- 1. Identify each statement as either true or false:
 - (a) Every matrix has a unique row-echelon form.
 - (b) For $n \times n$ matrices A and B, $(A+B)^2 = A^2 + 2AB + B^2$.
 - (c) For an invertible $n \times n$ matrix A, $(A^4)^{-1} = (A^{-1})^4$.

(d) The inverse of the matrix
$$\begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}$$
 is $\begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$.

- (e) For any $n \times n$ matrix A, $\det(A) = -\det(A^T)$.
- (f) If B is obtained from A by adding 4 times the first row of A to the third row of A, then det(B) = 4 det(A).
- (g) For any 3×3 matrix A, if B is obtained by tripling every entry of A, then $\det(B) = 3 \det(A)$.
- (h) If the coefficient matrix of a 6×6 system is invertible, then the system has infinitely many solutions.
- (i) The set $S = {\mathbf{v}, \mathbf{w}}$ is linearly independent whenever \mathbf{v} and \mathbf{w} are both nonzero.
- (j) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set for V, then so is $\{\mathbf{v}_1, \mathbf{v}_3\}$.
- (k) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set, then so is $\{\mathbf{v}_1, \mathbf{v}_3\}$.
- (l) If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for V, then so is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- (m) If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly independent set, then so is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- (n) If $\dim(V) = 3$, then a set of 2 vectors in V cannot span V.
- (o) If $\dim(V) = 3$, then any spanning set for V can contain at most 3 vectors.
- (p) If $\dim(V) = 3$, then a set of 2 vectors in V cannot be linearly independent.
- (q) If $\dim(V) = 3$, then there is a linearly independent subset of V having exactly 3 elements.
- (r) If $\dim(V) = 3$, then any basis of V must contain exactly 3 vectors.
- (s) If A is an invertible $n \times n$ matrix, then the rows of A are linearly independent.
- (t) Every finite-dimensional vector space has a finite basis.
- (u) A linearly independent set of vectors is a basis of V if and only if it spans V.
- (v) If A is an $m \times n$ matrix, the row space is a subspace of \mathbb{R}^m .
- (w) If A is an $m \times n$ matrix, the column space is a subspace of \mathbb{R}^m .
- (x) If A is an $m \times n$ matrix, the nullspace is a subspace of \mathbb{R}^m .
- (y) If A is an $m \times n$ matrix, the row space of A has the same dimension as the nullspace of A.
- (z) If A is an invertible $n \times n$ matrix, then the row space of A must be \mathbb{R}^n .
- 2. Solve the following systems of linear equations:

(a) $ \left\{ \begin{array}{rrrr} x+y-z &=& 5\\ 3x+y+3z &=& 3\\ 4x+y+5z &=& 1 \end{array} \right\} $	(c) $ \left\{ \begin{array}{rrrr} a-b+2c-d &=& 2\\ 3a+b-c+d &=& 4\\ -2a-2c &=& 6 \end{array} \right\} $ (e)	$ \left\{\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
(b) $\left\{\begin{array}{rrrrr} 2x - 4y + 3z &=& 5\\ x - 2y + z &=& 3\\ -3x + y + 2z &=& 1\end{array}\right\}$	(d) $\left\{ \begin{array}{rrr} a+b+c+d+e &= 1\\ a+2b+3c+4d+5e &= 6 \end{array} \right\}$	(-2a+2b+c-4d = -2)

3. Calculate the determinant of each matrix:

(a)	$ \begin{array}{c} 1 \\ 2 \\ 4 \\ 5 \end{array} $	$2 \\ 3 \\ 5 \\ 6$	$ \begin{array}{c} 3 \\ 4 \\ 6 \\ 7 \end{array} $			(b)	$\begin{bmatrix} 4\\0\\2\\0 \end{bmatrix}$	$5 \\ 2 \\ -4 \\ 6$	$ \begin{array}{c} 3 \\ 0 \\ 1 \\ -2 \end{array} $	$ \begin{array}{c} -1 \\ 0 \\ 3 \\ 0 \end{array} $	(c)	$\left[\begin{array}{c} -2\\ 3\\ -3\end{array}\right]$	$5\\4\\1$	$\begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}$	(c	1)	2 2 2 4	$3 \\ 7 \\ -1 \\ 2$	$ \begin{array}{c} 3 \\ 6 \\ -1 \\ 3 \end{array} $	$ \begin{array}{c} 1 \\ -2 \\ -3 \\ 4 \end{array} $	
	- 5	6	7	8 -]		0	6	-2	0 -		L	-	- 1		L	4	2	3	4 -]

4. Let
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & 1 \\ 1 & -1 & -2 \\ 0 & 2 & 3 \end{bmatrix}$.
(a) Find det(A) and det(B).
(b) Find A^{-1} and B^{-1} .
(c) Find det($A^{T}BAB^{T}$) and det(5 B^{2}).
(d) Find \mathbf{v} if $A\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

- 5. If $\mathbf{v} = \langle 3, 1, -1, 3 \rangle$ and $\mathbf{w} = \langle 1, 1, 1, -1 \rangle$, find $\mathbf{v} 3\mathbf{w}$, $\mathbf{v} \cdot \mathbf{w}$, and $||\mathbf{v}||$.
- 6. In each of the following, determine whether the given subset S is a subspace of the given vector space V: if so, verify the subspace criterion, and if not, identify a counterexample.

(a) $V = \mathbb{R}^3$, $S = \{ \langle a, b, c \rangle : a + b + c = 0 \}$. (b) $V = \mathbb{R}^3$, $S = \{ \langle x, y, z \rangle : x^2 + y^2 + z^2 = 1 \}$. (c) $V = \mathbb{R}^5$, S = the vectors $\langle a, b, c, d, e \rangle$ with e = a + b and b = c = d. (d) $V = M_{2 \times 2}(\mathbb{R})$, $S = \{ A \in V : \det(A) = 0 \}$. (e) $V = M_{2 \times 2}(\mathbb{R})$, $S = \{ A \in V : A^2 = A \}$. (f) $V = M_{3 \times 3}(\mathbb{R})$, $S = \{ A \in V : A^T = A \}$. (g) $V = M_{3 \times 3}(\mathbb{R})$, S = the 3 × 3 matrices with nonnegative real entries.

7. For each of the following sets of vectors inside a vector space V, determine (i) if S is linearly independent, (ii) if S spans V, and (iii) if S is a basis of V:

 $\begin{array}{ll} \text{(a)} & V = \mathbb{R}^2, \, S = \{(1,3), \, (2,4), \, (3,1)\}. \\ \text{(b)} & V = \mathbb{R}^3, \, S = \{(1,1,0), \, (2,0,-1)\}. \\ \text{(c)} & V = \mathbb{R}^3, \, S = \{(1,1,0), \, (2,0,-1), \, (0,2,1)\}. \\ \text{(d)} & V = \mathbb{R}^3, \, S = \{(1,1,0), \, (2,0,-1), \, (0,2,1), \, (0,1,-1)\}. \\ \text{(e)} & V = M_{2\times 2}(\mathbb{R}), \, S = \left\{ \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right], \, \left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right], \, \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right], \, \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}. \\ \text{(f)} & V = P_3(\mathbb{R}), \, S = \{1-x, \, 3-x^2, \, 4-x^3\}. \\ \text{(g)} & V = P_2(\mathbb{R}), \, S = \{1-x-x^2, \, 3+3x+2x^2, \, 4+x+x^2\}. \end{array}$

8. For each matrix, find the reduced row-echelon form, the rank, and also find bases for the row space, column space, and nullspace:

(a)	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(c) $\begin{bmatrix} 1 & 2 & 0 & -1 & -3 \\ 3 & 6 & 2 & 1 & 5 \\ 4 & 8 & 4 & 2 & 2 \end{bmatrix}$	(e) $\begin{bmatrix} 1 & 2 & -1 & 0 & 3 \\ 2 & 4 & -2 & 0 & 6 \\ 3 & 6 & -3 & 1 & 9 \end{bmatrix}$
(b)	$\begin{bmatrix} 2 & 6 & 8 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	(d) $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 3 & -3 \end{bmatrix}$	(f) $\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & -1 & 2 & 2 \\ 1 & 1 & 4 & 6 \\ 1 & -1 & 8 & 8 \end{bmatrix}$

- 9. Find a basis, and the dimension, of each of the given vector spaces:
 - (a) $V = 3 \times 3$ lower-triangular matrices.
 - (b) $V = 3 \times 3$ symmetric matrices with diagonal entries 0.
 - (c) $V = \text{the plane } x 2y + 2z = 0 \text{ in } \mathbb{R}^3$.
 - (d) $V = \text{the span of } \langle 1, 1, 1, 1 \rangle, \langle 1, 1, 2, 2 \rangle, \langle 2, 2, 0, 0 \rangle, \langle 3, 3, 5, 5 \rangle \text{ in } \mathbb{R}^4.$