
E. Dummit's Math 2331 (Fall 2021) ∼ Midterm 2 Review Problems

1. Identify each statement as either true or false, where the vector spaces U, V,W are �nite-dimensional, the bases
α, β, γ are ordered, and S, T are linear transformations.

(a) If T : V →W , then T (0V ) = 0W .

(b) If S, T : V →W and S and T are equal on a basis of V , then S(v) = T (v) for all v in V .

(c) x3 − x2 is in the kernel of the map T : P3(R)→ R2 with T (p) = 〈p(0), p(1)〉.
(d) 〈2, 1, 2〉 is in the image of the map T : R2 → R3 with T (a, b) = 〈a− b, a+ b, a− b〉.
(e) If T : P2(R)→ R2 with T (1) = (1, 2) and T (1 + x) = (2, 3), then T (x) could be (−1, 2).
(f) If T : P2(R)→ R2 with T (1) = (1, 2) and T (1 + x) = (2, 3), then T (x2) could be (−1, 2).
(g) There is a linear T : R5 → R4 whose nullity is 2 and whose rank is 2.

(h) There is a linear T : R4 → R5 whose nullity is 2 and whose rank is 2.

(i) If T : V →W is linear, then dim(kerT ) + dim(imT ) = dim(W ).

(j) If V is isomorphic to W , then dim(V ) = dim(W ).

(k) If T : V → V is invertible, then [T−1]ββ =
(
[T ]ββ

)−1
.

(l) If T : V → V , then [T 2]βα =
(
[T ]βα

)2
.

(m) For any T : V → V , there always exists an invertible matrix Q such that [T ]ββ = Q[T ]ααQ
−1.

(n) If S : V →W and T : U → V are both linear, then ST : U →W is also linear.

(o) If S : V →W and T : U → V are linear, then [ST ]γα = [S]γβ [T ]
β
α.

(p) The change of basis matrix [I]γβ is always invertible, and its inverse is [I]βγ .

(q) If T : V → V , then the matrices [T ]αα and [T ]ββ are similar.

(r) The pairing 〈p, q〉 =
´ 1
0
p(x)q(x) dx is an inner product on P2021(R).

(s) The vector space R2 has exactly one inner product.

(t) In any (real) inner product space, 〈v,w〉 = 〈w,v〉.
(u) In any (real) inner product space, |〈v,w〉| ≤ ||v|| ||w||.
(v) In any (real) inner product space, ||v +w|| = ||v||+ ||w||.
(w) (1, 1,−2, 0), (1,−5,−2, 0), (2, 0, 1, 7) is an orthogonal set in R4, with the standard dot product.

(x) 1
3 (1, 2, 2),

1√
2
(0, 1,−1), 1√

18
(−4, 1, 1) is an orthonormal basis of R3, with the standard dot product.

(y) Every �nite-dimensional inner product space has an orthogonal basis.

(z) If {e1, e2, e3, e4} is an orthonormal basis for V , then ||e1 + e2 + e3 + e4|| = 2.

2. For each map T : V →W , determine whether or not T is linear. If so show it, if not explain clearly why not.

(a) V = R4, W = R2, T (a, b, c, d) = (a+ b+ 1, c+ d+ 1).

(b) V = R4, W = R2, T (a, b, c, d) = (a+ b, c+ d).

(c) V =W =M2×2(R), T (A) = 3A− 2AT .

(d) V =W = P3(R), T (p) = p′′(x).

(e) V =W =M2×2(R), T (A) = Q−1AQ, for a given invertible 2× 2 matrix Q.

(f) V =W =M2×2(R), T (A) = A−1QA, for a given invertible 2× 2 matrix Q.

3. Suppose V = P2(R) and that T : V → V is linear with T (1) = 1−x2, T (x) = 2x−x2, and T (x2) = 3+x−x2.

(a) Find T (1− 2x+ x2).

(b) If β is the ordered basis β = {1, x, x2}, �nd [T ]ββ .

(c) If γ is the ordered basis γ = {2x2, 1, 4x}, �nd [T ]γγ .



4. Suppose V = P2(R) with bases β = {2− x, 3x2, 1} and γ = {1, x, x2}.

(a) Find the coordinate vectors [1 + x− x2]β and [1 + x− x2]γ .
(b) Find the change-of-basis matrices [I]γβ and [I]βγ .

(c) Suppose that T : V → V has [T ]ββ =

 1 2 1
0 3 3
3 1 2

. Find [T ]γγ .

5. For each linear transformation T : V → W , �nd bases for the kernel and for the image of T and verify the
nullity-rank theorem. Then, using the given bases β for V and γ for W , �nd [T ]γβ .

(a) V =W = P2(R), T (p) = xp′(x), β = γ = {1, x, x2}.
(b) V = W = R4,T (a, b, c, d) = (a − b, b − c, c − d, d − a), β = {〈1, 1, 1, 1〉 , 〈2, 2, 0, 0〉 , 〈3, 0, 0, 0〉 , 〈0, 0, 0, 4〉},

γ = {〈1, 0, 0, 0〉 , 〈0, 1, 0, 0〉 , 〈0, 0, 1, 0〉 , 〈0, 0, 0, 1〉}.

(c) V =W =M2×2(R), T (A) =
[

1 1
1 1

]
A, β = γ =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

(d) V = P3(R),W =M2×2(R), T (p) =
[
p(0) 0
p(2) 0

]
, β = {1, x, x2, x3}, γ = {

[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
}.

6. Find the associated matrix for each transformation of R2 with respect to the standard basis {(1, 0), (0, 1)}:
(a) Triples the x-coordinate, halves the y-coordinate.

(b) Rotates by 3π/4 radians counterclockwise.

(c) Projects onto y = 3x.

(d) Projects onto the line spanned by 〈2, 3〉.
(e) Re�ects across y = 4x.

(f) Projects onto y = 3x, then projects onto y = x.

(g) Scales by a factor of 4, then rotates by 2π/3 radi-
ans counterclockwise, then re�ects across y = x.

(h) Re�ects across y = 2x, then rotates by π/2 radi-
ans clockwise, then re�ects across y = 2x again.

7. In each given inner product space V , �nd 〈v,w〉, ||v||, ||w||, and the angle between v and w:

(a) V = R3 under the standard dot product, v = 〈1, 3, 2〉, w = 〈−5, 1, 1〉.
(b) V = R4 under the standard dot product, v = 〈1, 1, 1, 1〉, w = 〈−2, 0, 3, 6〉.

(c) V = P25(R) under the inner product 〈f, g〉 =
´ 1
0
f(x)g(x) dx, v = x, w = 1− x.

(d) V =M2×2(R) under the inner product 〈A,B〉 = tr(ATB), v =

[
1 −1
1 −1

]
,

[
2 0
2 1

]
.

8. Apply the Gram-Schmidt procedure to each set S of vectors in the inner product space V to construct (i) an
orthogonal set, and (ii) an orthonormal set with the same span as S:

(a) S = {〈3, 4〉 , 〈1, 1〉} inside V = R2 under the standard dot product.

(b) S = {〈1, 1, 1〉 , 〈2, 3, 4〉} inside V = R3 under the standard dot product.

(c) S = {〈2, 1, 2〉 , 〈1, 1, 3〉 , 〈−3, 5, 5〉} inside V = R3 under the standard dot product.

(d) S = {2, x} inside V = P1(R) under the inner product 〈f, g〉 =
´ 2
0
f(x)g(x) dx.

(e) S = {
[

1 1
1 1

]
,

[
1 2
3 6

]
} inside V =M2×2(R) under the inner product 〈A,B〉 = tr(ATB).

9. Find the QR factorization of each matrix:

(a)

[
−3 5
4 2

]
(b)

[
1 2
3 4

]
(c)

 −2 4
6 9
3 1

 (d)

 1 1 1
0 1 3
1 1 0

 (e)


2 2
0 0
2 2
0 1

 (f)


2 2
0 0
2 2
1 0




