\mathbf{w}_1 = (1, 0, 1, 2)$, $\mathbf{w}_2 = (0, 1, 2, -1)$, and $\mathbf{w}_3 = (-2, 1, 0, 1)$. Note that $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ are orthogonal.
 - (a) Let $W_1 = \operatorname{span}(\mathbf{w}_1)$. Find the orthogonal decomposition of the vector $\mathbf{v} = (6, 6, 6, 6)$ into the sum of a vector \mathbf{w} in W_1 and a vector \mathbf{w}^{\perp} orthogonal to W_1 .
 - (b) Find the orthogonal projection of the vector $\mathbf{v} = (6, 6, 6, 6)$ into the subspace $W_2 = \operatorname{span}(\mathbf{w}_1, \mathbf{w}_2)$ of \mathbb{R}^4 .
 - (c) Find the closest vector in the subspace $W_3 = \operatorname{span}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$ to the vector $\mathbf{v} = (6, 6, 6, 6)$ in \mathbb{R}^4 .
 - (d) Find the standard matrix for orthogonal projection onto the subspace $W_4 = \operatorname{span}(\mathbf{w}_1, \mathbf{w}_3)$ of \mathbb{R}^4 .
 - (e) Find a basis for the orthogonal complement of the subspace $W_5 = \operatorname{span}(\mathbf{w}_2, \mathbf{w}_3)$ of \mathbb{R}^4 .

5. Use least squares to solve each of the following problems:

- (a) Find the least squares solution $\hat{\mathbf{x}}$ to the inconsistent system $\begin{bmatrix} 1 & 2 \\ 0 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 1 \end{bmatrix}$.
- (b) Find the vector $\mathbf{x} = (x, y)$ that is closest to a solution to the system x + y = 1, 2x + y = 2, x + 2y = 3.
- (c) Find the line y = mx + b of best fit to the data set $\{(2, 2), (-1, -4), (-2, -6)\}$.
- (d) Find the line y = mx + b of best fit to the data set $\{(0, 1), (1, 2), (2, 4), (3, 4)\}$.
- (e) Find the parabola $y = ax^2 + bx + c$ of best fit to the data set $\{(-2, 1), (-1, 0), (1, 2), (2, 4)\}$.

6. Find the matrix of orthogonal projection onto each subspace of \mathbb{R}^n (with respect to the standard basis):

- (a) The subspace of \mathbb{R}^3 spanned by the vector (1, -2, 3).
- (b) The subspace of \mathbb{R}^4 spanned by the vectors (1,0,1,2) and (2,0,2,1).
- (c) The plane x + 2y z = 0 in \mathbb{R}^3 .

7. For each matrix A, find (i) the characteristic polynomial and eigenvalues of A, (ii) a basis for each eigenspace of A, and (iii) whether A is diagonalizable and if so find an invertible matrix Q with $D = Q^{-1}AQ$ diagonal:

(a)	$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$	(b)	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1\\2 \end{bmatrix}$	(c)	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{array}{c}2\\1\end{array}$	(d)	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 2 \\ 0 \end{array}$	4 4	(e)	$-3 \\ -2$	$\frac{2}{2}$	$^{-6}_{-5}$	(f)	$\begin{bmatrix} 0\\ -2 \end{bmatrix}$	$\frac{1}{2}$	$\begin{array}{c} 0\\ -1 \end{array}$	
-----	--	-----	--	--------------------------------------	-----	---------------------------------------	---------------------------------------	-----------------------------------	-----	---------------------------------------	---------------------------------------	--------	-----	------------	---------------	--------------	-----	--	---------------	---------------------------------------	--

8. Suppose the characteristic polynomial of the matrix A is $p(t) = t^4(t-2)^2(t+4)$.

- (a) Find the dimensions of A.
- (b) Find the eigenvalues of A and their multiplicities.
- (c) Find the determinant and the trace of A.
- (d) Find all possible values for each of the dimensions of the eigenspaces of A. Under what condition(s) on those dimensions will A be diagonalizable?
- (e) If A is diagonalizable, find a possible diagonalization.
- 9. For each symmetric matrix A, find an orthogonal diagonalization (i.e., an orthogonal matrix Q such that $D = Q^{-1}AQ$ is diagonal):

$ (a) \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} (b) \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} (c) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} (d) \begin{bmatrix} -1 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & -2 \end{bmatrix} (e) \begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{bmatrix} $		$[1 \ 1 \ 1]$	$\begin{bmatrix} -1 & 2 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & -2 & 4 \end{bmatrix}$
$\begin{bmatrix} 1 & -2 \end{bmatrix}$ $\begin{bmatrix} 2 & 5 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & -2 \end{bmatrix}$ $\begin{bmatrix} 4 & 2 & 5 \end{bmatrix}$	(a) $\begin{vmatrix} -2 & 1 \\ 1 & 0 \end{vmatrix}$ (b) $\begin{vmatrix} 2 & 2 \\ 0 & 5 \end{vmatrix}$	(c) 1 1 1	(d) $2 0 0$	(e) $-2 \ 8 \ 2$
				4 2 5

10. Suppose A is a 3×3 matrix with eigenvectors \mathbf{v}_1 of eigenvalue 2, \mathbf{v}_2 of eigenvalue 3, and \mathbf{v}_3 of eigenvalue 5.

- (a) In terms of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , find $A\mathbf{v}_1$, $A(\mathbf{v}_2 + \mathbf{v}_3)$, and $A(2\mathbf{v}_1 \mathbf{v}_2 + 3\mathbf{v}_3)$.
- (b) Explain why A is diagonalizable and find a diagonalization.
- (c) If $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (2, 4, 3)$, and $\mathbf{v}_3 = (2, 1, 1)$, find a matrix product formula for A (you do not have to evaluate it).