- 1. (a) True: all linear transformations must send the zero vector of V to the zero vector of W.
 - (b) True: a linear transformation is uniquely determined by its values on a basis.
 - (c) True: for $p = x^3 x^2$, $p(0) = 0^3 0^2 = 0$ and $p(1) = 1^3 1^2 = 0$, so $T(p) = \langle 0, 0 \rangle$.
 - (d) True: the system $\langle a b, a + b, a b \rangle = \langle 2, 1, 2 \rangle$ has a solution a = 3/2, b = -1/2.
 - (e) False: here, T(x) = T(1+x) T(1) = (2,3) (1,2) = (1,1).
 - (f) True: since $\{1, 1+x, x^2\}$ is a basis of $P_2(\mathbb{R})$, we can choose the values of T on these elements arbitrarily.
 - (g) False: by nullity-rank, the nullity plus the rank equals the dimension of V, but $2 + 2 \neq 5$.
 - (h) True: the nullity-rank theorem works out, and $T(a, b, c, d) = \langle a, b, 0, 0, 0 \rangle$ is an explicit example.
 - (i) False: the correct statement is $\dim(\ker T) + \dim(\operatorname{im} T) = \dim(V)$.
 - (j) True: as shown in class, two vector spaces are isomorphic if and only if they have equal dimensions.
 - (k) True: in general $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\beta}_{\gamma})^{-1}$ and this is the special case where $\gamma = \beta$.
 - (l) False: a correct similar statement would be $[T^2]^{\beta}_{\alpha} = [T]^{\beta}_{\beta}[T]^{\beta}_{\alpha}$.
 - (m) True: we can take Q to be the change-of-basis matrix $Q = [I]_{\alpha}^{\beta}$.
 - (n) True: as noted in class, if $T: U \to V$ and $S: V \to W$ are linear, then so is $ST: U \to W$.
 - (o) True: this is the correct composition formula.
 - (p) True: as noted in class, the inverse of the change-of-basis matrix $[I]^{\gamma}_{\beta}$ is indeed $[I]^{\beta}_{\gamma}$.
 - (q) True: we have $[T]^{\beta}_{\beta} = Q[T]^{\alpha}_{\alpha}Q^{-1}$ where $Q = [I]^{\beta}_{\alpha}$ is the change-of-basis matrix.
 - (r) True: $\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$ is an inner product, as mentioned in class.
 - (s) False: as we have seen, there are several inner products on \mathbb{R}^2 .
 - (t) True: this is axiom [I2].
 - (u) True: this is the Cauchy-Schwarz inequality, which was shown in class.
 - (v) False: in general $||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||$, but equality can only happen if $\{\mathbf{v}, \mathbf{w}\}$ is dependent.
 - (w) True: these vectors are all orthogonal to one another.
 - (x) True: these vectors are all orthogonal to one another, they all have length 1, and there are 3 vectors.
 - (y) True: we can construct an orthogonal basis by applying Gram-Schmidt.
 - (z) True: in general, $||a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3 + d\mathbf{e}_4|| = \sqrt{a^2 + b^2 + c^2 + d^2}$.

2. In each case, we must check the properties [T1] and [T2]. A quick shortcut is also to check whether $T(\mathbf{0}) = \mathbf{0}$.

- (a) Not linear: neither [T1] nor [T2] holds since for example T(ra, rb, rc, rd) = (ra + rb + 1, rc + rd + 1) is not equal to rT(a, b, c, d) = (ra + rb + r, rc + rd + r). Also, $T(\mathbf{0}) = (1, 1) \neq \mathbf{0}$.
- (b) Linear: [T1] $T(a_1 + a_2, b_1 + b_2, c_1 + c_2, d_1 + d_2) = (a_1 + a_2 + b_1 + b_2, c_1 + c_2 + d_1 + d_2) = (a_1 + b_1, c_1 + d_1) + (a_2 + b_2, c_2 + d_2) = T(a_1, b_1, c_1, d_1) + T(a_2, b_2, c_2, d_2)$ and [T2] T(ra, rb, rc, rd) = (ra + rb, rc + rd) = r(a + b, c + d) = rT(a, b, c, d).
- (c) Linear: [T1] $T(A+B) = 3(A+B) 2(A+B)^T = (3A 2A^T) + (3B 2B^T) = T(A) + T(B)$ and [T2] $T(rA) = 3rA 2(rA)^T = r(3A 2A^T) = rT(A).$
- (d) Linear: [T1] T(p+q) = (p+q)''(x) = p''(x) + q''(x) = T(p) + T(Q) and [T2] T(cp) = (cp)''(x) = cp''(x) = cT(p).
- (e) Linear: [T1] $T(A + B) = Q^{-1}(A + B)Q = Q^{-1}AQ + Q^{-1}BQ = T(A) + T(B)$ and [T2] $T(rA) = Q^{-1}rAQ = r(Q^{-1}AQ) = rT(A)$.
- (f) Not linear: neither [T1] nor [T2] holds since for example $T(rA) = (rA)^{-1}Q(rA) = A^{-1}QA = T(A)$ is not equal to rT(A). In fact, T is not even defined on the zero matrix.

3. (a)
$$T(1-2x+x^2) = T(1) - 2T(x) + T(x^2) = (1-x^2) + 2(2x-x^2) + (3+x-x^2) = 4+5x-4x^2.$$

(b) $[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ -1 & -1 & -1 \end{bmatrix}$ and $[T]_{\gamma}^{\gamma} = \begin{bmatrix} -1 & 1/2 & -2 \\ 6 & 1 & 0 \\ 1/2 & 0 & 2 \end{bmatrix}.$
(c) For $[T]^{\gamma}$ rate $T(2x^2) = 6+2x - 2x^2 - 1/(2x^2) + 6(1) + 1/(4x) + T(1) - 1 - x^2 - 1/(2x^2) + 1(1) + 0$

(c) For $[T]^{\gamma}_{\gamma}$ note $T(2x^2) = 6 + 2x - 2x^2 = -1(2x^2) + 6(1) + \frac{1}{2}(4x), T(1) = 1 - x^2 = \frac{1}{2}(2x^2) + 1(1) + 0(4x), T(4x) = 8x - 4x^2 = -2(2x^2) + 0(1) + 2(4x).$ So matrix is as above.

4. (a) Note $1 + x - x^2 = -1(2 - x) - \frac{1}{3}(3x^2) + 3(1)$ so $[1 + x - x^2]_{\beta} = (-1, -\frac{1}{3}, 3)$ and $[1 + x - x^2]_{\gamma} = (1, 1, -1)$. (b) Note that the columns of $[I]_{\beta}^{\gamma}$ are the vectors in the basis β expressed in terms of γ , so $[I]_{\beta}^{\gamma} = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$. Then $[I]_{\gamma}^{\beta} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1/3 \\ 1 & 2 & 0 \end{bmatrix}$ either by computing the inverse matrix or by noting that $1 = 0(2 - x) + 0(3x^2) + 1(1), x = -1(2 - x) + 0(3x^2) + 2(1), x^2 = 0(2 - x) + 1/3(3x^2) + 0(1)$. (c) We have $[T]_{\gamma}^{\gamma} = [I]_{\beta}^{\gamma}[T]_{\beta}^{\beta}[I]_{\gamma}^{\beta} = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 3 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1/3 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 5/3 \\ -1 & -1 & -2/3 \\ 9 & 18 & 3 \end{bmatrix}$.

5. Note that there are often many different choices for the bases of the kernel and image.

$$\begin{array}{l} 6. \quad (a) \begin{bmatrix} 3 & 0 \\ 0 & 1/2 \end{bmatrix} \\ (b) \begin{bmatrix} \cos(3\pi/4) & -\sin(3\pi/4) \\ \sin(3\pi/4) & \cos(3\pi/4) \end{bmatrix} = \begin{bmatrix} -\sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{bmatrix} \\ (c) \quad \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} \\ (d) \quad \frac{1}{13} \begin{bmatrix} 4 & 6 \\ 6 & 9 \end{bmatrix} \\ (e) \quad \frac{1}{17} \begin{bmatrix} -15 & 8 \\ 8 & 15 \end{bmatrix} \\ (f) \quad \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} = \begin{bmatrix} 1/5 & 3/5 \\ 1/5 & 3/5 \end{bmatrix} \\ (g) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \cos(2\pi/3) & -\sin(2\pi/3) \\ \sin(2\pi/3) & \cos(2\pi/3) \end{bmatrix} \cdot \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2\sqrt{3} & -2 \\ -2 & -2\sqrt{3} \end{bmatrix} \\ (h) \quad \frac{1}{5} \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} \cos(-\pi/2) & -\sin(-\pi/2) \\ \sin(-\pi/2) & \cos(-\pi/2) \end{bmatrix} \cdot \frac{1}{5} \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \\ \hline \end{array}$$

$$(a) \quad \langle \mathbf{v}, \mathbf{w} \rangle = 0, ||\mathbf{v}|| = \sqrt{14}, ||\mathbf{w}|| = \sqrt{27}, \theta = \cos^{-1}(\frac{0}{\sqrt{14}\sqrt{27}}) = \pi/2. \\ (b) \quad \langle \mathbf{v}, \mathbf{w} \rangle = 7, ||\mathbf{v}|| = 2, ||\mathbf{w}|| = 7, \theta = \cos^{-1}(\frac{7}{2 \cdot 7}) = \pi/3. \\ (c) \quad \langle \mathbf{v}, \mathbf{w} \rangle = -1/6, ||\mathbf{v}|| = \sqrt{1/3}, ||\mathbf{w}|| = \sqrt{1/3}, \theta = \cos^{-1}(\frac{-1/6}{\sqrt{1/3} \cdot \sqrt{1/3}}) = 2\pi/3. \\ (d) \quad \langle \mathbf{v}, \mathbf{w} \rangle = 8, ||\mathbf{v}|| = \sqrt{30}, ||\mathbf{w}|| = 3, \theta = \cos^{-1}(\frac{8}{\sqrt{30} \cdot 3}). \\ \hline 8. \quad (a) \quad \mathbf{w}_1 = \mathbf{v}_1 = (3, 4) \\ \mathbf{w}_2 = \mathbf{v}_2 - a_1\mathbf{v}_1 \text{ where } a_1 = \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} = \frac{7}{25} \text{ so } \mathbf{w}_2 = (1, 1) - \frac{7}{25}(3, 4) = (\frac{4}{25}, -\frac{3}{25}). \\ \text{Orthogonal set } \{(3, 4), (\frac{4}{25}, -\frac{3}{25})\} \text{ yielding orthonormal set } \{\frac{1}{5}(3, 4), \frac{1}{5}(4, -3)\}. \\ \end{array}$$

- (b) $\mathbf{w}_1 = \mathbf{v}_1 = (1, 1, 1)$ $\mathbf{w}_2 = \mathbf{v}_2 - a_1 \mathbf{v}_1$ where $a_1 = \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} = \frac{9}{3} = 3$ so $\mathbf{w}_2 = (2, 3, 4) - 3(1, 1, 1) = (-1, 0, 1).$ Orthogonal set $\{(1, 1, 1), (1, 0, -1)\}$ yielding orthonormal set $\{\frac{1}{\sqrt{3}}(1, 1, 1), \frac{1}{\sqrt{2}}(1, 0, -1)\}.$
- (c) $\mathbf{w}_1 = \mathbf{v}_1 = (2, 1, 2),$ $\mathbf{w}_2 = \mathbf{v}_2 - a_1 \mathbf{v}_1$ where $a_1 = \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} = \frac{9}{9} = 1$ so $\mathbf{w}_2 = (1, 1, 3) - (2, 1, 2) = (-1, 0, 1)$ $\mathbf{w}_3 = \mathbf{v}_2 - b_1 \mathbf{v}_1 - b_2 \mathbf{v}_2$ where $b_1 = \frac{\langle \mathbf{v}_3, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} = \frac{9}{9} = 1$ and $b_2 = \frac{\langle \mathbf{v}_3, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} = \frac{8}{2} = 4$ so $\mathbf{w}_2 = (-3, 5, 5) - (2, 1, 2) - 4(-1, 0, 1) = (-1, 4, -1).$ Orthogonal set $\{(2, 1, 2), (-1, 0, 1), (-1, 4, -1)\}$ yielding orthonormal set $\{\frac{1}{3}(2, 1, 2), \frac{1}{\sqrt{2}}(-1, 0, 1), \frac{1}{\sqrt{18}}(-1, 4, -1)\}.$
- (d) $w_1 = v_1 = 2$

$$\begin{split} \mathbf{w}_{2} &= \mathbf{v}_{2} - a_{1}\mathbf{v}_{1} \text{ where } a_{1} = \frac{\langle \mathbf{v}_{2}, \mathbf{w}_{1} \rangle}{\langle \mathbf{w}_{1}, \mathbf{w}_{1} \rangle} = \frac{\int_{0}^{2} 2x \, dx}{\int_{0}^{2} 2^{2} \, dx} = \frac{1}{2} \text{ so } \mathbf{w}_{2} = x - 1. \\ \text{Orthogonal set } \{2, x - 1\}. \\ \text{To make orthonormal, compute } ||2|| &= \sqrt{\int_{0}^{2} 2^{2} \, dx} = \sqrt{8}, ||x - 1|| = \sqrt{\int_{0}^{2} (x - 1)^{2} \, dx} = \sqrt{\int_{0}^{2} (x^{2} - 2x + 1) \, dx} = \sqrt{2/3} \text{ yielding orthonormal set } \{\frac{2}{\sqrt{8}}, \frac{x - 1}{\sqrt{2/3}}\}. \end{split}$$

(e)
$$\mathbf{w}_1 = \mathbf{v}_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

 $\mathbf{w}_2 = \mathbf{v}_2 - a_1 \mathbf{v}_1$ where $a_1 = \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} = \frac{12}{4} = 3$ so $\mathbf{w}_2 = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} - 3 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ 0 & 3 \end{bmatrix}$.
Orthogonal set $\{\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -2 & -1 \\ 0 & 3 \end{bmatrix}\}$.
To make orthonormal, compute $\left\| \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\| = 2$, $\left\| \begin{bmatrix} -2 & -1 \\ 0 & 3 \end{bmatrix} \right\| = \sqrt{14}$ yielding orthonormal set $\{\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \frac{1}{\sqrt{14}} \begin{bmatrix} -2 & -1 \\ 0 & 3 \end{bmatrix}\}$.

9. To find the QR factorization, apply Gram-Schmidt to the column vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$. Then Q is given by the resulting orthonormal basis $\{\mathbf{e}_1, \ldots, \mathbf{e}_m\}$ and R is upper-triangular with entries given by the inner products $\langle \mathbf{e}_i, \mathbf{v}_j \rangle$.

-

(a) For
$$\mathbf{v}_{1} = (-3, 4)$$
, $\mathbf{v}_{2} = (5, 2)$ get $\mathbf{e}_{1} = \frac{1}{5}(-3, 4)$, $\mathbf{e}_{2} = \frac{1}{5}(4, -3)$ and so $r_{1,1} = \langle \mathbf{e}_{1}, \mathbf{v}_{1} \rangle = 5$, $r_{1,2} = \langle \mathbf{e}_{1}, \mathbf{v}_{2} \rangle = -\frac{7}{5}$, $r_{2,2} = \langle \mathbf{e}_{2}, \mathbf{v}_{2} \rangle = \frac{26}{5}$. So $Q = \begin{bmatrix} -3/5 & 4/5 \\ 4/5 & 3/5 \end{bmatrix}$, $R = \begin{bmatrix} 5 & -7/5 \\ 0 & 26/5 \end{bmatrix}$.
(b) For $\mathbf{v}_{1} = (1, 3)$, $\mathbf{v}_{2} = (2, 4)$ get $\mathbf{e}_{1} = \frac{1}{\sqrt{10}}(1, 3)$, $\mathbf{e}_{2} = \frac{1}{\sqrt{10}}(3, -1)$ and so $r_{1,1} = \langle \mathbf{e}_{1}, \mathbf{v}_{1} \rangle = \sqrt{10}$, $r_{1,2} = \langle \mathbf{e}_{1}, \mathbf{v}_{2} \rangle = 14/\sqrt{10}$, $r_{2,2} = \langle \mathbf{e}_{2}, \mathbf{v}_{2} \rangle = 2/\sqrt{10}$. So $Q = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$, $R = \frac{1}{\sqrt{10}} \begin{bmatrix} 10 & 14 \\ 0 & 2 \end{bmatrix}$.
(c) For $\mathbf{v}_{1} = (-2, 6, 3)$, $\mathbf{v}_{2} = (4, 9, 1)$ get $\mathbf{e}_{1} = \frac{1}{7}(-2, 6, 3)$, $\mathbf{e}_{2} = \frac{1}{7}(6, 3, -2)$ and so $r_{1,1} = \langle \mathbf{e}_{1}, \mathbf{v}_{1} \rangle = 7$, $r_{1,2} = \langle \mathbf{e}_{1}, \mathbf{v}_{2} \rangle = 7$, $r_{2,2} = \langle \mathbf{e}_{2}, \mathbf{v}_{2} \rangle = 7$. So $Q = \frac{1}{7} \begin{bmatrix} -2 & 6 \\ 6 & 3 \\ 3 & -2 \end{bmatrix}$, $R = \begin{bmatrix} 7 & 7 \\ 0 & 7 \end{bmatrix}$.
(d) For $\mathbf{v}_{1} = (1, 0, 1)$, $\mathbf{v}_{2} = (1, 1, 1)$, $\mathbf{v}_{3} = (1, 3, 0)$ get $\mathbf{e}_{1} = \frac{1}{\sqrt{2}}(1, 0, 1)$, $\mathbf{e}_{2} = (0, 1, 0)$, $\mathbf{e}_{3} = \frac{1}{\sqrt{2}}(1, 0, -1)$
and so $r_{1,1} = \langle \mathbf{e}_{1}, \mathbf{v}_{1} \rangle = \sqrt{2}$, $r_{1,2} = \langle \mathbf{e}_{1}, \mathbf{v}_{2} \rangle = \sqrt{2}$, $r_{1,3} = \langle \mathbf{e}_{1}, \mathbf{v}_{3} \rangle = 1/\sqrt{2}$, $r_{2,2} = \langle \mathbf{e}_{2}, \mathbf{v}_{2} \rangle = 1$,
 $r_{2,3} = \langle \mathbf{e}_{2}, \mathbf{v}_{3} \rangle = 3$, $r_{3,3} = \langle \mathbf{e}_{3}, \mathbf{v}_{3} \rangle = 1/\sqrt{2}$. So $Q = \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \end{bmatrix}$, $R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & 1/\sqrt{2} \\ 0 & 1 & 3 \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$.
(e) For $\mathbf{v}_{1} = (2, 0, 2, 0)$, $\mathbf{v}_{2} = (2, 0, 2, 1)$ get $\mathbf{e}_{1} = \frac{1}{\sqrt{2}}(1, 0, 1, 0)$, $\mathbf{e}_{2} = (0, 0, 0, 1)$ and so $r_{1,1} = \langle \mathbf{e}_{1}, \mathbf{v}_{1} \rangle = 2\sqrt{2}$,
 $r_{1,2} = \langle \mathbf{e}_{1}, \mathbf{v}_{2} \rangle = 2\sqrt{2}$, $r_{2,2} = \langle \mathbf{e}_{2}, \mathbf{v}_{2} \rangle = 1$. So $Q = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 0 \\ 1/\sqrt{2} & 0 \\ 0 & 1 \end{bmatrix}$, $R = \begin{bmatrix} 2\sqrt{2} & 2\sqrt{2} \\ 0 \\ 1 & 1 \end{bmatrix}$.
(f) For $\mathbf{v}_{1} = (2, 0, 2, 1)$, $\mathbf{v}_{2} = (2, 0, 2, 0)$ get $\mathbf{e}_{1} = \frac{1}{3}(2, 0, 2, 1)$, $\mathbf{e}_{2} = \frac{1}{\sqrt{18}}(1, 0, 1, -$