- (a) True: the orthogonal complement of the xy-plane is the subspace orthogonal to this plane, which is the z-axis.
 - (b) False: the orthogonal complement of the row space is the nullspace, not the column space.
 - (c) True: in general, $\dim(W) + \dim(W^{\perp}) = \dim(V)$, so here $\dim(W^{\perp}) = 9 4 = 5$.
 - (d) True: as discussed in class, if we extend an orthonormal basis of W to an orthonormal basis of V, then the additional vectors form an orthonormal basis of W^{\perp} .
 - (e) False: The vector $2\mathbf{e}_1 \mathbf{e}_2$ is not in W^{\perp} , since the inner product of $2\mathbf{e}_1 \mathbf{e}_2$ with $2\mathbf{e}_1 + \mathbf{e}_2$ is (2)(2) + (-1)(1) = 3 rather than 0. (In fact, W^{\perp} is spanned by $\mathbf{e}_1 2\mathbf{e}_2$.)
 - (f) True: since **v** is orthogonal to the basis vectors of W, it is orthogonal to every vector in W, so it is in W^{\perp} .
 - (g) False: the projection of $\langle 1, 2, 3 \rangle$ is $a_1 \langle 1, 1, 0 \rangle$ where $a_1 = \langle 1, 2, 3 \rangle \cdot \langle 1, 1, 0 \rangle / \langle 1, 1, 0 \rangle \cdot \langle 1, 1, 0 \rangle = 3/2$, which yields $\langle 3/2, 3/2, 0 \rangle$.
 - (h) True: this is the Pythagorean theorem. Explicitly, $||\mathbf{v}||^2 = \langle \mathbf{w} + \mathbf{w}^{\perp}, \mathbf{w} + \mathbf{w}^{\perp} \rangle = \langle \mathbf{w}, \mathbf{w} \rangle + 2 \langle \mathbf{w}, \mathbf{w}^{\perp} \rangle + \langle \mathbf{w}^{\perp}, \mathbf{w}^{\perp} \rangle = ||\mathbf{w}||^2 + ||\mathbf{w}^{\perp}||^2.$
 - (i) True: the closest vector is the orthogonal projection of $\langle 1, 2, 3 \rangle$ into x + y + z = 0. The plane is spanned by (1, 0, -1) and (0, 1, -1) so via the formula $M = A(A^T A)^{-1}A^T$ the projection matrix is $\frac{1}{3}\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ and the projection is this matrix times $\langle 1, 2, 3 \rangle$, which is $\langle -1, 0, 1 \rangle$.
 - (j) False: the correct equation to solve is the normal equation $(A^T A)\hat{\mathbf{x}} = A^T \mathbf{c}$.
 - (k) False: the orthogonal projection of a vector \mathbf{w}^{\perp} in W^{\perp} onto W is zero. (The orthogonal projection of a vector in W will be itself.)
 - (l) True: as mentioned in class, projection matrices always have $P^2 = P$.
 - (m) True: this set of vectors is the λ -eigenspace, and is a subspace.
 - (n) False: for example, the real matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ has nonreal eigenvalues.
 - (o) False: we have seen many examples of matrices with repeated eigenvalues, such as the identity matrix.
 - (p) True: since $\lambda = 0$ is a root of the characteristic polynomial, it is an eigenvalue.
 - (q) False: since $\lambda = 1$ is a double root of the characteristic polynomial, the dimension of the eigenspace is at most 2, but it could be equal to 1.
 - (r) False: we have $T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2) = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2$ which is usually not a multiple of $\mathbf{v}_1 + \mathbf{v}_2$.
 - (s) True: as shown in class, eigenvectors with distinct eigenvalues are always linearly independent.
 - (t) True: this is the diagonalizability criterion.
 - (u) False: there are invertible matrices which are not diagonalizable, like $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$.
 - (v) True: as mentioned in class, if there are n distinct eigenvalues, then each eigenvalue is a single root of the characteristic polynomial and all of the eigenspaces have dimension 1, so the matrix is diagonalizable.
 - (w) False: matrices with repeated eigenvalues can still be diagonalizable, such as the identity matrix.
 - (x) True: by the Cayley-Hamilton theorem, if we plug a matrix into its characteristic polynomial, the result is always the zero matrix.
 - (y) True: this is part of the content of the spectral theorem (real symmetric matrices are orthogonally diagonalizable).
 - (z) True: as discussed in class, $M^T M = I_n$ is equivalent to saying that M is an orthogonal matrix (whose columns are an orthonormal basis of \mathbb{R}^n).

- 2. For subspaces W of \mathbb{R}^n , we can find a basis of W^{\perp} by finding the nullspace of the matrix whose rows are a basis for W.
 - (a) For $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$ row-reducing gives $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$ so the nullspace (giving W^{\perp}) has basis (1, -2, 1).
 - (b) For $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{bmatrix}$ row-reducing gives $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ so the nullspace (giving W^{\perp}) has basis (1, -1, 0, 0), (0, 0, 1, -1).
 - (c) The plane is the set of vectors (x, y, z) such that 2x + y + 3z = 0 which is the nullspace of the matrix [2 1 3]. Therefore the orthogonal complement is the rowspace, which has basis (2, 1, 3).
 - (d) The orthogonal complement is 1-dimensional and contains e_3 , so $\{e_3\}$ is a basis.
- 3. This is the orthogonal complement of the vector (1, 2, 3, 4), which is the nullspace of the matrix $[1\ 2\ 3\ 4]$. The nullspace has basis (-2, 1, 0, 0), (-3, 0, 1, 0), (-4, 0, 0, 1).
- 4. (a) Note that $\mathbf{w} = a_1 \mathbf{w}_1$ where $a_1 = \langle \mathbf{v}, \mathbf{w}_1 \rangle / \langle \mathbf{w}_1, \mathbf{w}_1 \rangle = (6, 6, 6, 6) \cdot (1, 0, 1, 2) / (1, 0, 1, 2) \cdot (1, 0, 1, 2) = 24/6 = 4$, so $\mathbf{w} = (4, 0, 4, 8)$ and $\mathbf{w}^{\perp} = \mathbf{v} \mathbf{w} = (2, 6, 2, -2)$.
 - (b) The orthogonal projection is $a_1 \mathbf{w}_1 + a_2 \mathbf{w}_2$ where $a_1 = \langle \mathbf{v}, \mathbf{w}_1 \rangle / \langle \mathbf{w}_1, \mathbf{w}_1 \rangle = 4$ and $a_2 = \langle \mathbf{v}, \mathbf{w}_2 \rangle / \langle \mathbf{w}_2, \mathbf{w}_2 \rangle = 12/6 = 2$, yielding 4(1, 0, 1, 2) + 2(0, 1, 2, -1) = (4, 2, 8, 6).
 - (c) This is the orthogonal projection of \mathbf{v} into W_3 which is $a_1\mathbf{w}_1 + a_2\mathbf{w}_2 + a_3\mathbf{w}_3$ where $a_1 = \langle \mathbf{v}, \mathbf{w}_1 \rangle / \langle \mathbf{w}_1, \mathbf{w}_1 \rangle = 4$, $a_2 = \langle \mathbf{v}, \mathbf{w}_2 \rangle / \langle \mathbf{w}_2, \mathbf{w}_2 \rangle = 12/6 = 2$, and $a_3 = \langle \mathbf{v}, \mathbf{w}_3 \rangle / \langle \mathbf{w}_3, \mathbf{w}_3 \rangle = 0$ yielding 4(1, 0, 1, 2) + 2(0, 1, 2, -1) = (4, 2, 8, 6).

(d) This is
$$A(A^TA)^{-1}A^T$$
 where $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$. The matrix product evaluates to $\frac{1}{6} \begin{bmatrix} 5 & -2 & 1 & 0 \\ -2 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 5 \end{bmatrix}$.
(e) This is the nullspace of the matrix $\begin{bmatrix} 0 & 1 & 2 & -1 \\ -2 & 1 & 0 & 1 \end{bmatrix}$ which row-reduces to $\begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & -1 \end{bmatrix}$. The nullspace has basis $(1, 1, 0, 1), (1, 2, -1, 0)$.

5. To find the least-squares solution to a system $A\mathbf{x} = \mathbf{c}$, we solve the normal equation $(A^T A)\mathbf{x} = A^T \mathbf{c}$ to get $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{c}$.

(a) With
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $\mathbf{c} = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 1 \end{bmatrix}$ we get $A^T A = \begin{bmatrix} 6 & 5 \\ 5 & 10 \end{bmatrix}$ and $\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 1/5 \end{bmatrix}$.
(b) With $\mathbf{x} = \begin{bmatrix} m \\ b \end{bmatrix}$ we have $A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ -2 & 1 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 2 \\ -4 \\ -6 \end{bmatrix}$ so $A^T A = \begin{bmatrix} 9 & -1 \\ -1 & 3 \end{bmatrix}$ and $\hat{\mathbf{x}} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$, corresponding to the line $y = 2x - 2$.
(c) With $\mathbf{x} = \begin{bmatrix} m \\ b \end{bmatrix}$ we have $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 4 \end{bmatrix}$ so $A^T A = \begin{bmatrix} 14 & 6 \\ 6 & 4 \end{bmatrix}$ and $\hat{\mathbf{x}} = \begin{bmatrix} 11/10 \\ 11/10 \end{bmatrix}$, corresponding to the line $y = 1.1x + 1.1$.
(d) With $\mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ we have $A = \begin{bmatrix} 4 & -2 & 1 \\ 1 & -1 & 1 \\ 1 & 4 & 2 & 1 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 4 \end{bmatrix}$ so $A^T A = \begin{bmatrix} 34 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 4 \end{bmatrix}$ and $\hat{\mathbf{x}} = \begin{bmatrix} 1/2 \\ 1/2 \\ 0 \end{bmatrix}$.

6. The matrix of orthogonal projection onto the column space of A is $P = A(A^T A)^{-1}A^T$.

(a) We have
$$A = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
 so with $A^T A = \begin{bmatrix} 14 \end{bmatrix}$ we get $P = \frac{1}{14} \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{bmatrix}$.
(b) We have $A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}$ so with $A^T A = \begin{bmatrix} 6 & 6 \\ 6 & 9 \end{bmatrix}$ we get $P = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

(c) The plane is the nullspace of $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$, and the nullspace has basis (1, 0, 1), (-2, 1, 0). With $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ we get $A^T A = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}$ and $P = \frac{1}{6} \begin{bmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}$.

7. The eigenvalues are the roots of the characteristic polynomial $p(t) = \deg(tI_n - A)$, and the λ -eigenspace is the nullspace of $\lambda I_n - A$. Then A is diagonalizable when each eigenspace's dimension equals the multiplicity of the eigenvalue as a root of p(t), and the diagonalizing matrix Q has columns equal to eigenvectors of A.

(a)	$p(t) = (t-5)(t+1), \lambda = -1, 5$, basis of (-1) -eigenspace $\begin{vmatrix} -1 \\ 1 \end{vmatrix}$, basis of 5-eigenspace $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$. Diagonal-
	izable with $Q = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$.
(b)	$p(t) = (t-1)^2$, $\lambda = 1, 1$, basis of 1-eigenspace $\begin{bmatrix} 1\\1 \end{bmatrix}$. Not diagonalizable.
(c)	$p(t) = (t-1)^3$, $\lambda = 1, 1, 1$, basis of 1-eigenspace $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$. Not diagonalizable.
(d)	$p(t) = (t-1)(t-2)(t-4), \lambda = 1, 2, 4$, basis of 1-eigenspace $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, basis of 2-eigenspace $\begin{bmatrix} 2\\1\\0 \end{bmatrix}$, basis
	of 4-eigenspace $\begin{bmatrix} 8\\6\\3 \end{bmatrix}$. Diagonalizable with $Q = \begin{bmatrix} 1 & 2 & 8\\0 & 1 & 6\\0 & 0 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 4 \end{bmatrix}$.
(e)	$p(t) = t(t+1)^2, \ \lambda = -1, -1, 0, \text{ basis of } (-1)\text{-eigenspace } \begin{bmatrix} -2\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \text{ basis of 0-eigenspace } \begin{bmatrix} -2\\3\\2 \end{bmatrix}.$
	Diagonalizable with $Q = \begin{bmatrix} -2 & 1 & -2 \\ 0 & 1 & 3 \\ 1 & 0 & 2 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
(f)	$p(t) = t(t-1)^2, \lambda = 0, 1, 1, \text{ basis of 0-eigenspace } \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \text{ basis of 1-eigenspace } \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}. \text{ Diago-1}$
	nalizable with $Q = \begin{bmatrix} -1 & -1 & 1 \\ 0 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- 8. (a) Since the characteristic polynomial has degree 7, A is a 7×7 matrix.
 - (b) The eigenvalues are 0 (multiplicity 4), 2 (multiplicity 2), and -4 (multiplicity 1).
 - (c) The determinant is the product of the eigenvalues, which is $0^4 2^2 (-4)^1 = 0$, and the trace is the sum of the eigenvalues, which is $4 \cdot 0 + 2 \cdot 2 + 1 \cdot (-4) = 0$.
 - (d) The 0-eigenspace has dimension 1, 2, 3, or 4, the 2-eigenspace has dimension 1 or 2, and the (-4)eigenspace has dimension 1. A is diagonalizable precisely when the 0-eigenspace has dimension 4 and
 the 2-eigenspace has dimension 2.

9. By the spectral theorem, to find an orthogonal diagonalization, we just compute an orthonormal basis for each eigenspace using Gram-Schmidt. (Note that for eigenspaces of dimension > 1, there are many possible choices of orthonormal basis.)

vectors), in which case
$$A = QDQ^{-1} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 4 & 1 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 1 & 4 & 1 \\ 1 & 3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 8 & 8 & -14 \\ 3 & 9 & -10 \\ 3 & 6 & -7 \end{bmatrix}.$$