- 1. Identify each statement as either true or false, where the vector spaces U, V, W are finite-dimensional, the bases α, β, γ are ordered, and S, T are linear transformations.
 - (a) If $T: V \to W$, then $T(\mathbf{0}_V) = \mathbf{0}_W$.
 - (b) If $S, T: V \to W$ and S and T are equal on a basis of V, then $S(\mathbf{v}) = T(\mathbf{v})$ for all \mathbf{v} in V.
 - (c) $x^3 x^2$ is in the kernel of the map $T: P_3(\mathbb{R}) \to \mathbb{R}^2$ with $T(p) = \langle p(0), p(1) \rangle$.
 - (d) $\langle 2, 1, 2 \rangle$ is in the image of the map $T : \mathbb{R}^2 \to \mathbb{R}^3$ with $T(a, b) = \langle a b, a + b, a b \rangle$.
 - (e) If $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ with T(1) = (1,2) and T(1+x) = (2,3), then T(x) could be (-1,2).
 - (f) If $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ with T(1) = (1,2) and T(1+x) = (2,3), then $T(x^2)$ could be (-1,2).
 - (g) There is a linear $T : \mathbb{R}^5 \to \mathbb{R}^4$ whose nullity is 2 and whose rank is 2.
 - (h) There is a linear $T : \mathbb{R}^4 \to \mathbb{R}^5$ whose nullity is 2 and whose rank is 2.
 - (i) If $T: V \to W$ is linear, then $\dim(\ker T) + \dim(\operatorname{im} T) = \dim(W)$.
 - (j) If V is isomorphic to W, then $\dim(V) = \dim(W)$.
 - (k) If $T: V \to V$ is invertible, then $[T^{-1}]^{\beta}_{\beta} = \left([T]^{\beta}_{\beta}\right)^{-1}$.
 - (l) If $T: V \to V$, then $[T^2]^{\beta}_{\alpha} = ([T]^{\beta}_{\alpha})^2$.
 - (m) For any $T: V \to V$, there always exists an invertible matrix Q such that $[T]^{\beta}_{\beta} = Q[T]^{\alpha}_{\alpha}Q^{-1}$.
 - (n) If $S: V \to W$ and $T: U \to V$ are both linear, then $ST: U \to W$ is also linear.
 - (o) If $S: V \to W$ and $T: U \to V$ are linear, then $[ST]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$.
 - (p) The change of basis matrix $[I]^{\gamma}_{\beta}$ is always invertible, and its inverse is $[I]^{\beta}_{\gamma}$.
 - (q) If $T: V \to V$, then the matrices $[T]^{\alpha}_{\alpha}$ and $[T]^{\beta}_{\beta}$ are similar.
 - (r) The pairing $\langle p,q\rangle = \int_0^1 p(x)q(x) \, dx$ is an inner product on $P_{2021}(\mathbb{R})$.
 - (s) The vector space \mathbb{R}^2 has exactly one inner product.
 - (t) In any (real) inner product space, $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$.
 - (u) In any (real) inner product space, $|\langle \mathbf{v}, \mathbf{w} \rangle| \leq ||\mathbf{v}|| \, ||\mathbf{w}||$.
 - (v) In any (real) inner product space, $||\mathbf{v} + \mathbf{w}|| = ||\mathbf{v}|| + ||\mathbf{w}||$.
 - (w) (1, 1, -2, 0), (1, -5, -2, 0), (2, 0, 1, 7) is an orthogonal set in \mathbb{R}^4 , with the standard dot product.
 - (x) $\frac{1}{3}(1,2,2), \frac{1}{\sqrt{2}}(0,1,-1), \frac{1}{\sqrt{18}}(-4,1,1)$ is an orthonormal basis of \mathbb{R}^3 , with the standard dot product.
 - (y) Every finite-dimensional inner product space has an orthogonal basis.
 - (z) If $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ is an orthonormal basis for V, then $||\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4|| = 2$.

2. For each map $T: V \to W$, determine whether or not T is linear. If so show it, if not explain clearly why not.

(a)
$$V = \mathbb{R}^4$$
, $W = \mathbb{R}^2$, $T(a, b, c, d) = (a + b + 1, c + d + 1)$.

(b)
$$V = \mathbb{R}^4$$
, $W = \mathbb{R}^2$, $T(a, b, c, d) = (a + b, c + d)$.

- (c) $V = W = M_{2 \times 2}(\mathbb{R}), T(A) = 3A 2A^T$.
- (d) $V = W = P_3(\mathbb{R}), T(p) = p''(x).$
- (e) $V = W = M_{2 \times 2}(\mathbb{R}), T(A) = Q^{-1}AQ$, for a given invertible 2×2 matrix Q.
- (f) $V = W = M_{2 \times 2}(\mathbb{R}), T(A) = A^{-1}QA$, for a given invertible 2×2 matrix Q.

3. Suppose $V = P_2(\mathbb{R})$ and that $T: V \to V$ is linear with $T(1) = 1 - x^2$, $T(x) = 2x - x^2$, and $T(x^2) = 3 + x - x^2$.

- (a) Find $T(1 2x + x^2)$.
- (b) If β is the ordered basis $\beta = \{1, x, x^2\}$, find $[T]_{\beta}^{\beta}$.
- (c) If γ is the ordered basis $\gamma = \{2x^2, 1, 4x\}$, find $[T]^{\gamma}_{\gamma}$.

- 4. Suppose $V = P_2(\mathbb{R})$ with bases $\beta = \{2 x, 3x^2, 1\}$ and $\gamma = \{1, x, x^2\}$.
 - (a) Find the coordinate vectors $[1 + x x^2]_{\beta}$ and $[1 + x x^2]_{\gamma}$.
 - (b) Find the change-of-basis matrices $[I]^{\gamma}_{\beta}$ and $[I]^{\beta}_{\gamma}$.
 - (c) Suppose that $T: V \to V$ has $[T]^{\beta}_{\beta} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 3 \\ 3 & 1 & 2 \end{bmatrix}$. Find $[T]^{\gamma}_{\gamma}$.
- 5. For each linear transformation $T: V \to W$, find bases for the kernel and for the image of T and verify the nullity-rank theorem. Then, using the given bases β for V and γ for W, find $[T]^{\gamma}_{\beta}$.
 - (a) $V = W = P_2(\mathbb{R}), T(p) = xp'(x), \beta = \gamma = \{1, x, x^2\}.$
 - (b) $V = W = \mathbb{R}^4$, $T(a, b, c, d) = (a b, b c, c d, d a), \beta = \{\langle 1, 1, 1, 1 \rangle, \langle 2, 2, 0, 0 \rangle, \langle 3, 0, 0, 0 \rangle, \langle 0, 0, 0, 4 \rangle\}, \gamma = \{\langle 1, 0, 0, 0 \rangle, \langle 0, 1, 0, 0 \rangle, \langle 0, 0, 1, 0 \rangle, \langle 0, 0, 0, 1 \rangle\}.$

(c)
$$V = W = M_{2 \times 2}(\mathbb{R}), T(A) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A, \beta = \gamma = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

(d) $V = P_3(\mathbb{R}), W = M_{2 \times 2}(\mathbb{R}), T(p) = \begin{bmatrix} p(0) & 0 \\ p(2) & 0 \end{bmatrix}, \beta = \{1, x, x^2, x^3\}, \gamma = \{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}.$

6. Find the associated matrix for each transformation of \mathbb{R}^2 with respect to the standard basis $\{(1,0), (0,1)\}$:

- (a) Triples the x-coordinate, halves the y-coordinate. (f) Projects onto
- (b) Rotates by $3\pi/4$ radians counterclockwise.
- (c) Projects onto y = 3x.
- (d) Projects onto the line spanned by $\langle 2, 3 \rangle$.
- (e) Reflects across y = 4x.

- (f) Projects onto y = 3x, then projects onto y = x.
- (g) Scales by a factor of 4, then rotates by $2\pi/3$ radians counterclockwise, then reflects across y = x.
- (h) Reflects across y = 2x, then rotates by $\pi/2$ radians clockwise, then reflects across y = 2x again.

- 7. In each given inner product space V, find $\langle \mathbf{v}, \mathbf{w} \rangle$, $||\mathbf{v}||$, $||\mathbf{w}||$, and the angle between \mathbf{v} and \mathbf{w} :
 - (a) $V = \mathbb{R}^3$ under the standard dot product, $\mathbf{v} = \langle 1, 3, 2 \rangle$, $\mathbf{w} = \langle -5, 1, 1 \rangle$.
 - (b) $V = \mathbb{R}^4$ under the standard dot product, $\mathbf{v} = \langle 1, 1, 1, 1 \rangle$, $\mathbf{w} = \langle -2, 0, 3, 6 \rangle$.
 - (c) $V = P_{25}(\mathbb{R})$ under the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$, $\mathbf{v} = x$, $\mathbf{w} = 1 x$.

(d)
$$V = M_{2 \times 2}(\mathbb{R})$$
 under the inner product $\langle A, B \rangle = \operatorname{tr}(A^T B), \mathbf{v} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}.$

- 8. Apply the Gram-Schmidt procedure to each set S of vectors in the inner product space V to construct (i) an orthogonal set, and (ii) an orthonormal set with the same span as S:
 - (a) $S = \{\langle 3, 4 \rangle, \langle 1, 1 \rangle\}$ inside $V = \mathbb{R}^2$ under the standard dot product.
 - (b) $S = \{\langle 1, 1, 1 \rangle, \langle 2, 3, 4 \rangle\}$ inside $V = \mathbb{R}^3$ under the standard dot product.
 - (c) $S = \{\langle 2, 1, 2 \rangle, \langle 1, 1, 3 \rangle, \langle -3, 5, 5 \rangle\}$ inside $V = \mathbb{R}^3$ under the standard dot product.
 - (d) $S = \{2, x\}$ inside $V = P_1(\mathbb{R})$ under the inner product $\langle f, g \rangle = \int_0^2 f(x)g(x) dx$.

(e)
$$S = \{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \}$$
 inside $V = M_{2 \times 2}(\mathbb{R})$ under the inner product $\langle A, B \rangle = \operatorname{tr}(A^T B)$.

9. Find the QR factorization of each matrix:

(a) $\begin{bmatrix} -3 & 5\\ 4 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} -2 & 4\\ 6 & 9\\ 3 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 3\\ 1 & 1 & 0 \end{bmatrix}$ (e)	$\begin{bmatrix} 2 & 2 \\ 0 & 0 \\ 2 & 2 \\ 0 & 1 \end{bmatrix}$	(f) $\begin{bmatrix} 2\\0\\2\\1\end{bmatrix}$	$\begin{array}{c} 2\\ 0\\ 2\\ 0\end{array}$	
---	--	---	---	--