E. Dummit’s Math 2331 (Fall 2021) ~ Midterm 3 Review Answers

True: the orthogonal complement of the zy-plane is the subspace orthogonal to this plane, which is the
z-axis.

False: the orthogonal complement of the row space is the nullspace, not the column space.

) True: in general, dim(W) + dim(W+) = dim(V), so here dim(W+) =9 — 4 =5.

True: as discussed in class, if we extend an orthonormal basis of W to an orthonormal basis of V', then
the additional vectors form an orthonormal basis of TW=.

False: The vector 2e; — ey is not in W=, since the inner product of 2e; — e, with 2e; + ey is (2)(2) +
(=1)(1) = 3 rather than 0. (In fact, W+ is spanned by e; — 2e,.)
True: since v is orthogonal to the basis vectors of W, it is orthogonal to every vector in W, so it is in
W,
False: the projection of (1,2, 3) is a; (1,1,0) where a; = (1,2,3)-(1,1,0) /(1,1,0) - (1,1,0) = 3/2, which
yields (3/2,3/2,0).
True: this is the Pythagorean theorem. Explicitly, ||v||* = (wH+wh,w+wh)=(w,w)+2(w,wh)+
(w ) = [wl” + [[w "
True: the closest vector is the orthogonal projection of (1,2,3) into © + y + z = 0. The plane is
spanned by (1,0,—1) and (0,1,—1) so via the formula M = A(ATA)~'AT the projection matrix is
2 -1 -1
1
3 —1 2 —1 | and the projection is this matrix times (1, 2,3), which is (1,0, 1).
-1 -1 2
False: the correct equation to solve is the normal equation (AT A)x = ATc.

False: the orthogonal projection of a vector w* in W+ onto W is zero. (The orthogonal projection of a
vector in W will be itself.)

True: as mentioned in class, projection matrices always have P? = P,

True: this set of vectors is the A-eigenspace, and is a subspace.
. 1 .
False: for example, the real matrix [ (1) 0 ] has nonreal eigenvalues.

False: we have seen many examples of matrices with repeated eigenvalues, such as the identity matrix.
True: since A = 0 is a root of the characteristic polynomial, it is an eigenvalue.

False: since A\ = 1 is a double root of the characteristic polynomial, the dimension of the eigenspace is
at most 2, but it could be equal to 1.

False: we have T'(v1 4+ vo) = T(v1) + T(v2) = A1 vy + A\avo which is usually not a multiple of v; + vs.
True: as shown in class, eigenvectors with distinct eigenvalues are always linearly independent.

True: this is the diagonalizability criterion.

0 1

True: as mentioned in class, if there are n distinct eigenvalues, then each eigenvalue is a single root of the
characteristic polynomial and all of the eigenspaces have dimension 1, so the matrix is diagonalizable.

False: there are invertible matrices which are not diagonalizable, like [ L1 }

False: matrices with repeated eigenvalues can still be diagonalizable, such as the identity matrix.

True: by the Cayley-Hamilton theorem, if we plug a matrix into its characteristic polynomial, the result
is always the zero matrix.

True: this is part of the content of the spectral theorem (real symmetric matrices are orthogonally
diagonalizable).

True: as discussed in class, M7 M = I, is equivalent to saying that M is an orthogonal matrix (whose
columns are an orthonormal basis of R™).




2. For subspaces W of R", we can find a basis of W+ by finding the nullspace of the matrix whose rows are a

basis for W.
(a) For A = [ (1) ? 9 ] row-reducing gives [
(b) For A= 1 } _11 1 } row-reducing gives [

(1,-1,0,0),(0,0,1,—1).

2
1 0 0
0 11

-1 } so the nullspace (giving W) has basis (1, -2, 1).
1
0

} so the nullspace (giving W) has basis

(c) The plane is the set of vectors (x,y, z) such that 2z + y + 3z = 0 which is the nullspace of the matrix
[2 1 3]. Therefore the orthogonal complement is the rowspace, which has basis (2, 1, 3).

(d) The orthogonal complement is 1-dimensional and contains es, so {es} is a basis.

3. This is the orthogonal complement of the vector (1,2, 3,4), which is the nullspace of the matrix [1 2 3 4]. The
nullspace has basis (—2,1,0,0), (=3,0,1,0), (—4,0,0,1).

24/6 =4, s0 w = (4,0,4,8) and w' =v —w

4, as —
(4,2,8,6).
—2

This is A(ATA)~'AT where A =
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This is the nullspace of the matrix

nullspace has basis (1, 1,0, 1), (1,2
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Note that w = a;w; where a3 = (v, w1)/(wi,wi) =

The orthogonal projection is a; wi+asws where a; =
12/6 = 2, yielding 4(1,0,1,2) + 2(0,1,2,—1) =

This is the orthogonal projection of v into W5 which is a; wi+asws+asws where a; =
(v, wa) / (wa,w3) =12/6 = 2, and a3 =

(4,2,8,6).

(6,6,6,6) - (1,0,1,2)/(1,0,1,2) -
= (2,6,2,-2).
(v,wi) /(wi,wi) =4anday =

(1,0,1,2) =
(v,wa) /[ (w2, wa) =

(v,w1) [ (w1, w1) =

<Va W3> / <W37 W3> =0 yleldlng 4(17 07 17 2)+2(03 17 27 71) =

1
. The matrix product evaluates to G

3 711 ] which row-reduces to [

1
0

N = O =
(G280 RN )

} The

5. To find the least-squares solution to a system Ax = c, we solve the normal equation (AT A)x = ATc to get

x = (ATA)" 1A c.

1 2 2
o2 lo s [6 5 .1
(a) With A = 9 1 and ¢ = 9 we get A A—{S IO}andx_{l/B]'
1 1 1
m 21 2 9 1 2
(b)Withx:[b}wehaveA: -1 1 |andc=| —4 soATA:{_1 5 }andx—[_2 ,
-2 1 —6 -
corresponding to the line y = 2z — 2. )
[0 1 1
(C)WithX:[rz]wehaveA: ; 1 and ¢ = i soATA:[164 Z}andﬁz[ﬂﬁg ,
3 1 4
corresponding to the line y = 1.12 + 1.1. )
[4 —2 1 1
a 34 0 10
(d) With x = | b | we have A = 1 711 1 and ¢ = (2) so ATA=| 0 10 0 | and x =
c 4 9 1 1 10 0 4
1/2 ]
4/5 |, corresponding to the parabola y = 0.52% + 0.8z + 0.5.
1/2




6. The matrix of orthogonal projection onto the column space of A is P = A(ATA)~1AT .

[ 1 1 -2 3
1
(a) We have A= | —2 | so with ATA=[14] weget P=-—| -2 4 -6
14
3 3 —6 9
1 2 1 01 0
oo o, [6 6 ~1]0 0 0 0
(b) We have A = 1 9 so with A A—[6 E)}wegetP—2 101 0
21 000 2
(c) The plane is the nullspace of [1 2 — 1], and the nullspace has basis (1,0,1), (=2,1,0). With A =
1 -2 S 5 2
0 1 wegetATA_{_2 5 }andP_6 -2 2 2
1 0 1 2 5

7. The eigenvalues are the roots of the characteristic polynomial p(t) = deg(tl,, — A), and the A-eigenspace is
the nullspace of AI,, — A. Then A is diagonalizable when each eigenspace’s dimension equals the multiplicity
of the eigenvalue as a root of p(t), and the diagonalizing matrix @ has columns equal to eigenvectors of A.

(a) p(t) = (t—=5)(t+1), A= —1,5, basis of (—1)-eigenspace [ _11 ], basis of 5-eigenspace { ; } Diagonal-

izablewithQ:[_ll H,D: [ _01 (5)]

. Not diagonalizable.

| I

(b) p(t) = (t —1)%, A = 1,1, basis of 1-eigenspace { 1

1
(c) p(t) = (t—1)3, A =1,1,1, basis of 1-eigenspace [ 0 |. Not diagonalizable.
0
1 2
(d) p(t) = (t—1)(t—2)(t —4), A =1,2,4, basis of 1-eigenspace | 0 |, basis of 2-eigenspace | 1 |, basis
0 0
8 1 2 8 1 0 0
of 4-eigenspace | 6 |. Diagonalizable with@Q@ =10 1 6 [,D=]0 2 0
3 0 0 3 0 0 4
-2 1 -2
(e) p(t) =t(t+1)%, X = —1,—1,0, basis of (—1)-eigenspace 0 |,| 1 |, basis of O-eigenspace 3
1 0 2
-2 1 =2 -1 0 0
Diagonalizable with @ = 0 1 3 |,D= 0 10
1 0 2 0 0 0
—1 —1 1
(f) p(t) =t(t—1)%, A = 0,1, 1, basis of 0-eigenspace 0 |, basis of 1-eigenspace 0 |,| 1 |. Diago-
2 1 0
-1 -1 1 0 0 O
nalizable with Q = 0 0 1(,D=({0 10
2 1 0 0 01

8. (a) Since the characteristic polynomial has degree 7, A is a 7 X 7 matrix.
(b) The eigenvalues are 0 (multiplicity 4), 2 (multiplicity 2), and —4 (multiplicity 1).
(c) The determinant is the product of the eigenvalues, which is 0#22(—4)! = 0, and the trace is the sum of
the eigenvalues, which is 4-04+2-2+1-(—4) =0.

(d) The 0O-eigenspace has dimension 1, 2, 3, or 4, the 2-eigenspace has dimension 1 or 2, and the (—4)-
eigenspace has dimension 1. A is diagonalizable precisely when the 0-eigenspace has dimension 4 and
the 2-eigenspace has dimension 2.



(e) A diagonalization would be 0 (all other entries not shown are zero).

—4

9. By the spectral theorem, to find an orthogonal diagonalization, we just compute an orthonormal basis for
each eigenspace using Gram-Schmidt. (Note that for eigenspaces of dimension > 1, there are many possible
choices of orthonormal basis.)

1 [ =
(a) p(t) = (t+3)(t+1), A = —3,—1, orthonormal basis of (—3)-eigenspace 7 { 11 }, orthonormal basis
. 1 . 1 -1 1 -3 0
of (—1)-eigenspace [ 1 ] Orthogonal matrix @ = ﬁ { 11 ], D= 0 —1 ]

1 [ —
(b) p(t) = (t —1)(t — 6), A = 1,6, orthonormal basis of 1-eigenspace 7 { 12 }, orthonormal basis of

6-eigenspace [

1 . 1 -2 1 1 0
9 ] Orthogonal matrix @ = % [ 1 9 },D— [ 0 6 }
I I I T
(c) p(t) =t3(t—3), A = 0,0, 3, orthonormal basis of 0-eigenspace — | 0 |, — | 1 |, orthonormal ba-
e
e -1/vV2 —1/v2 1/V3 ] 000
sis of 3-eigenspace — | 1 |. Orthogonal matrix Q = 0 1/vV2 1/V3 |,D=|0 0 0
V3
1 1/V2 0 1/V3 | 0 0 3
1 [ -2
(d) p(t) = (t+4)(t+1)(t—2), A =—4,—1,2, orthonormal basis of (—4)-eigenspace 3 —1 |, orthonormal
2
M1 21
basis of (—1)-eigenspace 3 —2 |, orthonormal basis of 2-eigenspace 3 2 |. Orthogonal matrix
2 1
-2 1 2 -4 0 0
Q=11 -2 2|, D=0 -1 0
2 2 1 0 0 2
1 -2
(e) p(t) = t(t —9)%, X = 0,9,9, orthonormal basis of O-eigenspace 3 —1 |, orthonormal basis of 9-
2
B L [t -2/3 1/vV2 -1/V18 0 0
eigenspace 7 0 ,\/T 4 |. Orthogonal matrix @ = | —1/3 0 4/v/18 |,D=10 9
211 18 2/3 1/v2 1/V18 0 0

10. (a) We have Avy = 2vy, A(va + v3) = 3vy + 5vg, and A(2vy — vo + 3v3) = 4vy — 3va + 15v3.

(b) Since A is 3x3 and the eigenvalues for vq, vy, v3 are distinct, {vy, vo, v3} is a linearly independent set of 3

2 00
vectors in R3, so it is a basis. In terms of this basis we have the diagonalization Q7'AQ = | 0 3 0
0 0 5
1 2 2
(¢) For these vectors we have the change-of-basis matrix @ = | 1 4 1 | (the columns are the given
1 3 1
1227200712 2]" [8 8 —14
vectors), in which case A=QDQ 1= |1 4 1 0 3 0 1 4 1 =13 9 -10
1 3 1 0 0 5 1 3 1 3 6 -7

o



