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4 Galois Theory

In this chapter we extend our analysis of �eld extensions by developing Galois theory, whose central idea is to relate
the permutations of roots of polynomials (which has a natural group structure) to the structure of splitting �elds.
Galois theory and its applications, in particular, illustrate the power of using the action of one object (in this case,
a group) on another object (in this case, a �eld) to reveal structural information about both. We will develop the
fundamental theorem of Galois theory, which makes this relationship between groups and �elds precise, and then
apply it to study the structure of �nite �elds, cyclotomic �elds, abelian extensions, and the roots of polynomials
(including cubic and quartic equations), culminating in Abel's celebrated theorem on the insolvability by radicals of
the general quintic equation. Our work will draw upon, and tie together, nearly all of the results we have developed
previously about polynomials, �eld extensions, and groups.
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4.1 Field Automorphisms and Galois Groups

• We begin by studying the collection of structure-preserving symmetries of a �eld K.

4.1.1 Field Automorphisms

• De�nition: If K is a �eld, a (�eld) automorphism of K is a ring isomorphism of K with itself; explicitly, a �eld
automorphism is a map σ : K → K that is a bijection and has σ(x+ y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y)
for all x, y ∈ K. The collection of all automorphisms of K is denoted Aut(K).

◦ Example: For K = C, the complex conjugation map σ(a+ bi) = a− bi, for a, b ∈ R, is an automorphism
of K. It is clearly a bijection, and it is easy to verify that it also respects addition and multiplication.

◦ Example: For K = Q(
√
D) for squarefree D, the �conjugation map� σ(a+b

√
D) = a−b

√
D, for a, b ∈ Q,

is an automorphism of K. (Note that if D < 0 then this map is simply complex conjugation.)

◦ Example: For K = Fpn for a positive integer n, the pth-power Frobenius map σ(x) = xp for x ∈ K is
an automorphism of K. As we have previously mentioned, σ respects addition and multiplication and is
injective, hence (since K is �nite) it is a bijection.

◦ Based on our understanding of groups as collections of symmetries, we would expect Aut(K) to be a
group under function composition, and indeed it is: the operation is well-de�ned (since the composition
of two automorphisms is an automorphism), the operation is associative (since function composition is
associative), there is an identity element (namely, the identity map), and every element has an inverse
(namely, the inverse function, which is also an automorphism).

• Given a map from K to K, it is not hard to check whether it is an automorphism, but a priori it is not
obvious how to construct automorphisms of K, nor how to compute the automorphism group Aut(K).

◦ As a �rst step we observe that any automorphism of K must �x 0 and 1 (i.e., map 0 and 1 to themselves),
and hence by a trivial induction must �x the prime sub�eld of K.

◦ In particular, this immediately tells us that Aut(Q) and Aut(Fp) are both the trivial group.

◦ To extend this further, it will be useful to generalize our analysis to automorphisms that preserve �eld
extensions:

• De�nition: If K/F is a �eld extension, we de�ne Aut(K/F ) to be the set of automorphisms of K �xing F
(i.e., the collection of σ ∈ Aut(K) such that σ(a) = a for every a ∈ F ).

◦ We can see that Aut(K/F ) is a subgroup of Aut(K): the identity map on K is clearly an element of
Aut(K/F ), and if σ, τ ∈ Aut(K/F ) then στ−1 is also in Aut(K/F ) since στ−1(a) = σ(τ−1(a)) = σ(a) = a
for all a ∈ F .
◦ By our observations above, Aut(K) = Aut(K/K ′) where K ′ is the prime sub�eld of K; thus, we may
freely pass between speaking about automorphisms of K and automorphisms of K/K ′.

• Notice that if σ ∈ Aut(K/F ), then σ(v + w) = σ(v) + σ(w) and σ(αv) = ασ(v) for any v, w ∈ K and α ∈ F :
this means that σ is an F -vector space isomorphism from K to itself.

◦ In particular, we may completely specify σ by its values on a basis for K/F .

◦ In fact, since σ also respects multiplication in K, it is enough to specify the value of σ on a set of
generators for K/F as a �eld extension.

◦ Of course, we cannot specify these values arbitrarily (for example, we cannot map any of the nonzero
generators to 0). Even avoiding such trivial di�culties, other problems can arise.

◦ For example, if K = Q(
√

2,
√

3)/Q, the choices σ(
√

2) =
√

3 and σ(
√

3) =
√

2 do extend to a linear
transformation from K to K (where we also set σ(1) = 1 and σ(

√
6) = σ(

√
2)σ(
√

3) =
√

6, and extend to
all of K by Q-linearity). However, the resulting map is not a �eld automorphism, because σ(

√
2 ·
√

2) = 2
but σ(

√
2) · σ(

√
2) = 3.

◦ We would like determine exactly what choices will extend to an actual automorphism of the extension.
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◦ As suggested by the example above, because σ ∈ Aut(K/F ) preserves addition and multiplication along
with all elements of F , it will also preserve any algebraic relations between the generators that can be
written using coe�cients of F .

◦ In many cases, we can use this observation to compute all possible automorphisms:

• Example: Find all automorphisms of Q(
√

2)/Q.

◦ By the discussion above, an automorphism σ of Q(
√

2)/Q is completely determined by the value σ(
√

2).
Explicitly, we would have σ(a+ b

√
2) = σ(a) + σ(b)σ(

√
2) = a+ b · σ(

√
2), for a, b ∈ Q.

◦ Furthermore, since (
√

2)2 − 2 = 0, applying σ to both sides yields 0 = σ(0) = σ[(
√

2)2 − 2] = σ(
√

2
2
)−

σ(2) = σ(
√

2)2 − 2.

◦ This means that σ(
√

2)2 = 2, and thus there are only two possibilities for σ(
√

2), namely σ(
√

2) =
√

2
and σ(

√
2) = −

√
2.

◦ But each of these choices does in fact extend to an automorphism of Q(
√

2)/Q: the choice σ(
√

2) =
√

2
is satis�ed by the identity automorphism, while the choice σ(

√
2) = −

√
2 is satis�ed by the conjugation

automorphism.

◦ We conclude that |Aut(K/Q)| = 2, and so the automorphism group must be cyclic and isomorphic to
Z/2Z.
◦ Indeed, if τ represents the conjugation automorphism, we can see that τ2 is the identity (as dictated by
the structure of the group).

◦ Remark: If D is a squarefree integer, the same arguments with D in place of 2 show that for K = Q(
√
D),

the automorphism group Aut(K/Q) also has order 2 and is isomorphic to Z/2Z.

• Example: Find all automorphisms of Q( 3
√

2)/Q.

◦ As above, an automorphism σ of Q( 3
√

2)/Q is completely determined by the value σ( 3
√

2).

◦ Since ( 3
√

2)3 − 2 = 0, applying σ to both sides yields σ( 3
√

2)3 − 2 = 0, and so σ( 3
√

2) is a root of the
polynomial x3 − 2.

◦ However, the other two roots of this polynomial (inside C) are 3
√

2 · ζ3 and 3
√

2 · ζ23 for ζ3 a primitive 3rd
root of unity. These elements are not in Q( 3

√
2), since they are not real.

◦ Therefore, the only possibility is to have σ( 3
√

2) = 3
√

2, and then σ is simply the identity map. Thus,
Aut(Q( 3

√
2)/Q) is the trivial group.

◦ Remark: If K is either of Q( 3
√

2 · ζ3) or Q( 3
√

2 · ζ23 ), then Aut(K/Q) is also the trivial group. This follows
by the same argument, since the polynomial x3 − 2 only has one root in K.

4.1.2 Computing Automorphisms

• By formalizing the arguments given in the examples above, we can compute the automorphisms of any simple
algebraic extension. We will �rst establish a lemma that will be useful for constructing isomorphisms:

• Lemma (Lifting Isomorphisms): Let ϕ : E → F be an isomorphism of �elds. If α is algebraic over E with
minimal polynomial p(x) = a0 + a1x+ · · ·+ anx

n ∈ E[x], and β is algebraic over F with minimal polynomial
q(x) = ϕ(a0)+ϕ(a1)x+ · · ·+ϕ(an)xn ∈ F [x], then there is a unique isomorphism ϕ̃ : E(α)→ F (β) extending
ϕ (i.e., such that ϕ̃|E = ϕ) and such that ϕ(α) = β.

◦ Note that we essentially proved this result in the course of establishing the uniqueness of splitting �elds.

◦ Proof: Note that [E(α) : E] = n with an explicit basis {1, α, α2, . . . , αn}, and similarly [F (β) : F ] = n
with basis {1, β, β2, . . . , βn}.
◦ Then any isomorphism ϕ̃ extending ϕ with ϕ̃(α) must have ϕ̃(c0 + c1α + · · · + cn−1α

n−1) = ϕ(c0) +
ϕ(c1)β + · · ·+ ϕ(cn−1)βn−1 for ci ∈ E, so there is at most one possible map ϕ̃.

◦ On the other hand, one may verify that this map ϕ̃ (which is well de�ned) does indeed respect addition
and multiplication, and has an inverse map ϕ̃−1(d0 + d1β + · · · + dn−1β

n−1) = ϕ−1(d0) + ϕ−1(d1)α +
· · ·+ ϕ−1(dn−1)αn−1, so ϕ̃ is in fact an isomorphism.
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• Theorem (Automorphisms of Simple Algebraic Extensions): Suppose α is algebraic over F with minimal
polynomial m(x), and K = F (α): then for any σ ∈ Aut(K/F ), σ(α) is also a root of m(x) in K. Conversely,
if β is any other root of m(x) in K, then there exists a unique automorphism τ ∈ Aut(K/F ) with τ(α) = β.
Hence |Aut(K/F )| is equal to the number of roots of m(x) in K, and is (in particular) �nite and at most
[K : F ].

◦ Proof: Suppose that m(x) = anx
n + · · ·+ a1x+ a0 with the ai ∈ F . Note that σ(ai) = ai since σ �xes

F .

◦ Thenm(σ(α)) = anσ(α)n+· · ·+a1σ(α)+a0 = σ(anα
n)+· · ·+σ(a1α)+σ(a0) = σ(anα

n+· · ·+a1α+a0) =
σ(0) = 0 and so σ(α) is also a root of m(x).

◦ For the second statement, suppose β is another root of m(x) in K. If we apply the isomorphism lifting
lemma with E = F (so that the isomorphism ϕ is the identity map), then we see that there is a
unique isomorphism τ : F (α) → F (β) such that τ(α) = β. Since F (α) = K = F (β), the map τ is an
automorphism of K.

◦ We then have a bijection between roots of m(x) in K and Aut(K/F ), and since m(x) has degree [K : F ],
we conclude that |Aut(K/F )| ≤ [K : F ].

• Using this characterization, we can compute all the automorphisms of a simple algebraic extension, and then
(at least in principle) we may determine the structure of the automorphism group:

• Example: Identify the elements and group structure of Aut(Q(
√

2 +
√

3)/Q).

◦ As we have previously computed,
√

2 +
√

3 is a root of the polynomial m(x) = x4 − 10x2 + 1, and since
K = Q(

√
2 +
√

3) = Q(
√

2,
√

3) has degree 4 over Q, we see m(x) is irreducible.

◦ By applying the quadratic formula twice, we can see that the four roots of m(x) are ±
√

2 ±
√

3, all of
which are in K. Hence there are 4 automorphisms of K/Q, obtained by mapping

√
2 +
√

3 to any one of
the other four roots of m(x).

◦ We could, if desired, compute the actions of these four automorphisms just from their behavior on√
2 +
√

3.

◦ Clearly, the map sending
√

2 +
√

3 to itself will extend to the identity automorphism.

◦ Also, the map σ with σ(
√

2 +
√

3) = −
√

2 +
√

3 has σ(5 + 2
√

6) = σ((
√

2 +
√

3)2) = σ(
√

2 +
√

3)2 =
(
√

2−
√

3)2 = 5−2
√

6, and σ(11
√

2+9
√

3) = σ((
√

2+
√

3)3) = σ(
√

2+
√

3)3 = (
√

2−
√

3)3 = 11
√

2−9
√

3.

◦ So since σ �xes Q, by taking appropriate linear combinations we can conclude that σ(
√

2) =
√

2, σ(
√

3) =
−
√

3, and σ(
√

6) = −
√

6. Thus σ is the map with σ(a+ b
√

2 + c
√

3 + d
√

6) = a− b
√

2 + c
√

3− d
√

6 for
a, b, c, d ∈ Q.
◦ In a similar way, we can see that the map τ with τ(

√
2+
√

3) =
√

2−
√

3 has τ(
√

2) =
√

2, τ(
√

3) = −
√

3,
and thus τ is the map with τ(a+ b

√
2 + c

√
3 + d

√
6) = a+ b

√
2− c

√
3− d

√
6 for a, b, c, d ∈ Q.

◦ We can then immediately compute that στ is the map with στ(a+b
√

2+c
√

3+d
√

6) = a−b
√

2−c
√

3+d
√

6
for a, b, c, d ∈ Q.
◦ Notice then that σ2, τ2, and (στ)2 are each the identity map, and also that τσ = στ .

◦ Then we immediately see that Aut(Q(
√

2,
√

3)/Q) = {e, σ, τ, στ} is isomorphic to the Klein 4-group.

• The procedure in the example above only applies to simple extensions, and in any case it seems likely that it
might be easier to analyze the automorphisms of Q(

√
2 +
√

3) = Q(
√

2,
√

3) using the simpler generators
√

2
and
√

3.

◦ We know that any automorphism of Q(
√

2,
√

3) must map
√

2 to ±
√

2 and must also map
√

3 to ±
√

3,
and since

√
2 and

√
3 generate the �eld, these choices completely determine the automorphism.

◦ But since these two choices yield at most 4 possible automorphisms, and there actually are 4 automor-
phisms from our calculations above, all 4 possible choices must in fact extend to automorphisms.

◦ We can see that the automorphism mapping
√

2 7→
√

2 and
√

3 7→
√

3 is the identity map.

◦ If we let σ be the automorphism mapping
√

2 7→ −
√

2 and
√

3 7→
√

3, then we can see that σ(
√

6) =
σ(
√

2)σ(
√

3) = −
√

6, and so explicitly σ is the map we found above with σ(a + b
√

2 + c
√

3 + d
√

6) =
a− b

√
2 + c

√
3− d

√
6 for a, b, c, d ∈ Q.
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◦ Likewise, if we let τ be the automorphism mapping
√

2 7→
√

2 and
√

3 7→ −
√

3, then we can see that
τ(
√

6) = τ(
√

2)τ(
√

3) = −
√

6, and so τ is the map we identi�ed above with τ(a+ b
√

2 + c
√

3 + d
√

6) =
a + b

√
2 − c

√
3 − d

√
6 for a, b, c, d ∈ Q. We can then immediately determine the group structure by

composing σ and τ as we did above.

• Notice that our computation of the automorphisms in the second version of the example relied on the knowledge
that there were actually 4 automorphisms of the extension Q(

√
2,
√

3)/Q.

◦ We could, alternatively, have constructed these automorphisms explicitly via the isomorphism lifting
lemma on simple extensions.

◦ To construct σ, �rst observe that x2 − 2 is the minimal polynomial of both
√

2 and −
√

2 over Q(
√

3),
since [Q(

√
2,
√

3) : Q(
√

3)] = 2.

◦ Then by the isomorphism lifting lemma applied to the identity map on Q(
√

3), there is an automorphism
σ of Q(

√
2,
√

3) with Q(−
√

2,
√

3) that �xes Q(
√

3) and maps
√

2 to −
√

2. This automorphism then has
σ(
√

2) = −
√

2 and σ(
√

3) =
√

3, so it extends to the automorphism we identi�ed above.

◦ In a similar way, we can construct τ by observing that x2− 3 is the minimal polynomial of both
√

3 and
−
√

3 over Q(
√

2), and so there is an automorphism τ of Q(−
√

2,
√

3) that �xes Q(
√

2) and maps
√

3 to
−
√

3.

◦ We can also construct στ by lifting the conjugation automorphism on Q(
√

3): explicitly, x2 − 2 is the
minimal polynomial of both

√
2 over Q(

√
3) and of −

√
2 over Q(−

√
3). Then there is an automorphism

of Q(
√

2,
√

3) that extends the conjugation automorphism on Q(
√

3) (sending
√

3 to −
√

3) to Q(
√

2,
√

3)
that maps

√
2 to −

√
2.

• We can use a similar procedure to the one we gave for Q(
√

2,
√

3) to construct automorphisms of other
composite extensions by lifting isomorphisms of appropriate sub�elds.

◦ For example, if K = Q( 3
√

2, ζ3), then there is an isomorphism of E = Q( 3
√

2) with E′ = Q( 3
√

2 · ζ3) that
maps 3

√
2 to 3

√
2 · ζ3.

◦ Since the minimal polynomial of ζ3 over both E and E′ has degree 2 (since ζ3 is a root of the quadratic
polynomial x2 − x + 1 and ζ3 is not in E or E′), we can then lift this isomorphism to obtain an
automorphism σ of K with σ(ζ3) = ζ3 and σ( 3

√
2) = 3

√
2 · ζ3.

◦ We can write out the full action of σ on K using the Q-basis {1, 3
√

2, 3
√

4, ζ3,
3
√

2ζ3,
3
√

4ζ3}: since σ(1) = 1,
σ( 3
√

2) = 3
√

2ζ3, σ( 3
√

4) = 3
√

4ζ23 , σ(ζ3) = ζ3, σ( 3
√

2ζ3) = 3
√

2ζ23 , and σ( 3
√

4ζ3) = 3
√

4ζ33 = 3
√

4.

◦ Then σ(c1 + c2
3
√

2 + c3
3
√

4 + c4ζ3 + c5
3
√

2ζ3 + c6
3
√

4ζ3) = c1 + c2
3
√

2ζ3 + c3
3
√

4ζ23 + c4ζ3 + c5
3
√

2ζ23 + c6
3
√

4
for arbitrary constants ci ∈ Q.
◦ Observe (in particular) how unpleasant it would be to verify that σ is actually an automorphism of K
using only this latter description!

• It is not immediately obvious, however, that every automorphism of an arbitrary �nite-degree extension
actually arises in this fashion.

◦ Suppose thatK/F is a �nite-degree extension: as we have shown,K = F (α1, . . . , αn) for some α1, . . . , αn ∈
K that are algebraic over F .

◦ Since each automorphism σ of K/F is determined by its values on α1, . . . , αn, and σ(αi) must be a root
of the minimal polynomial of αi, we see that there are only �nitely many automorphisms of K/F , and
so Aut(K/F ) is a �nite group.

◦ If β1, β2, . . . , βn are other roots of the minimal polynomials of the αi in K, we might attempt to use the
isomorphism lifting lemma to construct an automorphism of K that maps αi to βi for each i.

◦ But this is not always possible: for example, consider the �eld K = Q( 4
√

2,
√

2). If we take α1 = 4
√

2 and
β1 = − 4

√
2, with α2 =

√
2 and β2 = −

√
2, then each βi is a root of the corresponding minimal polynomial

of αi over Q.
◦ However, there is no automorphism τ of K that maps α1 to β1 and α2 to β2, because we would have
τ(
√

2) = τ(α2) = β2 = −
√

2, but also τ(
√

2) = τ(α2
1) = β2

1 =
√

2.

5



◦ The issue here is that there is an algebraic relation between the generators of this �eld (namely,
√

2 =
( 4
√

2)2) that must also be respected by the automorphism, so we cannot make our choices arbitrarily.

◦ There is also another related di�culty in this example, namely, that some isomorphisms of sub�elds
cannot be lifted to the full �eld.

◦ For example, the conjugation map σ : Q(
√

2) → Q(
√

2) sending
√

2 to −
√

2 cannot be lifted to an
automorphism of K, because there is no possible value of σ̃( 4

√
2): its square would necessarily be −

√
2,

but there is no such element in K.

◦ On the other hand, there is such an element (namely, 4
√

2 · i) in the splitting �eld Q( 4
√

2, i). This suggests
that working with splitting �elds may solve this particular problem, and in fact, we have already shown
that for splitting �elds, we can always lift isomorphisms on appropriate sub�elds to the full splitting
�eld.

4.1.3 Automorphisms of Splitting Fields, Galois Groups

• We now consider automorphisms of splitting �elds. We will �rst establish a useful fact about roots of poly-
nomials in splitting �elds:

• Theorem (Normality of Splitting Fields): If K is a splitting �eld over F and p(x) ∈ F [x] is irreducible, if p(x)
has a root in K then p(x) splits completely in K (i.e., all roots of p(x) are in K).

◦ Proof: Suppose that K is the splitting �eld of the polynomial q(x) ∈ F [x] having roots r1, . . . , rn: then
K = F (r1, . . . , rn).

◦ Suppose also that p(x) has a root α ∈ K, and let β be any other root of p(x) (in some splitting �eld).

◦ By the isomorphism lifting lemma, there is an isomorphism σ : F (α)→ F (β) �xing F and with σ(α) = β.

◦ Then K(β) = F (r1, . . . , rn, β) = F (β)(r1, . . . , rn), so K(β) is a splitting �eld for q(x) over F (β). Also,
since α ∈ K, we see that K is a splitting �eld for q(x) over F (α).

◦ Then by the isomorphism lifting lemma for splitting �elds1, the isomorphism σ : F (α) → F (β) extends
to an isomorphism of the respective splitting �elds K and K(β) �xing F .

◦ In particular we see that [K : F ] = [K(β) : F ], but since both of these extensions are �nite-degree, we
conclude K(β) = K, and thus β ∈ K. Since β was an arbitrary root of p, all roots of p are in K.

• The property of splitting �elds described above arises often enough that we will give it a name:

• De�nition: The extension K/F is normal if for any irreducible p(x) ∈ F [x], if p(x) has a root in K then p(x)
splits completely in K.

• Now we can compute the size of Aut(K/F ) when K is a splitting �eld over F :

• Theorem (Automorphisms of Splitting Fields): If K is a splitting �eld over F , then |Aut(K/F )| ≤ [K : F ]
with equality if and only if K/F is separable (i.e., when K is the splitting �eld of a separable polynomial over
F ).

◦ Proof: We will show a slightly stronger result via result by induction on n = [K : F ].

◦ Suppose that ϕ : E → F is a given �eld isomorphism, and K is the splitting �eld of the polynomial
qE(x) over E. If qF (x) denotes the polynomial obtained by applying ϕ to the coe�cients of qE(x), let L
be the splitting �eld of qF (x) over F .

◦ We have previously shown (in the course of showing that splitting �elds are unique) that K is isomorphic
to L via a map that extends ϕ. We will show that the number of such isomorphisms σ : K → L is at
most [K : F ], with equality if and only if K/F is separable. The desired result then follows upon setting
E = F and ϕ to be the identity map.

◦ The base case n = 1 is trivial, since then K = E, L = F , and so the only possible map σ : K → L
extending ϕ is ϕ itself.

1Recall that if ϕ : E → F is an isomorphism of �elds with p(x) = a0 + a1x + · · · + anxn ∈ E[x], and we set q(x) = ϕ(a0) +
ϕ(a1)x+ · · ·+ϕ(an)xn ∈ F [x], then if K/E is a splitting �eld for p and L/F is a splitting �eld for q, the isomorphism ϕ extends to an
isomorphism τ : K → L (i.e., with τ |E = ϕ).
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◦ For the inductive step, suppose n ≥ 2 and let pE(x) be any irreducible factor of qE(x) of degree greater
than 1 having a root α, which is in K by hypothesis. Set pF (x) to be the polynomial obtained by
applying ϕto the coe�cients of pE(x).

◦ If σ is any isomorphism from K to L, then σ(α) is some root βi of pF (x), which is in L. By the
isomorphism lifting lemma, the number of such isomorphisms τi : E(α)→ F (βi) is equal to the number
of roots βi of pF (x), which is at most [F (β) : F ] = deg(pF ) = deg(pE) = [E(α) : E], with equality
precisely when pE(x) is separable.

◦ Now we apply the inductive hypothesis to each of the possible maps τi : E(α) → F (βi), since K is a
splitting �eld (of qE) over E(α) and L is a splitting �eld (of qF ) over F (βi), to see that the number
of isomorphisms σ : K → L extending τi is at most [K : E(α)] with equality precisely when qE(x) is
separable.

◦ Summing over all of the maps τi, we see that the total number of isomorphisms σ : K → L extending
ϕ : E → F is at most [E(α) : E] · [K : E(α)] = [K : E], with equality if and only if qE(x) is separable
(since this implies pE(x) is also separable).

• We can see that splitting �elds of separable polynomials have the property that the number of automorphisms
is equal to the extension degree. Such �elds play a pivotal role in studying �nite-degree extensions:

• De�nition: If K/F is a �nite-degree extension, we say that K is a Galois extension of F (or that K is
Galois over F ) if |Aut(K/F )| = [K : F ]. If K/F is a Galois extension, we will refer to the automorphism
group Aut(K/F ) as the Galois group of K/F , and denote it as Gal(K/F ).

◦ Some authors refer to the automorphism group of any extension as a Galois group. We only refer to
Galois groups for extensions that have the �maximal possible� number of automorphisms as a way of
emphasizing the important properties of these extensions.

◦ Our result above shows that if K is a splitting �eld of a separable polynomial over F , then K/F is Galois.
We will later show that the converse of this statement is also true, namely that |Aut(K/F )| ≤ [K : F ] for
all �nite-degree extensions, and that equality holds if and only if K/F is a splitting �eld of a separable
polynomial.

◦ The requirement that the polynomial be separable is necessary: for example, suppose F = F2(t) and K is
the splitting �eld of the irreducible polynomial p(x) = x2− t. Then K = F (t1/2), and p(x) = (x− t1/2)2

in K: then any automorphism σ of K/F is determined by the value of σ(t1/2). But since σ(t1/2) must
map to a root of p(x), there is only one choice, namely σ(t1/2) = t1/2. Hence Aut(K/F ) is the trivial
group, even though [K : F ] = 2.

• In many cases, we can explicitly compute Galois groups of splitting �elds by analyzing the behavior of
generators of the extension:

• Example: Find the Galois group of the splitting �eld of p(x) = x3 − 2 over Q.

◦ We have seen that the splitting �eld of x3 − 2 over Q is K = Q( 3
√

2, ζ3).

◦ To compute the elements of this group we can try to identify the automorphisms explicitly based on
their actions on the generators 3

√
2 and ζ3.

◦ Since the minimal polynomial of 3
√

2 over Q is x3 − 2, any automorphism of K/Q must send 3
√

2 to one
of the three roots 3

√
2, 3
√

2ζ3, and
3
√

2ζ23 .

◦ Likewise, since the minimal polynomial of ζ3 over Q is x2− x+ 1, any automorphism of K/Q must send
ζ3 to one of the two roots ζ3, ζ

2
3 .

◦ Thus, there are at most 6 possible automorphisms of K/Q. But because [K : Q] = 6 and K is the
splitting �eld of a separable polynomial, we know Gal(K/Q) is a group of order 6, and therefore all 6 of
the possible choices must actually extend to automorphisms.

◦ For example, one automorphism is the map σ with σ( 3
√

2, ζ3) = ( 3
√

2ζ3, ζ3). By choosing a basis for K/Q
we can describe this map completely explicitly as σ(c1 + c2

3
√

2 + c3
3
√

4 + c4ζ3 + c5
3
√

2ζ3 + c6
3
√

4ζ3) =
c1 + c2

3
√

2ζ3 + c3
3
√

4ζ23 + c4ζ3 + c5
3
√

2ζ23 + c6
3
√

4.

◦ Another automorphism is the map τ with τ( 3
√

2, ζ3) = ( 3
√

2, ζ23 ).

7



◦ We can then see that σ2 is the map with σ2( 3
√

2, ζ3) = ( 3
√

2ζ23 , ζ3), and that σ3 is the identity.

◦ Likewise, τ2 is the identity, while στ is the map with στ( 3
√

2, ζ3) = σ( 3
√

2, ζ23 ) = ( 3
√

2ζ3, ζ
2
3 ), and τσ is

the map with τσ( 3
√

2, ζ3) = τ( 3
√

2ζ3, ζ3) = ( 3
√

2ζ23 , ζ
2
3 ).

◦ We can see in particular that στ 6= τσ in this case, so by our classi�cation of groups of order 6, we see
that the Galois group must be isomorphic to D2·3. Indeed, one can check that τσ2 = στ , meaning that
σ plays the role of the element r ∈ D2·3 while τ plays the role of s.

• In the example above, we could (more easily) have identi�ed that G ∼= S3 by observing that G permutes the
roots of the polynomial x3 − 2, which generate K/Q.

◦ Since any automorphism is uniquely determined by its action on generators, and only the identity map
�xes all of the generators, we obtain an injective homomorphism from G into S3. But since |G| = 6 as
we noted above, this map is necessarily an isomorphism, and we can identify the elements of G explicitly
by the corresponding permutation on the roots of x3 − 2.

◦ In fact, this will work in general: if K/F is the splitting �eld of the polynomial p(x) with roots
r1, r2, . . . , rn, then any element of the Galois group will act as a permutation on these roots, and con-
versely, any element of Gal(K/F ) is characterized by the associated permutation inside Sn (if we �x a
labeling of the roots).

◦ In the example above, if we label the roots { 3
√

2, 3
√

2ζ3,
3
√

2ζ23} as {1, 2, 3}, then σ corresponds to the
permutation (1 2 3) while τ corresponds to the permutation (2 3).

◦ In general, the Galois group will not be all of Sn: for example, as we saw earlier, the Galois group of the
�eld K = Q(

√
2,
√

3), which is the splitting �eld for p(x) = (x2 − 2)(x2 − 3), only has 4 elements.

• Example: Find the Galois group of the splitting �eld of p(x) = x4 − 3 over Q.

◦ The roots of this polynomial are 31/4 · ik for 0 ≤ k ≤ 3, and so the splitting �eld is K = Q(31/4, i), which
has degree 8 over Q by similar arguments to those we have given.

◦ Each automorphism of K/Q must map 31/4 to one of the 4 roots of x4 − 3, and must map i to one of
the 2 roots of x2 + 1.

◦ Thus, since we know there are 8 automorphisms of K/Q, all 8 choices must actually yield automorphisms.

◦ One such automorphism is the map σ with σ(31/4, i) = (31/4i, i), and another is the complex conjugation
map τ with τ(31/4, i) = (31/4,−i).
◦ We can then see that σ has order 4, τ has order 2, and στ = τσ3: hence the Galois group is isomorphic
to the dihedral group D2·4 of order 7, with σ corresponding to r and τ corresponding to s.

◦ If we label the four roots{31/4, 31/4i,−31/4,−31/4i} of p(x) as {1, 2, 3, 4}, then σ corresponds to the
permutation (1 2 3 4) and τ corresponds to the permutation (2 4).

• We can also analyze prime cyclotomic extensions and �nite �eld extensions (we will return to these examples
later in more depth):

• Example: If p is a prime, �nd the Galois group of Q(ζp)/Q.

◦ As we have discussed, K = Q(ζp) has degree p − 1 over Q, and is the splitting �eld of the cyclotomic

polynomial Φp(x) =
xp − 1

x− 1
= xp−1+xp−2+ · · ·+x+1 whose roots are ζp, ζ

2
p , ... , ζ

p−1
p . Thus, Gal(K/Q)

has order p− 1.

◦ Furthermore, any element σ ∈ Gal(K/Q) is determined by the value σ(ζp), which must be ζkp for some
integer k with 1 ≤ k ≤ p − 1. Since there are at most p − 1 such maps, all of them must actually give
rise to automorphisms.

◦ Hence Gal(K/Q) = {σ1, σ2, . . . , σp−1} where σa(ζp) = ζap .

◦ We can then compute σaσb(ζp) = σa(ζbp) = ζabp . Thus we see that σaσb = σab, where we view the
subscript modulo p. Hence the group structure of Gal(K/Q) is the same as the structure of the nonzero
elements of Z/pZ under multiplication.

◦ Explicitly, this says that the map ϕ : (Z/pZ)× → Gal(K/Q) given by ϕ(a) = σa is an isomorphism.
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◦ Since (Z/pZ)× is the multiplicative group of the �eld Fp, which is a cyclic group, we conclude that
Gal(K/Q) is a cyclic group of order p− 1.

• Example: If p is a prime, �nd the Galois group of Fpn/Fp.

◦ We have previously shown that K = Fpn is the splitting �eld of the separable polynomial xp
n − x over

Fp, and so the Galois group has order [Fpn : Fp] = n.

◦ We have also shown that the Frobenius map ϕ : K → K given by ϕ(a) = ap is an automorphism of K.

◦ We can compute ϕ2(a) = ϕ(ap) = ap
2

, ϕ3(a) = ϕ(ϕ2(a)) = ϕ(ap
2

) = ap
3

, and in general ϕk(a) = ap
k

.

◦ In particular, since every element of Fpn is a root of xp
n − x, we see that ϕn(a) = ap

n

= a for every a,
and so ϕn is the identity.

◦ On the other hand, ϕk for k < n cannot be the identity, since ϕk(a) = a is the same as the polynomial

equation ap
k − a = 0, which can have at most pk < pn roots in K.

◦ Hence ϕ has order n in Gal(K/Fp), but since |Gal(K/Fp)| = n, this means that Gal(K/Fp) is cyclic and
generated by ϕ.

4.1.4 Fixed Fields

• If K/F is a �eld extension, the automorphism group Aut(K/F ) acts on elements on K.

◦ If σ ∈ Aut(K/F ) is a particular automorphism, consider the set of all elements of K stabilized by σ: it
is a subset of K containing F (since all elements of F are �xed by σ) and is closed under subtraction
and division, since if x, y are both �xed by σ then so are x− y and x/y (the latter when y 6= 0).

◦ Thus, the elements stabilized by σ is a sub�eld of K containing F , which we will call the �xed �eld of
σ. In general, if E is a �eld with F ⊆ E ⊆ K, we call E an intermediate �eld of K/F .

◦ Example: For K = Q(
√

2,
√

3)/Q, if σ is the automorphism with σ(a+ b
√

2 + c
√

3 + d
√

6) = a− b
√

2 +
c
√

3− d
√

6 for a, b, c, d ∈ Q, then the elements of K �xed by σ are those of the form a+ c
√

3. Thus the
�xed �eld of σ is the sub�eld Q(

√
3).

◦ Example: For K = Q(
√

2,
√

3)/Q, if στ is the automorphism with στ(a+ b
√

2+ c
√

3+d
√

6) = a− b
√

2−
c
√

3 + d
√

6 for a, b, c, d ∈ Q, then the elements of K �xed by σ are those of the form a+ d
√

6. Thus the
�xed �eld of στ is the sub�eld Q(

√
6).

◦ Example: For K = Q(21/4)/Q, if σ is the automorphism with σ(21/4) = −21/4, then σ(a+ b21/4 + c
√

2 +
d23/4) = a− b21/4 + c

√
2− d23/4, then the elements of K �xed by σ are those of the form a+ c

√
2. Thus

the �xed �eld of σ is the sub�eld Q(
√

2).

• More generally, we can consider sub�elds �xed by a collection of automorphisms:

• De�nition: If K/F is a �eld extension and S is a set of automorphisms of K/F , then the �xed �eld of S is
the sub�eld of K �xed by all automorphisms in S.

◦ Note that the �xed �eld of S is the intersection of the �xed �elds of all automorphisms in S, each of
which is a sub�eld of K containing F , and so the �xed �eld of S is indeed a �eld (justifying the name).

◦ Example: For K = Q(
√

2,
√

3)/Q, if σ is the automorphism with σ(
√

2,
√

3) = (−
√

2,
√

3) and τ is the
automorphism with τ(

√
2,
√

3) = (
√

2,−
√

3), then the only elements of K �xed by both σ and τ are
rational numbers, so the corresponding �xed �eld is Q.
◦ Notice that if σ and τ both �x the sub�eld E, then so do στ and σ−1. Thus, since the identity also �xes
E, we see that the collection of automorphisms �xing E is a subgroup of Aut(K/F ).

◦ It is then easy to see that the �xed �eld of S is the same as the �xed �eld of 〈S〉, the subgroup of Aut(K/F )
generated by S. We may therefore restrict our focus to �xed �elds of subgroups of Aut(K/F ).

◦ Example: For K = Q(
√

2,
√

3)/Q, if σ is the automorphism with σ(
√

2,
√

3) = (−
√

2,
√

3) and τ is
the automorphism with τ(

√
2,
√

3) = (
√

2,−
√

3), then by our calculations above, the �xed �elds of the
possible subgroups {e}, 〈σ〉, 〈τ〉, 〈στ〉, and 〈σ, τ〉 of Aut(K/Q) are Q(

√
2,
√

3), Q(
√

3), Q(
√

2), Q(
√

6),
and Q respectively.

9



◦ Example: For K = Q(21/4)/Q, if σ is the automorphism with σ(21/4) = −21/4 then the �xed �elds of
the possible subgroups {e} and 〈σ〉 of Aut(K/Q) are Q(21/4) and Q(

√
2). Notice in particular that Q is

not the �xed �eld of any subgroup of K, since the only nontrivial automorphism σ in Aut(K/Q) �xes
all of Q(

√
2).

• In more complicated examples, computing �xed �elds ultimately reduces to solving a system of linear equa-
tions.

◦ Explicitly, each automorphism of K/F acts as a linear transformation on K as an F -vector space.

◦ If we �x a basis for K/F , determining the elements �xed by a linear transformation (or collection of linear
transformations) is the same as solving the corresponding system of linear equations in the coe�cients
of the basis elements.

◦ Thus, computing the �xed �eld of a subgroup is equivalent to solving a (possibly large) system of linear
equations over F .

◦ By our remarks above, the �xed �eld of a subgroup is the same as the �xed �eld for a set of its generators,
so when actually computing �xed �elds explicitly, we only need to solve the equations associated with
the generators of the desired subgroup.

• Example: For K = Q(21/3, ζ3)/Q, �nd the �xed �eld of the subgroup 〈ϕ〉, where ϕ is the automorphism with
ϕ(21/3, ζ3) = (21/3ζ3, ζ

2
3 ),

◦ If we use the explicit basis {1, 21/3, 41/3, ζ3, 21/3ζ3, 41/3ζ3} for K, then we can compute ϕ(a + b21/3 +
c41/3 + dζ3 + e21/3ζ3 + f41/3ζ3) = a+ b21/3ζ3 + c41/3ζ23 + dζ23 + e21/3 + f41/3ζ3 for a, b, c, d, e, f ∈ Q.

◦ Since ζ23 = −1− ζ3, rewriting in terms of the original basis yields ϕ(a+ b21/3 + c41/3 + dζ3 + e21/3ζ3 +
f41/3ζ3) = (a− d) + e21/3 − c41/3 − dζ3 + b21/3ζ3 + (f − c)41/3ζ3.

◦ Hence the elements of the �xed �eld are the elements with a = a− d, b = e, c = −c, d = −d, e = b, and
f = f − c.

◦ These conditions reduce to d = 0, c = 0, and b = e, so the �xed �eld is the elements of the form
a+ b(21/3 + 21/3ζ3) + f(41/3ζ3) = a− b21/3ζ23 + f41/3ζ3, which is the �eld Q(21/3ζ23 ).

• We can also invert this procedure and consider the collection of automorphisms in Aut(K/F ) that �x a
particular intermediate �eld E of K/F , which will simply be2 the group Aut(K/E):

◦ Example: For K = Q(
√

2,
√

3)/Q, if E is the sub�eld Q(
√

3), then there are two automorphisms of K/Q
that �x E, namely the identity map and the automorphism τ with τ(

√
2,
√

3) = (−
√

2,
√

3).

◦ Example: For K = Q(21/3, ζ3)/Q, if E is the sub�eld Q(ζ3), then the subgroup of Aut(K/Q) �xing E is
〈σ〉, where σ is the automorphism with σ(21/3, ζ3) = (21/3ζ3, ζ3). To see this observe that σ does �x E,
hence so does 〈σ〉, and each of the other automorphisms of K map ζ3 to ζ23 hence do not �x E.

◦ Example: For K = Q(21/4)/Q, if E is the sub�eld Q(
√

2), then the subgroup of Aut(K/Q) �xing E is
all of Aut(K/Q). If E = Q, then the subgroup of Aut(K/Q) �xing E is also all of Aut(K/Q).

• We now have two operations that relate subgroups of Aut(K/F ) to intermediate �elds of K/F : to a subgroup
we associate its corresponding �xed �eld, and to an intermediate �eld we associate the subgroup stabilizing
it.

◦ Observe that each of these operations is inclusion-reversing.

◦ Explicitly, if E1 and E2 are two intermediate �elds ofK/F with E1 ⊆ E2, then Aut(K/E2) ⊆ Aut(K/E1),
since any automorphism that �xes E2 automatically �xes the sub�eld E1 as well.

◦ In the other direction, if H1 and H2 are subgroups of Aut(K/F ) with H1 ⊆ H2, then the corresponding
�xed �elds F1 and F2 have F2 ⊆ F1, since any automorphism in H1 (i.e., �xing F1) by assumption is
also in H2 (i.e., �xes F2).

• It is natural to ask how these maps relate to one another (and in particular, whether they are inverses).

2Note that this is also the stabilizer of E under the group action of Aut(K/F ) on subsets of K.
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◦ Example: For Q(
√

2,
√

3), the �xed �elds of the possible subgroups {e}, 〈σ〉, 〈τ〉, 〈στ〉, and 〈σ, τ〉 of
Aut(K/Q) are Q(

√
2,
√

3), Q(
√

3), Q(
√

2), Q(
√

6), and Q respectively. Inversely, the automorphism
groups Aut(K/E) for each of the sub�elds Q(

√
2,
√

3), Q(
√

3), Q(
√

2), Q(
√

6), and Q are {e}, 〈σ〉, 〈τ〉,
〈στ〉, and 〈σ, τ〉 respectively. Thus, the two maps are inverses for Q(

√
2,
√

3), at least for all of the
sub�elds we have listed (we will later show that these are in fact all of the sub�elds of K).

◦ Example: ForK = Q(21/4)/Q, the �xed �elds of the subgroups {e} and 〈σ〉 of Aut(K/Q) are Q(21/4) and
Q(
√

2) respectively. Inversely, the automorphism groups Aut(K/E) for each of the intermediate �elds
Q(21/4), Q(

√
2), and Q are {e}, 〈σ〉, and 〈σ〉 respectively. Here, the two maps are not inverses: although

the �xed �eld map on subgroups is injective, the sub�elds Q(
√

2) and Q both have automorphism group
〈σ〉.
◦ Example: For K = Q(21/3)/Q, the �xed �eld of Aut(K/Q), which is the trivial group, is Q(21/3). The
corresponding automorphism groups for both intermediate �eldsQ(21/3) andQ are the full automorphism
group.

◦ Note that the �eld in the �rst example was a Galois extension (i.e., a splitting �eld of a separable poly-
nomial), while the �elds in the second and third examples were not. In those two examples, Aut(K/Q)
did not have �enough automorphisms� to ensure that the �xed �eld of Aut(K/Q) is actually Q rather
than a larger sub�eld.

• Our goal in the next section is to show that these two maps are in fact inverses when the extension K/F is Ga-
lois, and to elucidate the associated �Galois correspondence� between subgroups of Gal(K/F ) and intermediate
�elds of K/F in that case.

4.2 The Fundamental Theorem of Galois Theory

• As we have described, when K/F is a Galois extension there appears to be a natural inclusion-reversing
correspondence between subgroups of the automorphism group Gal(K/F ) and intermediate �elds E of K/F .

◦ For K = Q(21/3, ζ3)/Q, with the automorphisms σ(21/3, ζ3) = (21/3ζ3, ζ3) and τ(21/3, ζ3) = (21/3, ζ23 )
we have previously described, the �xed �elds of the subgroups {e}, 〈τ〉, 〈τσ〉,

〈
τσ2

〉
, 〈σ〉, and 〈τ, σ〉 are

respectively Q(21/3, ζ3), Q(21/3), Q(21/3ζ3), Q(21/3ζ23 ), Q(ζ3), and Q. Conversely, the automorphism
groups Aut(K/E) �xing those six intermediate �elds are precisely those subgroups of Gal(K/Q) in that
order.

◦ This correspondence is particularly obvious when comparing subgroup and sub�eld diagrams: here are
the corresponding subgroup and sub�eld diagrams for Q(21/3, ζ3)/Q (where we have also labeled the
diagrams with the relative extension degrees and subgroup indices and drawn the subgroup diagram
upside-down):

◦ For another example, if we take K = Q(
√

2,
√

3) with the automorphisms σ(
√

2,
√

3) = (−
√

2,
√

3)
and τ(

√
2,
√

3) = (
√

2,−
√

3), then the �xed �elds of the subgroups {e}, 〈σ〉, 〈τ〉, 〈στ〉, and 〈σ, τ〉 are
Q(
√

2,
√

3), Q(
√

3), Q(
√

2), Q(
√

6), and Q respectively. Conversely, the automorphism groups Aut(K/E)
�xing those �ve intermediate �elds are precisely those subgroups of Gal(K/Q) in that order, yielding the
correspondences of the subgroup and sub�eld diagrams:
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◦ We will also remark that for Q(21/3, ζ3)/Q, there are three sub�elds that are Galois over Q, namely
Q(21/3, ζ3), Q(ζ3), and Q. The corresponding subgroups are {e}, 〈σ〉, and 〈σ, τ〉, and these are precisely
the normal subgroups of Gal(Q(21/3, ζ3)/Q). On the other hand, for Q(

√
2,
√

3)/Q, all of the sub�elds
are Galois over Q, and all of the corresponding subgroups are normal.

• Our goal in this section is to describe some characterizations of Galois extensions, and then show that all of
these properties will hold for arbitrary (�nite-degree) Galois extensions K/F :

• Theorem (Characterizations of Galois Extensions): If K/F is a �eld extension, the following are equivalent:

1. K/F is Galois, which is to say, it has �nite degree and |Aut(K/F )| = [K : F ].

2. K/F is the splitting �eld of some separable polynomial in F [x].

3. F is the �xed �eld of Aut(K/F ).

4. K/F is a normal, �nite, and separable extension. (Equivalently: [K : F ] is �nite, and if p(x) is irreducible
in F [x] but has a root in K, then p(x) splits completely with distinct roots over K.)

• Theorem (Fundamental Theorem of Galois Theory): Let K/F be a Galois extension and let G = Gal(K/F ).
Then there is an inclusion-reversing bijection between intermediate �elds E of K/F and subgroups H of
G, given by associating a subgroup H to its �xed �eld E. Under this correspondence, if the subgroup H
corresponds to the �eld E, then

1. Subgroup indices correspond to extension degrees, so that [K : E] = |H| and [E : F ] = |G : H|.
2. The extension K/E is always Galois, with Galois group H.

3. If F is a �xed algebraic closure of F , then the embeddings of E into F are in bijection with the left
cosets of H in G.

4. The extension E/F is Galois if and only if H is a normal subgroup of G, and in such a case, Gal(E/F )
is isomorphic to G/H.

5. Intersections of subgroups correspond to joins of �elds, and joins of subgroups correspond to intersections
of �elds: H1 ∩H2 corresponds to E1E2, while 〈H1, H2〉 corresponds to E1 ∩ E2.

6. The lattice of subgroups of G is the same as the lattice of intermediate �elds of K/F turned upside-down.

4.2.1 Characterizations of Galois Extensions

• We will �rst establish the characterization of Galois extensions given above. First we show that distinct
automorphisms are linearly independent as functions:

• Proposition (Independence of Automorphisms): If σ1, σ2, . . . , σn are distinct embeddings of a �eld K into a
�eld L, then they are linearly independent as functions on K. In particular, distinct automorphisms of K are
linearly independent as functions.

◦ Proof: We show the result by induction on n. The base case n = 1 is trivial, since any embedding of a
�eld is nonzero (since it is injective).

◦ Now suppose that n > 1 and let σ1, σ2, . . . , σn be distinct automorphisms with a dependence relation
a1σ1 + a2σ2 + · · · + anσn = 0 with the ai ∈ L: explicitly, this means that for any x ∈ K we have
a1σ1(x) + a2σ2(x) + · · ·+ anσn(x) = 0.

12



◦ Since σ1 6= σ2, there exists y ∈ K such that σ1(y) 6= σ2(y), where we note that y 6= 0.

◦ By the dependence relation, we see a1σ1(xy) + a2σ2(xy) + · · · + anσn(xy) = 0, so that a1σ1(x)σ1(y) +
a2σ2(x)σ2(y) + · · ·+ anσn(x)σn(y) = 0.

◦ By taking a linear combination of this equation with the original dependence, we may cancel the leading
coe�cient to obtain the dependence a2σ2(x)[σ1(y)− σ2(y)] + · · ·+ anσn(x)[σ1(y)− σn(y)] = 0 for all x.

◦ By the inductive hypothesis, all of the coe�cients ai[σ1(y) − σi(y)] must then be zero, so in particular
a2[σ1(y)− σ2(y)] = 0. Since σ1(y) 6= σ2(y) this implies a2 = 0.

◦ But then the original dependence relation becomes a1σ1(x) + a3σ3(x) + · · · + anσn(x) = 0, so again by
the inductive hypothesis, all of the remaining ai are zero.

◦ Thus, σ1, σ2, . . . , σn are linearly independent as functions on K, as claimed.

• We can use the independence of automorphisms to compute the degree of the �eld �xed by a subgroup of
Gal(K/F ):

• Theorem (Degree of Fixed Fields): Suppose K/F is a �nite-degree �eld extension and H is a subgroup of
Aut(K/F ). If E is the �xed �eld of H, then [K : E] = |H|.

◦ Proof: Suppose H = {σ1, σ2, . . . , σh}, and also that [K : E] = d. Let v1, v2, . . . , vd be a basis for K/E.

◦ First we will show that if d < h, then the automorphisms σ1, . . . , σh are linearly independent (which will
contradict the proposition above).

◦ So suppose n < h. Then by standard properties of systems of linear equations, the homogeneous system
of n equations in h variables

σ1(v1)x1 + σ2(v1)x2 + · · ·+ σh(v1)xh = 0

σ1(v2)x1 + σ2(v2)x2 + · · ·+ σh(v2)xh = 0

...
...

...

σ1(vd)x1 + σ2(vd)x2 + · · ·+ σh(vd)xh = 0

over K has a nonzero solution (x1, x2, . . . , xh) = (c1, c2, . . . , ch) for ci ∈ K.

◦ Then for any a1, a2, . . . , ad ∈ F , adding ai times the ith equation above yields the relation

[a1σ1(v1) + a2σ1(v2) + · · ·+ adσ1(vd)]c1 + · · ·+ [a1σh(v1) + a2σh(v2) + · · ·+ adσh(vd)]ch = 0

and since the σi �x each of the constants ai, if we write w = a1v1 + a2v2 + · · ·+ advd, this says that

σ1(w)c1 + σ2(w)c2 + · · ·+ σh(w)ch = 0.

◦ But since the ai are arbitrary elements of F and the vi are a basis for K/E, we see that the relation
above holds for every w ∈ K, meaning that it is a linear dependence of the σj .

◦ But this is impossible by the previous proposition, so we must have h ≤ d. Now we will show h = d, so
suppose instead that h < d, and let v1, v2, . . . , vh+1 be F -linearly independent elements of K.

◦ Now consider the solutions (x1, x2, . . . , xh+1) = (α1, . . . , αh+1) to the following homogeneous system:

σ1(v1)x1 + σ1(v2)x2 + · · ·+ σ1(vh+1)xh+1 = 0

σ2(v1)x1 + σ2(v2)x2 + · · ·+ σ2(vh+1)xh+1 = 0

...
...

...

σh(v1)xh + σh(v2)x2 + · · ·+ σh(vh+1)xh+1 = 0.

Since there are more variables than equations, there is at least one nonzero solution (α1, . . . , αn+1) in K.

◦ Now we will exploit the group action of the σi to show that the existence of a nonzero solution in K
implies the existence of a nonzero solution with all the αi ∈ E, which will then contradict the linear
independence of the vi: if all the αi are in E then they are �xed by all the σj , so the �rst equation of
the system would give an F -linear dependence of the xi over K, contrary to assumption.
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◦ So suppose (α1, . . . , αh+1) is a nonzero solution to the system. We show by induction on k that there is
a solution to the system with k elements in E.

◦ For the base case k = 1, choose any nonzero αi and rescale the solution so that αi = 1.

◦ For the inductive step, suppose (after relabeling and rescaling if necessary) that α1, . . . , αk are in E with
αk = 1. If all the αi are in E we are done, so assume αk+1 6∈ E. Then the system is

σ1(v1α1 + · · ·+ vk−1αk−1) + σ1(vk) + σ1(vk+1)αk+1 + · · ·+ σ1(vh+1)αh+1 = 0

σ2(v1α1 + · · ·+ vk−1αk−1) + σ2(vk) + σ2(vk+1)αk+1 + · · ·+ σ2(vh+1)αh+1 = 0

...
...

...

σh(v1α1 + · · ·+ vk−1αk−1) + σh(vk) + σh(vk+1)αk+1 + · · ·+ σh(vh+1)αh+1 = 0.

◦ Now since αk+1 6∈ E, by the assumption that E is the �xed �eld of H, there is some τ ∈ H with
τ(αk+1) 6= αk+1. If we apply τ to each of the equations above, then because H is a group, the elements
{σ1, . . . , σh} are merely permuted by left-multiplication by τ . If we permute the equations back into
their original order, we obtain the following system:

σ1(v1α1 + · · ·+ vk−1αk−1) + σ1(vk) + σ1(vk+1)τ(αk+1) + · · ·+ σ1(vh+1)τ(αh+1) = 0

σ2(v1α1 + · · ·+ vk−1αk−1) + σ2(vk) + σ2(vk+1)τ(αk+1) + · · ·+ σ2(vh+1)τ(αh+1) = 0

...
...

...

σh(v1α1 + · · ·+ vk−1αk−1) + σh(vk) + σh(vk+1)τ(αk+1) + · · ·+ σh(vh+1)τ(αh+1) = 0.

◦ Now subtract this system from the original one: this yields

σ1(vk+1)[αk+1 − τ(αk+1)] + · · ·+ σ1(vh+1)[αh+1 − τ(αh+1)] = 0

σ2(vk+1)[αk+1 − τ(αk+1)] + · · ·+ σ2(vh+1)[αh+1 − τ(αh+1)] = 0

...
...

...

σh(vk+1)[αk+1 − τ(αk+1)] + · · ·+ σh(vh+1)[αh+1 − τ(αh+1)] = 0.

and so we obtain a new solution to the system, namely (0, 0, . . . , 0, αk+1− τ(αk+1), . . . , αh+1− τ(αh+1)),
which is nonzero since αk+1 − τ(αk+1) 6= 0, and which has at least k entries in E.

◦ Hence by induction, we obtain a solution which has all its entries in E. But then this would contradict
the assumption that the vi are linearly independent, which is impossible. Thus we must have n = h,
meaning that [K : E] = |H| .

• Now we may establish the characterizations of Galois extensions described earlier:

• Theorem (Characterizations of Galois Extensions): If K/F is a �eld extension, the following are equivalent:

1. K/F is Galois, which is to say, it has �nite degree and |Aut(K/F )| = [K : F ].

2. K/F is the splitting �eld of some separable polynomial in F [x].

3. F is the �xed �eld of Aut(K/F ).

4. K/F is a normal, �nite, and separable extension. (Equivalently: [K : F ] is �nite, and if p(x) is irreducible
in F [x] but has a root in K, then p(x) splits completely with distinct roots over K.)

◦ Proof: We have previously shown that (2) implies (1) and that (2) implies (4).

◦ (4) implies (2): If K/F is a �nite-degree extension then K = F (α1, . . . , αn) for some αi algebraic over
F . If mi(x) is the minimal polynomial of αi, then since K/F is separable, each of the mi is separable,
and since K/F is normal, each of the other roots of the mi is in K. Now let m(x) be the least common
multiple of the mi: then m is separable and all of its roots are in K and generate K/F , so K/F is the
splitting �eld of m(x).

◦ (1) is equivalent to (3): If E is the �xed �eld of Aut(K/F ), then by our theorem on the degrees of �xed
�elds, |Aut(K/F )| = [K : E] = [K : F ]/[E : F ]. Thus |Aut(K/F )| = [K : F ] if and only if [E : F ] = 1,
which is to say, if and only if F is the �xed �eld of Aut(K/F ).
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◦ (1) implies (4): Suppose K/F is Galois: then K/F is �nite and separable. Now suppose that p(x) ∈
F [x] is irreducible and has a root α ∈ K. Let Gal(K/F ) = {σ1, σ2, . . . , σn} and consider the values
σ1(α), σ2(α), . . . , σn(α). By reordering, assuming that σ1(α), . . . , σk(α) are distinct and that the others
are duplicates.

◦ Now consider the polynomial q(x) = (x − σ1(α))(x − σ2(α)) · · · (x − σk(α)) ∈ K[x]. Notice that q(x) is
separable by the hypothesis that σ1(α), . . . , σk(α) are distinct, and that α is among the σi(α) since the
identity map is an automorphism

◦ For each τ ∈ Gal(K/F ), notice that τ permutes the values σ1(α), . . . , σk(α), and therefore it �xes each
of the coe�cients of q(x), since these are symmetric functions in σ1(α), . . . , σk(α).

◦ Since K/F is Galois and (1) implies (3) by the above, the fact that every coe�cient of q(x) is �xed by
every element of Gal(K/F ) implies that they are all in F , so in fact q(x) ∈ F [x].

◦ Then q(x) is a polynomial in F [x] having α as a root, so it is divisible by the minimal polynomial p(x)
of α.

◦ On the other hand, since α is a root of p(x) ∈ F [x], the elements σ1(α), . . . , σk(α) are all roots of p(x) as
well, so q(x) divides p(x). Hence in fact p(x) = q(x), whence the roots of p(x) are all in K. Thus K/F
is normal, so we are done.

• In the proof above, the elements σ(α) for σ ∈ Gal(K/F ) played a crucial role, and they will show up very
often:

• De�nition: If K/F is a Galois extension and α ∈ K, the elements σ(α) for σ ∈ Gal(K/F ) are called
(Galois) conjugates of α over F . If E is an intermediate �eld of K/F , the �eld σ(E) = {σ(α) : α ∈ E}
is called a (Galois) conjugate �eld of E over F .

◦ We will show later that if the sub�eld E corresponds to the subgroup H of Gal(K/F ), then the Galois
conjugate �eld σ(E) corresponds to the conjugate subgroup σHσ−1 (thus justifying the use of the same
word �conjugate� in this context).

◦ Example: For Q(21/3, ζ3)/Q, the Galois conjugates of 21/3 are 21/3, 21/3ζ3, and 21/3ζ23 , while the Galois
conjugates of 21/3 + ζ3 are 21/3 + ζ3, 21/3ζ3 + ζ3, 21/3ζ23 + ζ3, 21/3 + ζ23 , 21/3ζ3 + ζ23 , and 21/3ζ23 + ζ23 .

◦ The proof we gave above showed, along the way, that the Galois conjugates of α over F are the roots of
the minimal polynomial of α over F . (Roughly speaking, Galois conjugates are �algebraically indistin-
guishable� over F , the indistinguishability being provided by the automorphism σ.)

◦ In particular, if we have an explicit description of the Galois group's action on K/F , then we can easily
�nd the minimal polynomial of an arbitrary element of K (and its degree) by computing its Galois
conjugates.

◦ Example: The Galois conjugates of
√

2 +
√

3 over Q are
√

2 +
√

3,
√

2−
√

3, −
√

2 +
√

3, and −
√

2−
√

3.
Thus, the minimal polynomial of

√
2 +
√

3 over Q has degree 4, and is given explicitly by p(x) =
(x−

√
2−
√

3)(x−
√

2 +
√

3)(x+
√

2−
√

3)(x+
√

2 +
√

3) = x4 − 10x2 + 1.

4.2.2 Proof of the Fundamental Theorem

• We have now developed enough to prove the fundamental theorem of Galois theory:

• Theorem (Fundamental Theorem of Galois Theory): Let K/F be a Galois extension and let G = Gal(K/F ).
Then there is an inclusion-reversing bijection between intermediate �elds E of K/F and subgroups H of
G, given by associating a subgroup H to its �xed �eld E. Under this correspondence, if the subgroup H
corresponds to the �eld E, then

1. Subgroup indices correspond to extension degrees, so that [K : E] = |H| and [E : F ] = |G : H|.
2. The extension K/E is always Galois, with Galois group H.

3. For any σ ∈ G, the sub�eld σ(E) corresponds to the subgroup σHσ−1.

4. The extension E/F is Galois if and only if H is a normal subgroup of G, and in such a case, Gal(E/F )
is isomorphic to G/H.
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5. Intersections of subgroups correspond to joins of �elds, and joins of subgroups correspond to intersections
of �elds: H1 ∩H2 corresponds to E1E2, while 〈H1, H2〉 corresponds to E1 ∩ E2.

6. The lattice of subgroups of G is the same as the lattice of intermediate �elds of K/F turned upside-down.

◦ We will establish several of the calculation parts �rst before showing that correspondence maps are
actually inverses of one another.

◦ Proof (1): Suppose that H is a subgroup of G and let E be the �xed �eld of H. By de�nition E is �xed
by every element of H, so H is contained in Aut(K/E) so in particular |H| ≤ |Aut(K/E)|.
◦ But we also know that |Aut(K/E)| ≤ [K : E] = |H| from our previous results, so we must in fact have
|H| = |Aut(K/E)| = [K : E].

◦ For the other statement we have seen that F is the �xed �eld of Gal(K/F ), and so [K : F ] = |G|. Then
dividing this relation by the one above immediately yields [E : F ] = |G : H|, by the de�nition of the
index of a subgroup and the degree tower formula.

◦ Proof (2): Suppose that H is a subgroup of G and let E be the �xed �eld of H. As calculated above, we
have |H| = |Aut(K/E)| = [K : E], so K/E is Galois. Furthermore, since everything is �nite this forces
H = Aut(K/E) = Gal(K/E) as claimed.

◦ Proof (0): For surjectivity of the �xed �eld map, suppose E is an intermediate �eld. As we have shown
above, K/E is Galois with Galois group Aut(K/E). But by our characterization of Galois extensions,
this means E is the �xed �eld of the subgroup Aut(K/E) of G.

◦ For injectivity, suppose that H1 and H2 are subgroups of G with respective �xed �elds E1 and E2. If
E1 = E2, then E1 is �xed by H2, so since Aut(K/E1) = H1 from (2) above, this means H2 ≤ H1.
Conversely, since E2 is �xed by H1, then by the same argument we have H1 ≤ H2, so H1 = H2.

◦ Finally, the correspondences are inverse to one another because the automorphisms �xing E are precisely
Aut(K/E), again by the above.

◦ Proof (3): Suppose that the subgroup corresponding to σ(E) is H ′. For σ ∈ G observe that for any
α ∈ E and h ∈ H, we have (σhσ−1)(σ(α)) = σ(h(σ−1(σ(α)))) = σ(h(α)) = σ(α) since h �xes α by
assumption. This means that every element of σHσ−1 �xes σ(E), and so σHσ−1 ≤ H ′.
◦ Since E/F and σ(E)/F are isomorphic (via σ), we have [E : F ] = [σ(E) : F ], whence [K : E] = [K :
σ(E)], and then by (1) we see that

∣∣σHσ−1∣∣ = |H| = |H ′|. Since both groups are �nite we therefore
have σHσ−1 = H ′ as claimed.

◦ Proof (4): First observe that the statement that σ(E) = E for all σ ∈ G is equivalent to saying that
E is normal (since for any α ∈ E, the Galois conjugates σ(α) ∈ E are the other roots of the minimal
polynomial of α, so E is normal precisely when all σ(α) are also in E). Then since K/F is Galois, it is
�nite-degree and separable, so E/F is also �nite-degree and separable.

◦ Then since the Galois correspondence is a bijection, we see that σ(E) = E for all σ ∈ G if and only if
σHσ−1 = H for all σ ∈ G. Hence E is Galois over F if and only if H is normal in G, as claimed.

◦ If H is normal in G, then we may view a left coset σH as acting on E via (σH) · E = σ(E). It is
easy to see that this action is well-de�ned and faithful, and since |Gal(E/F )| = |G : H| from (1), the
corresponding association of σH with the automorphism σ of E yields an isomorphism of Gal(E/F ) with
the quotient group G/H.

◦ Proof (5): Suppose that H1 and H2 are subgroups of G with respective �xed �elds E1 and E2. Then
any element in H1 ∩H2 �xes both E1 and E2 hence �xes everything in E1E2 (since the elements of the
composite �eld are rational functions of elements of E1 and E2). Conversely any automorphism �xing
E1E2 must in particular �x both E1 and E2 hence be contained in H1 ∩H2. Thus, H1 ∩H2 corresponds
to E1E2.

◦ Likewise, E1 ∩ E2 is �xed by any element in H1 or H2, hence also by any word in such elements, so
〈H1, H2〉 �xes E1 ∩ E2. Inversely, if σ is any automorphism that does not �x E1 ∩ E2, then for any
h ∈ H1 ∪H2 we see that σh also does not �x E1 ∩ E2, so by an easy induction argument on the word
length, we see that σ cannot be written as a word in 〈H1, H2〉. Thus, 〈H1, H2〉 corresponds to E1 ∩ E2.

◦ Proof (6): This follows immediately from (1), (5), and the fact that the Galois correspondence is inclusion-
reversing.
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4.2.3 Examples of the Fundamental Theorem

• We may use the fundamental theorem of Galois theory to extract quite a lot of new information about �eld
extensions.

◦ First, if K/F is Galois, then subgroups of the Galois group correspond to intermediate �elds, so in
particular we can �nd all of the intermediate �elds of K/F by computing the �xed �eld for each subgroup
(note that we have previously described how to reduce the computation of �xed �elds to solving a system
of linear equations). Then we can draw the full sub�eld lattice for K/F using only the subgroup lattice
of Gal(K/F ).

◦ More generally, even if K/F is not Galois, if it is �nite-degree and separable then we know K =
F (α1, . . . , αn) for some algebraic αi whose minimal polynomials are separable. Then the splitting �eld
of the lcm of these minimal polynomials K̂ is Galois over K: then as above we can �nd all of the
intermediate �elds of K̂/F , which will in particular identify all of the intermediate �elds of K/F .

◦ Also, as we described earlier, we can use the Galois action to compute Galois conjugates of elements,
which will give us information about minimal polynomials.

• Example: Identify all of the intermediate �elds of Q(21/3, ζ3)/Q and then draw the sub�eld lattice.

◦ We have done all of these calculations in various pieces already, but let us describe how to do them more
systematically using the fundamental theorem.

◦ We know that K = Q(21/3, ζ3)/Q is Galois since it is the splitting �eld of x3− 2 over Q, and so we know
that |Gal(K/Q)| = 6. Any automorphism must map 21/3 to one of its Galois conjugates 21/3, 21/3ζ3,
21/3ζ23 and likewise must map ζ3 to one of its Galois conjugates ζ3, ζ

2
3 .

◦ Since there are only six possibilities we conclude that all six yield automorphisms of K/Q.
◦ With σ(21/3, ζ3) = (21/3ζ3, ζ3) and τ(21/3, ζ3) = (21/3, ζ23 ), we can verify (as previously) that Gal(K/Q)
is isomorphic to D2·3 with σ behaving as r and τ behaving as s, and also isomorphic to S3 via the
permutation action on {21/3, 21/3ζ3, 21/3ζ23} with σ behaving as (1 2 3) and τ behaving as (2 3).

◦ From our knowledge of the dihedral group, we know it has subgroups {e}, 〈τ〉, 〈τσ〉,
〈
τσ2

〉
, 〈σ〉, and

〈σ, τ〉, and can draw the corresponding lattice:

◦ The �xed �eld of {e} is K, while the �xed �eld of 〈σ, τ〉 = Gal(K/Q) is Q by condition (3) of the
characterization of Galois extensions.

◦ For the other �xed �elds we can either compute the action explicitly on a basis (which is straightforward,
if tedious) or try to identify elements of K that might generate some of these �elds, and then exploit the
Galois action.

◦ For example, observe that σ stabilizes ζ3, and since the �xed �eld corresponding to σ must have degree
2 over Q, it must be equal to Q(ζ3). Notice that 〈σ〉 is normal in the Galois group, and indeed Q(ζ3) is
Galois over Q.
◦ Likewise, we can see that τ stabilizes 21/3, and since the �xed �eld of τ must have degree 3 over Q, it
must be equal to Q(21/3).
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◦ Since the subgroup 〈τ〉 is not normal, we can compute other �xed �elds by conjugating it (via part
(3) of the fundamental theorem): for example, σ 〈τ〉σ−1 = 〈τσ〉 stabilizes σ(Q(21/3)) = Q(21/3ζ3), and
σ2 〈τ〉σ−2 =

〈
τσ2

〉
stabilizes σ2(Q(21/3)) = Q(21/3ζ23 ).

◦ We can then assemble all of this information into the full sub�eld lattice:

• Example: Identify all of the intermediate �elds of Q(31/4, i) and then draw the sub�eld lattice.

◦ We know that K = Q(31/4, i)/Q is Galois since it is the splitting �eld of x4 − 3 over Q, and so we know
that |Gal(K/Q)| = 8. Any automorphism must map 31/4 to one of its Galois conjugates 31/4, 31/4i,
−31/4, −31/4i, and likewise must map i to one of its Galois conjugates i, −i.
◦ Since there are only eight possibilities we conclude that all eight yield automorphisms of K/Q.
◦ With the automorphisms r(31/4, i) = (31/4i, i) and s(31/4, i) = (31/4,−i), we can verify (as previously)
that Gal(K/Q) is isomorphic to D2·4.

◦ From our knowledge of the dihedral group, we know it has subgroups {e}, 〈s〉, 〈sr〉,
〈
sr2
〉
,
〈
sr3
〉
,
〈
r2
〉
,

〈r〉,
〈
r2, s

〉
,
〈
r2, sr

〉
, and 〈r, s〉, and can draw the corresponding lattice:

◦ The �xed �eld of {e} is K, while the �xed �eld of 〈r, s〉 = Gal(K/Q) is Q by condition (3) of the
characterization of Galois extensions.

◦ For the other �xed �elds, observe that r stabilizes i, and since the �xed �eld of 〈r〉 has degree 2 over Q,
it must be Q(i). Also r2 stabilizes

√
3 and i, so the �xed �eld of

〈
r2
〉
must be Q(

√
3, i).

◦ Likewise, s stabilizes 31/4 so the �xed �eld of 〈s〉 must be Q(31/4) since it has degree 4 over Q. Then
since r 〈s〉 r−1 =

〈
sr2
〉
the �xed �eld of

〈
sr2
〉
is s(Q(31/4)) = Q(31/4i).

◦ Since
√

3 is stabilized by r2 and s, and the �xed �eld
〈
r2, s

〉
has degree 2 over Q, it is Q(

√
3).

◦ Likewise, since
√
−3 = i

√
3 is stabilized by r2 and sr, and the �xed �eld

〈
r2, sr

〉
has degree 2 over Q, it

is Q(
√
−3).

◦ It remains to �nd the �xed �eld of 〈sr〉 and
〈
sr3
〉
; since these are conjugate, it is enough to �nd one of

them.
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◦ For sr, we can compute explicitly that sr stabilizes 31/4(1 − i) (this element can be found by writing
out an explicit basis and evaluating the action of sr on it) but that no other nonidentity automorphism
�xes it, so it does not lie in any proper sub�eld of the �xed �eld of sr. Thus the �xed �eld of sr is
Q(31/4(1− i)).
◦ Then since r 〈sr〉 r−1 =

〈
sr3
〉
, the �xed �eld of

〈
sr3
〉
is r[Q(31/4(1 − i))] = Q(31/4(1 + i)). So the full

sub�eld lattice is as follows:

• Example: Find the splitting �eld K of p(x) = x6 + 3 over Q and identify all of its sub�elds.

◦ If we write α = (−3)1/6 = 31/6eiπ/12, we can see that the roots of p(x) are α · ζk6 for 0 ≤ k ≤ 5, where

ζ6 = e2πi/6 =
1

2
+ i

√
3

2
is a primitive 6th root of unity.

◦ Thus, K = Q(α, ζ6), which is the composite of the �elds Q(α), which has degree 6 over Q by Eisenstein's
criterion, and the �eld Q(ζ6), which has degree 2 over Q.
◦ Any automorphism of K/Q then must map α to one of its six Galois conjugates over Q, namely α · ζk6
for 0 ≤ k ≤ 5, and must also map ζ6 to one of its two Galois conjugates over Q, namely ζ6, ζ

5
6 = ζ6.

◦ It would then seem that we have 12 automorphisms of K/Q, and that [K : Q] is equal to 12.

◦ But in fact, this is not the case: note that α3 =
√

3eiπ/4 = i
√

3, and therefore 2ζ6 − 1 = i
√

3 = α3,
meaning that ζ6 ∈ Q(α).

◦ Therefore in fact K = Q(α) so [K : Q] = 6, not 12, and the automorphisms (of which there are 6) are
determined solely by their action on α.

◦ If σ is the automorphism with σ(α) = αζ6, then σ(
√
−3) = σ(α3) = α3ζ36 = −

√
−3, and thus σ(ζ6) = ζ56 .

Hence σ2(α) = σ(α)σ(ζ6) = α, so σ has order 2.

◦ Likewise, if τ is the automorphism with τ(α) = αζ26 , then τ(
√
−3) = τ(α3) = α3ζ66 =

√
−3 and thus

τ(ζ6) = ζ6. Hence τ
3(α) = αζ66 = α, so τ has order 3.

◦ We can then compute τσ(α) = τ(αζ6) = αζ36 , while στ(α) = σ(αζ26 ) = αζ56 : thus στ 6= τσ.

◦ Hence Gal(K/Q) is non-abelian, so must be isomorphic to the dihedral group D2·3, with σ playing the
role of s and τ playing the role of r.

◦ We can then compute �xed �elds: by the fundamental theorem of Galois theory, the �xed �eld of τ is
the unique sub�eld of Q(α) of degree, so it must be Q(

√
−3).

◦ Likewise, there are three Galois-conjugate sub�elds of degree 3: since α2/ζ6 = 31/3 ∈ K, this means one
of them is Q(31/3). We can compute σ(31/3) = σ(α2/ζ6) = α2ζ36 = −α2, and so σ �xes Q(31/3).

◦ Since the Galois conjugates of 31/3 over Q are 31/3ζ3 and 31/3ζ23 the other �xed �elds are Q(31/3ζ3) (the
�xed �eld of 〈στ〉) and Q(31/3ζ3) (the �xed �eld of

〈
στ2

〉
). The full sub�eld diagram is then as follows:
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4.3 Applications of Galois Theory

• In this section we apply the fundamental theorem of Galois theory to study the structure of a number of
di�erent classes of �eld extensions: �nite �elds, simple extensions, composite extensions, and cyclotomic
extensions.

4.3.1 Finite Fields and Irreducible Polynomials in Fp[x]

• Let p be a prime and n be a positive integer. As we have discussed, there is a unique (up to isomorphism)
�nite �eld Fpn with pn elements, and it is the splitting �eld of the separable polynomial xp

n − x over Fp.

◦ We have also shown that the Galois group G = Gal(Fpn/Fp) is cyclic of order n and is generated by the
Frobenius automorphism ϕ(n) : Fpn → Fpn with ϕ(n)(x) = xp.

◦ Then from our knowledge of cyclic groups, we see that the subgroups of G are of the form
〈
ϕd
〉
for the

divisors d of n. Because G is abelian, all of these subgroups are normal, so the corresponding �xed �elds
are all Galois.

◦ Since ϕd(n)(x) = xp
d

, the �xed �eld of ϕd is the set of solutions to the equation xp
d − x = 0 inside Fpn :

this means that the �xed �eld is the splitting �eld of xp
d − x, which is the �eld Fpd .

◦ Thus, by the fundamental theorem of Galois theory, we conclude that the sub�elds of Fpn are the �elds
Fpd for d dividing n.

◦ Furthermore, the Galois group Gal(Fpd/Fp) is generated by the image of ϕ(n) inside the quotient group

G/
〈
ϕd
〉
. Note that this map is simply the pth power map on elements, which is the map ϕ(d) : Fpd → Fpd .

(In other words, the restriction of the Frobenius map from Fpn to Fpd yields the Frobenius map on Fpd .)

• We can also use these observations to prove a useful result on irreducible polynomials over Fp:

• Theorem (Factorization of xp
n − x in Fp[x]): For any prime p and any positive integer n, the polynomial

xp
n − x factors in Fp[x] as the product of all monic irreducible polynomials over Fp of degree dividing n.

◦ Proof: Let q(x) = xp
n − x. As we have noted previously, q(x) is separable and its roots are the elements

of Fpn .
◦ If f(x) is any monic irreducible factor of xp

n − x, then Fp[x]/f(x) is a sub�eld of Fpn , hence must be
equal to Fpd for some d dividing n. Since deg(f) = d this means the degree of g divides n.

◦ Conversely, if f(x) is a monic irreducible polynomial over Fp of degree d dividing n, then Fp[x]/(f(x)) is
a �nite �eld with pd elements: hence it is (isomorphic to) Fpd .
◦ Then any root α of f(x) is contained in Fpd hence lies in Fpn and is thus a root of q(x). Since f(x) is
separable (since it is irreducible over a �nite �eld) this means f(x) divides q(x).

◦ Thus, the irreducible factors of xp
n −x are precisely the monic irreducible polynomials over Fp of degree

dividing n, and since no factor can be repeated, xp
n − x must simply be their product.
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• We can use the factorization above above to give an exact count of the monic irreducible polynomials in Fp[x]:

◦ Let fp(n) be the number of monic irreducible polynomials of exact degree n in Fp[x].

◦ The theorem says that pn =
∑
d|n dfp(d), since both sides count the total degree of the product of all

irreducible polynomials of degree dividing n. Using this recursion, we can compute the �rst few values:

n 1 2 3 4 5 6 7 8

fp(n) p
1

2
(p2 − p) 1

3
(p3 − p) 1

4
(p4 − p2)

1

5
(p5 − p) 1

6
(p6 − p3 − p2 + p)

1

7
(p7 − p) 1

8
(p8 − p4)

◦ For example, we see that there are (37 − 3)/7 = 312 monic irreducible polynomials of degree 7 over F3.

• In fact, we can use the recursion to write down a general formula:

• De�nition: The Möbius function is de�ned as µ(n) =

{
0 if n is divisible by the square of any prime

(−1)k if n is the product of k distinct primes
.

In particular, µ(1) = 1.

• Proposition (Möbius Inversion): If f(n) is any sequence satisfying a recursive relation of the form g(n) =∑
d|n f(d), for some function g(n), then f(n) =

∑
d|n µ(d)g(n/d).

◦ Proof: First, consider the sum
∑
d|n µ(d): we claim it is equal to 1 if n = 1 and 0 if n 6= 0.

◦ To see this, if n = pa11 · · · p
ak
k , the only terms that will contribute to the sum

∑
d|n µ(d) are those values

of d = pb11 · · · p
bk
k where each bi is 0 or 1. If k > 0, then half of these 2k terms will have µ(d) = 1 and the

other half will have µ(d) = −1, so the sum is zero. Otherwise, k = 0 means that n = 1, in which case
the sum is clearly 1.

◦ Now we prove the desired result by (strong) induction. It clearly holds for n = 1, so now suppose the
result holds for all k < n.

◦ Then
∑
d|n µ(d)g(n/d) =

∑
d|n µ(d)

∑
d′|(n/d) f(d′) =

∑
dd′|n µ(d)f(d′) =

∑
d′|n f(d′)

∑
d|(n/d′) µ(d) by

induction and reordering the sum.

◦ But the last sum is simply f(n), because
∑
d|(n/d′) µ(d) is zero unless n/d′ is equal to 1.

• By applying Möbius inversion to fp(n), we immediately obtain the following:

• Corollary: The number of monic irreducible polynomials of degree n in Fp[x] is fp(n) =
1

n

∑
d|n p

n/dµ(d).

◦ Example: The number of monic irreducible polynomials of degree 18 in F2[x] is
1

18
(218− 29− 26 + 23) =

14532.

◦ From this corollary, we see that fp(n) =
1

n
pn+O(pn/2), where the �big-O� notation means that the error

is of size bounded above by a constant times pn/2 as n→∞.

• We will note that any of these irreducible polynomials f(x) of degree n yields gives a model for Fpn , namely
as Fp[x]/(f(x)).

◦ If f1 and f2 are both irreducible of degree n, then F1 = Fp[x]/(f1(x)) and F2 = Fp[y]/(f2(y)) are both
isomorphic to Fpn .
◦ To compute an isomorphism between them, we simply observe that f1(x) splits completely over F2, and
if α(y) represents any root, then the map sending x in F1 to α(y) in F2 extends to an isomorphism of
F1 with F2. (In other words, we map a root x of f1 in F1 to a root α(y) of f1 in F2.)

◦ In practice, it can be rather cumbersome to compute the roots by hand, although there do exist e�cient
factorization algorithms over �nite �elds, one of which is known as Berlekamp's algorithm.

• Example: Compute an explicit isomorphism of the �eld F3[x]/(x3 + 2x+ 1) with the �eld F3[y]/(y3 + y2 + 2).

◦ Note that both x3 + 2x+ 1 and y3 + y2 + 2 are irreducible over F3 because they are degree-3 and have
no roots in F3.

21



◦ To compute an isomorphism, we search for a root of x3 + 2x+ 1 in F3[y]/(y3 + y2 + 2).

◦ Checking the various possibilities eventually reveals that 2y2 + 2y is a root of x3 + 2x+ 1, and therefore
the map ϕ : F3[x]/(x3 + 2x+ 1)→ F3[y]/(y3 + y2 + 2) with ϕ(x) = 2y2 + 2y is such an isomorphism.

• As a �nal remark, we will observe that the simple structure of �nite �eld extensions also yields a nice description
of the algebraic closure Fp.

◦ Explicitly, if α ∈ Fp then α (being algebraic over Fp) is contained in a �nite-degree extension of Fp,
namely, one of the �elds Fpn .
◦ But notice that the �elds Fpn for n ≥ 1 are partially ordered under inclusion, and that any two of them
are contained in another (namely, Fpn and Fpm are both contained in Fpmn).

◦ Thus, the union of these �elds (technically, the colimit) is well de�ned, and by the above, it contains

every element α algebraic over Fp, meaning that it is the algebraic closure. Symbolically, Fp =

∞⋃
n=1

Fpn .

◦ Furthermore, since the Frobenius maps on the various Fpn are all consistent under restriction, we see that
they extend to a Frobenius map ϕ : Fp → Fp on the algebraic closure, de�ned explicitly via ϕ(x) = xp.

◦ Note that ϕ has in�nite order as an element of Aut(Fp/Fp), but one may show in fact that Aut(Fp/Fp)
is uncountably in�nite3 (and thus ϕ is not a generator, since the cyclic subgroup it generates is only
countably in�nite).

4.3.2 Simple Extensions and the Primitive Element Theorem

• We can use the fundamental theorem of Galois theory to determine (in a large number of cases) when an
arbitrary �nite-degree extension K/F is simple, which is to say, when K = F (α) for some α ∈ K. The easiest
case is when F is �nite:

• Proposition (Finite Fields are Simple): Suppose K/F is a �nite-degree extension and F is �nite. Then K is
a simple extension of F .

◦ Proof: If K/F has �nite degree and F is �nite, then K is also �nite. As we have shown, the multiplicative
group K× of any �nite �eld is cyclic. If α is any generator, then every nonzero element of K is a power
of α, and thus in particular F (α) = F [α] = K.

• Next we prove a characterization of simple extensions in terms of their sub�elds:

• Proposition (Simple Extensions and Sub�elds): Suppose K/F is a �nite-degree extension. Then K = F (α)
for some α ∈ K if and only if K/F has �nitely many intermediate �elds.

◦ Proof: If F is �nite then the result follows immediately from the previous proposition, so now assume F
is in�nite.

◦ First suppose K = F (α) is a simple extension and suppose E is an intermediate �eld of K/F .

◦ Let m(x) ∈ F [x] be the minimal polynomial for α over F and p(x) ∈ E[x] be the minimal polynomial
for α over E, and note that p(x) divides m(x) in E[x].

◦ If we let E′ be the �eld generated over F by the coe�cients of p(x), then clearly E′ ⊆ E, and the minimal
polynomial for α over E′ is also p(x). But since [K : E] = deg p = [K : E′], this means E′ = E.

◦ We conclude that E is generated over F by the coe�cients of some monic polynomial dividing m(x) in
F [x]. Since there are only �nitely many such factors (explicitly, there are at most 2n such factors where
n is the number of roots of m(x)), there are �nitely many such sub�elds.

3More explicitly, since Fp =
⋃∞

n=1 Fpn , the automorphism group Aut(Fp/Fp) is determined by its actions on each of the �elds

Fpn . The action on each of these �elds must be as an automorphism, and so elements of Aut(Fp/Fp) can be thought of as sequences of
automorphisms (σ1, σ2, σ3, . . . ) where σi is an automorphism of Fpi for each i ≥ 1. These automorphisms must be chosen consistently: for

any d|n, the restriction of σn to Fpd must equal σd. Conversely, if all of these choices are made consistently, then because Fp =
⋃∞

n=1 Fpn ,

the sequence (σ1, σ2, σ3, . . . ) does yield an automorphism of Fp/Fp. The resulting sequences of consistent automorphisms (σ1, σ2, σ3, . . . )
are an example of a general construction called an inverse limit; in this case, we have shown that Aut(Fp/Fp) is isomorphic to the inverse

limit lim←−n(Z/nZ), which is an uncountably in�nite group called Ẑ.
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◦ For the converse, suppose K/F has �nite degree and �nitely many intermediate �elds. Then K =
F (α1, . . . , αn) for some algebraic αi ∈ K, so it su�ces to show that F (β, γ) is a simple extension for any
algebraic β, γ, since then the result for K follows immediately by induction.

◦ To show this, consider the sub�elds F (β + xγ) for x ∈ F : since F is in�nite by hypothesis and there are
only �nitely many intermediate �elds of K/F , there must exist distinct x, y ∈ F such that F (β + xγ) =
F (β + yγ). Call this �eld E.

◦ Then E ⊆ F (β, γ), and since E contains β + xγ and β + yγ it also contains (x − y)γ and thus γ since
x− y is a nonzero element of F . Then E clearly also contains β = (β + xγ)− xγ, and so E = F (β, γ).

◦ We conclude that E = F (β + xγ) is a simple extension of F , so we are done.

• Using the Galois correspondence, we can then see immediately that a �nite-degree Galois extension has �nitely
many intermediate sub�elds, since these are in bijection with subgroups of the Galois group (which is a �nite
group), and is therefore simple. We may extend this result to any separable extension:

• Theorem (Primitive Element Theorem): If K/F is a �nite-degree separable extension, then K = F (α) for
some α ∈ K. In particular, any �nite-degree extension of characteristic-0 �elds is a simple extension.

◦ In general, an element α generating the extension K/F is called a primitive element for K/F .

◦ Proof: If K/F is a �nite-degree separable extension, then K = F (α1, . . . , αn) for some algebraic
α1, . . . , αn. Let the minimal polynomial of αi over F be mi(x), and de�ne m(x) to be the least common
multiple of the polynomials mi(x).

◦ Then m(x) cannot have any repeated roots, since by de�nition of the least common multiple this would
require one of the mi to have a repeated root, so m(x) is separable. Let L be its splitting �eld over F :
then L contains each of α1, . . . , αn, hence contains K, and L/F is a Galois extension.

◦ By the fundamental theorem of Galois theory, the intermediate �elds of L/F are in bijection with the
subgroups of Gal(L/F ). Since Gal(L/F ) is a �nite group, it has �nitely many subgroups, and so there
are �nitely many intermediate �elds of L/F .

◦ Since K is a sub�eld of L/F , this means there are �nitely many intermediate �elds of K/F also. By the
previous result, this means K/F is a simple extension, as claimed.

◦ The second statement follows immediately, since every extension of characteristic-0 �elds is separable.

• As indicated by the results above, if K/F has �nite degree with K = F (α1, . . . , αn) and F is in�nite, then
we may always construct a primitive element as an F -linear combination of the generators α1, . . . , αn.

◦ If in addition K/F is Galois, then to verify that β ∈ K is a primitive element, we need only check that
it is not �xed by any element of the Galois group Gal(K/F ), since then it cannot be an element of any
proper sub�eld of K/F .

◦ More generally, to determine whether an element β of a non-Galois separable extension K/F is a gener-
ator, we may compute all of its Galois conjugates (inside a Galois extension L/K/F ): if the number of
distinct Galois conjugates is equal to the degree [K : F ], then β will generate K/F .

• Example: If p is a prime, �nd a primitive element for the Galois extension Q(31/p, ζp)/Q.

◦ Note that Q(31/p, ζp) is the splitting �eld of the Eisenstein-irreducible polynomial xp − 3 over Q, and
is also the composite of the �elds Q(31/p) and Q(ζp), which have degrees p and p − 1 over Q. Thus,
[K : Q] = p(p− 1).

◦ Any element of the Galois group must map 31/p to one of its p Galois conjugates 31/p, 31/pζp, . . . , 3
1/pζp−1p

over Q, and must also map ζp to one of its p− 1 Galois conjugates ζp, ζ
2
p , . . . , ζ

p−1
p over Q.

◦ Since this yields at most p(p− 1) choices, each must actually extend to an automorphism of K/Q.
◦ To compute a primitive element, let us try the easiest nontrivial linear combination of the generators,
namely α = 31/p + ζp.

◦ We can see that applying all of the automorphisms in the Galois group to α yield the p(p− 1) elements
31/pζap + ζbp for a ∈ {0, 1, . . . , p− 1} and b ∈ {1, 2, . . . , p− 1}.

◦ Since no automorphism �xes α, we conclude that α = 31/p + ζp is a primitive element for K/Q.

23



• We will also remark that there do exist non-separable �nite-degree extensions that are not simple.

◦ For example, consider the �elds K = Fp(xp, yp) and L = Fp(x, y), where x and y are indeterminates.

◦ Then [L : K] = [L : F (xp, y)] · [F (xp, y) : F (xp, yp)] = p · p = p2.

◦ On the other hand, there is no primitive element for L/K, because the pth power of every element of L
lies in K: taking pth powers does not a�ect elements in Fp and respects addition and multiplication, so
the result of taking the pth power of a rational function in L is simply to replace x with xp and y with
yp.

◦ Therefore, every element of L satis�es a polynomial of degree p with coe�cients in K. In particular,
there does not exist any element α in L with [K(α) : K] = p2, and so L/K is not a simple extension.
(In fact, this argument works if Fp is replaced with any �eld of characteristic p.)

◦ One may also explicitly compute an in�nite family4 of intermediate sub�elds, namely, K(x+ y1+np) for
positive integers n. The existence of in�nitely many intermediate �elds again implies that L/K cannot
be a simple extension.

◦ We also remark that this example is essentially the simplest possible, since a non-simple extension must
be inseparable (hence its degree can be reduced to a power of p) and every extension of degree p is simple
(since it is generated by any element of K not in F ): thus a non-simple �eld extension of minimal degree
must be an inseparable extension of degree p2 over a �eld of characteristic p.

4.3.3 Composite Extensions

• Next we consider the question of computing Galois groups of composite extensions. The main result in this
direction is as follows:

• Proposition (�Sliding-Up� Galois Extensions): Suppose K/F is a Galois extension and L/F is any extension.
Then the extension KL/L is Galois, and its Galois group is isomorphic to the subgroup Gal(K/K ∩ L) of
Gal(K/F ).

◦ Proof: By our characterization of Galois extensions, K is the splitting �eld of a separable polynomial
p(x) over F : explicitly, K = F (r1, r2, . . . , rn) where the ri are the roots of p(x) in K.

◦ Then KL is the splitting �eld of p(x) over L, since KL = L(r1, r2, . . . , rn), and so KL/L is Galois.

◦ Now suppose σ is any automorphism of KL/L: observe that the restriction σ|K of σ to K is an au-
tomorphism of K, since σ|K(K) is a Galois conjugate �eld of K, hence must equal K since K/F is
Galois.

◦ Hence we obtain a well-de�ned map ϕ : Gal(KL/L)→ Gal(K/F ) given by restricting an automorphism
of KL/L to K/F . This map is trivially a homomorphism, and its kernel consists of the automorphisms
of KL �xing both L and K, but the only such map is the identity.

◦ To compute the image, observe that every element in im(ϕ) must �x the elements of L inside K, hence
im(ϕ) ≤ Gal(K/K ∩ L).

◦ Now let E be the �xed �eld of im(ϕ): then the observation above shows that E contains K ∩ L.
◦ Also, notice that EL is �xed by Gal(KL/L), since any σ ∈ Gal(KL/L) �xes L and its restriction to K
�xes E (by de�nition).

◦ Thus, by the fundamental theorem of Galois theory, we see that EL = L, and hence E ⊆ L. Since
E ⊆ K this means E ⊆ K ∩ L, and so we must have E = K ∩ L.
◦ Hence again by the fundamental theorem of Galois theory, we conclude that im(ϕ) = Gal(K/E) =

Gal(K/K ∩ L).

• As a corollary, we obtain a useful formula for the degree of a composite extension where at least one of the
�elds is Galois:

4Explicitly, each of these �elds is a degree-p extension of K (since x+ y1+ap 6∈ K but as noted earlier its pth power is in K) but they
are all distinct: the composite of K(x + y1+ap) and K(x + y1+bp) contains the di�erence y(yap − ybp) and hence y (since the second
term is in K), and hence also x. This means the composite �eld is K(x, y) = L, but since [L : K] = p2 this means the original �elds
could not have been equal.

24



• Corollary (Degree of Composite): Suppose K/F is a Galois extension and L/F is any �nite-degree extension.

Then [KL : F ] =
[K : F ] · [L : F ]

[K ∩ L : F ]
.

◦ Proof: From the above result, we know that Gal(KL/L) ∼= Gal(K/K ∩ L), and therefore by the funda-
mental theorem of Galois theory, [KL : L] = [K : K ∩ L].

◦ Then [KL : F ] = [KL : L] · [L : F ] = [K : K ∩ L] · [L : F ] =
[K : F ] · [L : F ]

[K ∩ L : F ]
, as claimed.

• We may also say more about the Galois group of the composite of two Galois extensions:

• Proposition (Galois Groups of Composites): If K1/F and K2/F are Galois, then K1K2/F is also Galois
and its Galois group is isomorphic to the subgroup of Gal(K1/F )×Gal(K2/F ) consisting of elements whose
restrictions toK1∩K2 are equal. In particular, ifK1∩K2 = F , then Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ).

◦ Proof: If K1 and K2 are Galois over F then they are splitting �elds of some separable polynomials p1(x)
and p2(x).

◦ Then the composite �eld K1K2 is the splitting �eld of the least common multiple of p1(x) and p2(x),
which as we have previously noted is also separable. Hence K1K2/F is also Galois.

◦ To compute the Galois group, observe that the action of any automorphism on K1K2/F is completely
determined by its actions on K1/F and K2/F (since the elements of K1 and K2 generate K1K2), and so
we have a homomorphism ϕ : Gal(K1K2)/F → Gal(K1/F )×Gal(K2/F ) given by ϕ(σ) = (σK1

, σK2
).

◦ This map ϕ is clearly injective, since any automorphism �xing both K1 and K2 �xes K1K2.

◦ To compute im(ϕ), �rst observe that im(ϕ) is certainly contained in the subgroup H of Gal(K1/F ) ×
Gal(K2/F ) consisting of elements whose restrictions to K1 ∩K2 are equal.

◦ Furthermore, notice that for any �xed τ ∈ Gal(K2/F ), there are |Gal(K1/K1 ∩K2)| automorphisms
σ ∈ Gal(K1/F ) such that σ|K1∩K2

= τ |K1∩K2
, and so |H| = |Gal(K2/F )| · |Gal(K1/K1 ∩K2)| = [K2 :

F ] · [K1 : K1 ∩K2].

◦ On the other hand, by the sliding-up proposition, we know that Gal(K1K2/K2) ∼= Gal(K1/K1∩K2) and
thus [K1K2 : K2] = [K1 : K1 ∩K2]. Hence |im(ϕ)| = |Gal(K1K2)/F | = [K1K2 : F ] = [K1K2 : K2] · [K2 :
F ] = [K1 : K1 ∩K2] · [K2 : F ].

◦ Thus we see that |H| = |im(ϕ)|, and so they must be equal, as claimed.

◦ The second statement follows immediately, since if K1 ∩K2 = F then every element (σ, τ) in the direct
product has σ|K1∩K2 = τ |K1∩K2 .

• In cases where we can compute K1 ∩ K2, this allows us to determine Galois groups for composite �elds
explicitly:

• Example: Find the degree of Q(21/3, 31/2, ζ3)/Q and describe its Galois group.

◦ Observe that L = Q(21/3, 31/2, ζ3) is the composite of the Galois extensions K1 = Q(21/3, ζ3) and
K2 = Q(31/2).

◦ Now observe that K1 has a unique quadratic sub�eld, namely Q(ζ3) = Q(
√
−3), which is not equal to

K2. Hence we have K1 ∩K2 = Q.

◦ Then by the degree formula we have [K1K2 : Q] =
[K1 : Q] · [K2 : Q]

[K1 ∩K2 : Q]
= 12 , and the Galois group is

simply the direct product Gal(K1/Q)×Gal(K2/Q) ∼= S3 × (Z/2Z) .

• Example: Find the degree of Q(21/3, 31/3, ζ3)/Q and describe its Galois group.

◦ Observe that L = Q(21/3, 31/3, ζ3) is the composite of the Galois extensions K1 = Q(21/3, ζ3) and
K2 = Q(31/3, ζ3).

◦ Then K1 ∩K2 certainly contains Q(ζ3) and is contained in K1, so since [K1 : Q(ζ3)] = 3 we must have
either K1 ∩K2 = K1 or K1 ∩K2 = Q(ζ3).
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◦ If K1 ∩K2 = K1 then we would also have K1 ∩K2 = K2 by degree considerations, and then K1 would
equal K2. But this is not possible, because it would imply that 31/3 ∈ Q(21/3), which is not true5.

◦ Hence K1 ∩K2 = Q(ζ3), and so by the degree formula we see that [K1K2 : Q] =
[K1 : Q] · [K2 : Q]

[K1 ∩K2 : Q]
=

6 · 6
2

= 18 .

◦ The Galois group is then the order-18 subgroup of Gal(K1/Q) × Gal(K2/Q) = S3 × S3 of pairs (σ, τ)
where σ|Q(ζ3) = τ |Q(ζ3).

◦ Explicitly, these are the maps with ϕ(21/3, 31/3, ζ3) = (21/3ζa3 , 31/3ζb3, ζ
c
3) where a ∈ {0, 1, 2}, b ∈ {0, 1, 2},

and c ∈ {1, 2}. It is easy to see that every element in the Galois group must be of this form, and conversely
since |Gal(K1K2/Q)| = 18, each of these 18 choices does extend to an actual automorphism.

4.3.4 Cyclotomic Extensions

• We now turn our attention to studying cyclotomic extensions. Our �rst goal is to compute the degree and the
Galois group of the cyclotomic extension Q(ζn) for an arbitrary positive integer n, but to do this we require
some preliminary facts about the nth roots of unity.

◦ As we have observed previously, the group µn = {1, ζn, ζ2n, . . . , ζn−1n } of nth roots of unity is cyclic of
order n and generated by ζn. We have an explicit isomorphism of µn with Z/nZ given by associating ζkn
with k.

◦ From properties of order, we see that the order of ζkn is n/ gcd(n, k), so in particular ζkn has order n
precisely when k is relatively prime to n (equivalently, when k is a unit modulo n).

◦ If ζ is an nth root of unity of order n, we call it a primitive nth root of unity: by the above remarks, the
number of primitive nth roots of unity is |(Z/nZ)×|. This number is an important quantity that often
shows up in number theory:

• De�nition: If n is a positive integer, the Euler ϕ-function ϕ(n), also sometimes called the Euler totient function,
is the number of units in Z/nZ. Equivalently, ϕ(n) is the number of positive integers k with 1 ≤ k ≤ n that
are relatively prime to n.

◦ Example: We have ϕ(6) = 2 since there are 2 units modulo 6, namely 1 and 5.

• We can give an explicit formula for the value of ϕ(n):

• Proposition (Value of ϕ(n)): If p is a prime, then ϕ(pk) = pk − pk−1, and for any relatively prime integers
a and b we also have ϕ(ab) = ϕ(a)ϕ(b). Thus, if n has prime factorization n =

∏
i p
ai
i , we have ϕ(n) =∏

i p
ai−1
i (pi − 1) = n ·

∏
i(1− 1/pi).

◦ Proof: If p is a prime, then ϕ(pk) = pk − pk−1, since the integers with 1 ≤ k ≤ pk not relatively prime
to pk are simply the multiples of p, of which there are pk−1.

◦ For the second statement, we �rst observe that if a and b are relatively prime positive integers, then there
is a ring isomorphism of Z/abZ with (Z/aZ)× (Z/bZ) given by ψ(k mod ab) = (k mod a, k mod b).

◦ It is easy to see that ψ is a group isomorphism since it respects addition and is injective (hence surjective
because the domain and target both have size ab), and since it also respects multiplication it is a ring
isomorphism.

◦ Then since the rings Z/abZ and (Z/aZ) × (Z/bZ) are isomorphic, their corresponding unit groups
(Z/abZ)× and (Z/aZ)× × (Z/bZ)× are also isomorphic.

◦ Comparing cardinalities shows that ϕ(ab) = ϕ(a)ϕ(b) for any relatively prime integers a and b.

◦ For the last statement, we simply write n as a product of prime powers and then apply the two results
we have just established to conclude that ϕ(n) =

∏
i p
ai−1
i (pi−1). The second formula follows by pulling

out a factor of paii from each term.

5This is intuitively obvious, but for completeness, it follows by observing that any element σ of the Galois group has the property
that σ(31/3)/31/3 is a 3rd root of unity, and then noting that the only elements z ∈ Q(21/3) with σ(z)/z equal to a third root of unity
for all σ ∈ Gal(K1/Q) are rational multiples of {1, 21/3, 41/3}, and 31/3 is not equal to any of these.
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• De�nition: The nth cyclotomic polynomial Φn(x) is the monic polynomial of degree ϕ(n) whose roots are the

primitive nth roots of unity: Φn(x) =
∏

k∈(Z/nZ)×
(x− ζkn).

◦ Observe that the roots of xn − 1 are all of the nth roots of unity, so if we group together all of the
primitive dth roots of unity for each d|n, we see that xn − 1 =

∏
d|n Φd(x). (Computing the degree of

both sides also establishes the identity n =
∑
d|n ϕ(d) for the Euler ϕ-function.)

◦ This yields a recursion that we can use to compute Φn(x): for example, x6−1 = Φ6(x)Φ3(x)Φ2(x)Φ1(x),

so Φ6(x) =
x6 − 1

(x2 + x+ 1)(x+ 1)(x− 1)
= x2 − x+ 1.

◦ Furthermore, using this recursion we can see by induction on n that Φn(x) will always have integer coef-
�cients. Explicitly: the base case n = 1 is trivial, and for the inductive step, observe that

∏
d|n,d<n Φd(x)

is monic, has integer coe�cients, and divides xn − 1 in Q(ζn)[x]: hence it divides xn − 1 in Q[x] since
both polynomials have coe�cients in Q. Then by Gauss's lemma,

∏
d|n,d<n Φd(x) divides xn− 1 in Z[x],

so the quotient Φn(x) has integer coe�cients.

• We have previously shown that if p is prime, then Φp(x) = xp−1 + xp−2 + · · · + x + 1 is irreducible over Q.
We now extend this result to all of the polynomials Φn(x):

• Theorem (Irreducibility of Cyclotomic Polynomials): For any positive integer n, the cyclotomic polynomial
Φn(x) is irreducible over Q, and therefore [Q(ζn) : Q] = ϕ(n).

◦ Proof: Suppose that we have an irreducible monic factor of Φn(x) in Q[x]. By Gauss's lemma, this yields
a factorization Φn(x) = f(x)g(x) where f(x), g(x) ∈ Z[x] are monic and f(x) is irreducible.

◦ Let ω be a primitive nth root of unity that is a root of f , and let p be any prime not dividing n. Since
f is irreducible, this means f is the minimal polynomial of ω.

◦ By properties of order, we see that ωp is also a primitive nth root of unity, hence is a root of either f or
of g.

◦ Suppose ωp is a root of g, so that g(ωp) = 0. This means ω is a root of g(xp), and so since f is the
minimal polynomial of ω, it must divide g(xp): say f(x)h(x) = g(xp) for some h(x) ∈ Z[x].

◦ Now view this equation in Fp (i.e., modulo p): this yields f(x)h(x) = g(xp) = g(x)p. Thus by unique
factorization in Fp[x], we see that f(x) and g(x) have a nontrivial common factor in Fp[x].

◦ Then since Φn(x) = f(x)g(x), reducing modulo p yields Φn(x) = f(x)g(x) and so Φn(x) would have a
repeated factor, hence so would xn − 1. But this is a contradiction because since xn − 1 is separable in
Fp[x] (its derivative is nxn−1, which is relatively prime to xn − 1 because p does not divide n).

◦ Hence we conclude that ωp is not a root of g, so it must be a root of f . Since this holds for every root ω
of f , we see that for any a = p1p2 · · · pk that is relatively prime to n, then ωa = ((ωp1)p2)···pn is a root
of f .

◦ But this means every primitive nth root of unity is a root of f , and so Φn = f is irreducible as claimed.

◦ The second statement follows immediately, because Φn(x) is then the minimal polynomial of ζn, so
[Q(ζn) : Q] = deg(Φn) = ϕ(n).

• We can now easily compute the Galois group of Q(ζn)/Q:

• Theorem (Galois Group of Q(ζn)): The extension Q(ζn)/Q is Galois with Galois group isomorphic to (Z/nZ)×.
Explicitly, the elements of the Galois group are the automorphisms σa for a ∈ (Z/nZ)× acting via σa(ζn) = ζan.

◦ Proof: Since K = Q(ζn) is the splitting �eld of xn − 1 (or Φn(x)) over Q it is Galois, and |Gal(K/Q)| =
[K : Q] = ϕ(n).

◦ Furthermore, any automorphism σ must map ζn to one of its Galois conjugates over Q, which are the
roots of Φn(x): explicitly, these are the ϕ(n) values ζan for a relatively prime to n.

◦ Since there are in fact ϕ(n) possible automorphisms, each of these choices must extend to an automor-
phism of K/Q.
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◦ Hence the elements of the Galois group are the maps σa as claimed. Since σa(σb(ζn)) = σa(ζbn) = ζabn ,
the composition of automorphisms is the same as multiplication of the indices in (Z/nZ)×, and since this
association is a bijection, the Galois group is isomorphic to (Z/nZ)×.

• By using the structure of the Galois group we can in principle compute all of the sub�elds of Q(ζn). In practice,
however, this tends to be computationally di�cult when the subgroup structure of (Z/nZ)× is complicated.

◦ The simplest case occurs when n = p is prime, in which case (as we have shown already) the Galois
group G ∼= (Z/pZ)× is cyclic of order p − 1. Let σ be a generator of the Galois group, with σ(ζp) = ζap
where a is a generator of (Z/pZ)×.

◦ Then by the Galois correspondence, the sub�elds of Q(ζp) are the �xed �elds of σd for the divisors d of
p− 1.

◦ We may compute an explicit generator for each of these �xed �elds by exploiting the action of the Galois
group on the basis {ζp, ζ2p , . . . , ζp−1p } for Q(ζp)/Q. (Note that this set is obtained from the standard basis
{1, ζp, . . . , ζp−2p } using the relation ζp−1p + ζp−2p + · · ·+ ζp + 1 = 0 from the minimal polynomial of ζp.)

◦ Since all of these basis elements are Galois conjugates, the action of any element of the Galois group
permutes them.

◦ Now for any subgroup H of G, de�ne the element αH =
∑
σ∈H σ(ζp): we claim that αH is a generator

for the �xed �eld of H.

◦ To see this, observe �rst that if τ ∈ H, then τ(αH) = αH because τ merely permutes the elements σ(ζp)
for σ ∈ H.

◦ Conversely, because the elements σ(ζp) for σ ∈ G form a basis, if τ ∈ G has τ(αH) = αH then τ(ζp)
must equal σ(ζp) for some σ ∈ H. But then τσ−1 acts as the identity on ζp and hence on all of Q(ζp),
so it must be the identity element: thus, τ = σ ∈ H.

◦ We conclude that the automorphisms �xing αH are precisely the elements of H, and so Q(αH) is the
�xed �eld of H.

• Example: Find generators for each of the sub�elds of Q(ζ7).

◦ We know that G = Gal(Q(ζ7)/Q) is isomorphic to (Z/7Z)×. By trial and error we can see that 3 has
order 6 in (Z/7Z)×, so it is a generator. The corresponding automorphism generating G is the map σ
with σ(ζ7) = ζ37 .

◦ The subgroups of G are then 〈σ〉 = {e, σ, σ2, σ3, σ4, σ5},
〈
σ2
〉

= {e, σ2, σ4},
〈
σ3
〉

= {e, σ3}, and
〈
σ6
〉

=
{e}.
◦ A generator of the �xed �eld of 〈σ〉 is given by ζ7 +σ(ζ7) +σ2(ζ7) +σ3(ζ7) +σ4(ζ7) +σ5(ζ7) = ζ7 + ζ37 +
ζ27 + ζ67 + ζ47 + ζ57 .

◦ Similarly, the �xed �eld of
〈
σ2
〉
is generated by ζ7 + σ2(ζ7) + σ4(ζ7) = ζ7 + ζ27 + ζ47 , while the �xed �eld

of
〈
σ3
〉
is generated by ζ7 + σ3(ζ7) = ζ7 + ζ67 .

◦ We can also use the Galois action to compute the minimal polynomials of each of these elements, since
we may compute all of these elements' Galois conjugates.

◦ For example, the element ζ7 + ζ27 + ζ47 has one other Galois conjugate inside Q(ζ7), namely ζ37 + ζ57 + ζ67 .
Then their common minimal polynomial is m(x) = [x− (ζ7 + ζ27 + ζ47 )] · [x− (ζ37 + ζ57 + ζ67 )] = x2 + x+ 2,
as follows from multiplying out and simplifying the coe�cients. Solving the quadratic yields an explicit

formula ζ7 + ζ27 + ζ47 =
−1−

√
−7

2
, and thus the corresponding �xed �eld Q(ζ7 + ζ27 + ζ47 ) = Q(

√
−7).

◦ Similarly, the element ζ7+ζ67 = 2 cos(2π/7) has two other Galois conjugates, namely ζ27 +ζ57 = 2 cos(4π/7)
and ζ37 + ζ47 = 2 cos(6π/7). Their common minimal polynomial is m(x) = [x − (ζ7 + ζ67 )] · [x − (ζ27 +
ζ57 )][x− (ζ37 + ζ47 )] = x3 +x2−2x−1. Thus, our analysis implies that the Galois group of this polynomial
is cyclic of order 3.

• For other n, we can perform similar computations, although there is not usually as convenient a basis available6.
We can simplify some of these computations by writing Q(ζn) as a composite of smaller cyclotomic �elds:

6In general, the primitive nth roots of unity form a basis for Q(ζn) precisely when n is squarefree.
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• Proposition (Composites of Cyclotomic Extensions): If a and b are relatively prime integers, then the compos-
ite of Q(ζa) and Q(ζb) is Q(ζab), the intersection is Q, and Gal(Q(ζab)/Q) ∼= Gal(Q(ζa)/Q)×Gal(Q(ζb)/Q).
In particular, if the prime factorization of n is n = pa11 p

a2
2 · · · p

ak
k , then Q(ζn) is the composite of the �elds

Q(ζpai
i

) for 1 ≤ i ≤ k, and Gal(Q(ζn)/Q) ∼= Gal(Q(ζpa1
1

)/Q)× · · · ×Gal(Q(ζpak
k

)/Q).

◦ Proof: Observe that ζbab = ζa and ζaab = ζb, so both ζa and ζb are in Q(ζab): thus, the composite �eld is
contained in Q(ζab).

◦ Also, since a and b are relatively prime, there exist integers s and t with sa + tb = 1. Then ζsb · ζta =
ζas+btab = ζab, and so ζab is contained in the composite �eld of Q(ζa) and Q(ζb). Hence the composite
�eld is Q(ζab).

◦ Then since [Q(ζab) : Q] = ϕ(ab) = ϕ(a)ϕ(b) = [Q(ζa) : Q] · [Q(ζb) : Q], by the formula for the degree of a
composite extension we must have [Q(ζa) ∩Q(ζb) : Q] = 1 so Q(ζa) ∩Q(ζb) = Q.
◦ The statement about the Galois group of Q(ζab)/Q follows immediately from our result on the Galois
group of a composite of Galois extensions. The second statement then follows by a trivial induction by
breaking n into the individual prime power factors.

◦ Remark: More generally, by replacing sa + tb = 1 with sa + tb = gcd(a, b), one may adapt the proof
above to show that for any a and b, the composite of Q(ζa) and Q(ζb) is Q(ζlcm(a,b)) and the intersection
is Q(ζgcd(a,b)).

• By using this decomposition of Gal(Q(ζn)/Q), we can show that every abelian group appears as a Galois
group over Q:

• Theorem (Abelian Galois Groups over Q): If G is an abelian group, then there exists an extension K/Q with
Galois group isomorphic to G.

◦ Proof: By the classi�cation of �nite abelian groups, G is isomorphic to a direct product of cyclic groups,
say as G ∼= (Z/m1Z)× · · · × (Z/mkZ).

◦ By a theorem of Dirichlet7, for any positive integer m there exist in�nitely many primes congruent to 1
modulo m. In particular, we may choose distinct primes pi such that pi ≡ 1 mod mi for each i.

◦ Then since mi divides |Gal(Q(ζpi)/Q| = pi − 1 and Gal(Q(ζpi)/Q is cyclic, there exists a subgroup of
index mi.

◦ If Ki represents the corresponding �xed �eld, then Ki/Q is Galois (since Gal(Q(ζpi)/Q is abelian, so
every subgroup is normal) and by the fundamental theorem of Galois theory we see that its Galois group
is cyclic of order mi.

◦ By our results above, since the pi are distinct primes, the intersection of any two of the �elds Q(ζpi) is
Q, so the same holds for the �elds Ki.

◦ Hence by our results on Galois groups of composites, we see that the Galois group of K = K1K2 · · ·Kk

over Q is isomorphic to Gal(K1/Q)×Gal(K2/Q)× · · · ×Gal(Kk/Q) ∼= (Z/m1Z)× · · · × (Z/mkZ) ∼= G,
as desired.

• Perhaps surprisingly, the converse of this theorem is also true (although much harder to prove):

• Theorem (Kronecker-Weber): If K/Q is a Galois extension with abelian Galois group, then K is contained in
a cyclotomic extension of Q.

◦ This theorem was originally stated and mostly proven by Kronecker in the 1850s (his argument contained
gaps in the case where the Galois group had order a power of 2), and Weber gave another proof in the
1880s (which also contained some gaps).

7More generally, if a is relatively prime to m, Dirichlet's theorem on primes in arithmetic progression says that there exist in�nitely
many primes congruent to a modulo m. For the case with a = 1 that we used here, we can outline a proof using cyclotomic polynomials:
�rst, for any nonconstant polynomial in Z[x] with constant term ±1, since n divides p(n)−p(0) for any n, we see that there are in�nitely
many di�erent primes dividing at least one of p(1), p(2), p(3), .... Applying this result for p(x) equal to the mth cyclotomic polynomial,
we see that there are in�nitely many di�erent primes dividing at least one of Φm(1), Φm(2), .... Then one can show that if p does not
divide m and Φm(k) ≡ 0 mod p, then k is relatively prime to p and has order m in (Z/pZ)×, which in turn implies p ≡ 1 mod m.
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◦ In general, if Gal(K/F ) is abelian, we say that K/F is an abelian extension. Since abelian groups are
(in a sense) the least complicated �nite groups, abelian extensions tend to be particularly well-behaved
(for example, all of their intermediate �elds are Galois).

◦ The problem of understanding the structure of all abelian extensions of other �nite-degree extensions of
Q falls under the branch of number theory known as class �eld theory, which generalizes and combines
many threads from classical number theory, and has in turn been generalized and extended in other ways.

• For general �nite groups G, it is still an open problem whether G is the Galois group of some extension K/Q.

◦ The problem of computing which groups occur as Galois groups over Q, or more generally over an
arbitrary �eld F , is known as the inverse Galois problem.

• As a �nal remark, we note that it is also possible to apply some of these results to study the roots of unity
over an arbitrary �eld F .

◦ Since the polynomials Φn(x) are monic and have integer coe�cients, the primitive nth roots of unity will
still be the roots of Φn(x), although Φn(x) may no longer be irreducible or separable over F .

◦ In general, if ζn is any primitive nth root of unity, then F (ζn)/F is the splitting �eld of Φn(x) and if
Φn(x) is separable, it will be Galois with cyclic Galois group.

4.3.5 Constructible Numbers and Regular Polygons

• Using the fundamental theorem of Galois theory, we can also give another characterization of constructible
numbers, which will serve as a prototype for our work later on solvability in radicals:

• Theorem (Constructible Numbers): The number α ∈ C is constructible over Q if and only if the Galois group
of its minimal polynomial over Q has order a power of 2.

◦ Proof: Suppose the minimal polynomial α over Q is m(x). Let K be the splitting �eld of m(x) over Q
and suppose Gal(K/Q) = G.

◦ If α is constructible, we have a tower of quadratic extensions Q = K0 ⊆ K1 ⊆ · · · ⊆ Kd with [Ki+1 :
Ki] = 2 and α ∈ Kd.

◦ If L is any Galois extension of Q containing Kd, then KL/Q is also Galois. For any σ ∈ Gal(KL/Q),
we have a tower of quadratic extensions Q = σ(K0) ⊆ σ(K1) ⊆ · · · ⊆ σ(Kd) with [σ(Ki+1) : σ(Ki)] = 2
and σ(α) ∈ Kd.

◦ Thus, all Galois conjugates of α over Q are constructible. It is then an easy induction to see that if
α1, . . . , αn are the roots of m(x), then [Q(α1, . . . , αk) : Q(α1, . . . , αk−1)] is a power of 2 for each k, and
hence |G| = [K : Q] = [Q(α1, . . . , αn) : Q] is also a power of 2, as claimed.

◦ For the converse, suppose |G| = 2n. We �rst show by induction on n that there exists a chain of subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gn = {e} such that [Gi : Gi+1] has order 2 for each i.

◦ The base case n = 1 is trivial, since we have the obvious chain G = G0 ≥ G1 = {e}.
◦ For the inductive step, we recall that there is at least one nonidentity element of G in the center Z(G)
of G. By taking an appropriate power we may assume z ∈ Z(G) has order 2: then the subgroup 〈z〉 has
order 2 and is normal in G.

◦ The quotient group G = G/ 〈z〉 therefore has order 2n−1 so by the inductive hypothesis it has a chain of
subgroups G = G0 ≥ G1 ≥ · · · ≥ Gn−1 = {e} where [Gi : Gi+1] = 2 for each i.

◦ Then by the fourth isomorphism theorem, we may lift each of the Gi to a subgroup Gi of G containing
〈z〉 with Gi/Gi+1

∼= Gi/Gi+1.

◦ We then have a chain of subgroups G = G0 ≥ G1 ≥ · · · ≥ Gn−1 = 〈z〉 ≥ Gn = {e} with [Gi : Gi+1] = 2
for each i, as required.

◦ Finally, apply the fundamental theorem of Galois theory to this chain of subgroups: we obtain a chain
of sub�elds Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K with [Ki+1 : Ki] = 2 for each i. Since α ∈ K, this shows α
lies in a tower of quadratic extensions and is therefore constructible, as claimed.
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• As an immediate application we can characterize the constructible regular n-gons:

• Corollary (Constructible n-gons): The regular n-gon is constructible by straightedge and compass if and only

if ϕ(n) is a power of 2, if and only if n is a power of 2 times a product of distinct primes of the form 22
k

+ 1
for some integer k.

◦ Proof: As we showed, the regular n-gon is constructible if and only if cos(2π/n) is constructible, and it
is easy to see that since [Q(ζn) : Q(ζn + ζ−1n )] = 2, that cos(2π/n) is constructible if and only if ζn is
constructible.

◦ Then since Q(ζn)/Q is a Galois extension with Galois group (Z/nZ)× of order ϕ(n), the result above
shows that ζn is constructible precisely when ϕ(n) is a power of 2.

◦ The second statement follows by considering the prime factorization n = pa11 · · · p
ak
k of n: since ϕ(n) =

ϕ(pa11 ) · · ·ϕ(pakk ) we see ϕ(paii ) = pai−1i (pi − 1) must be a power of 2, which requires either pi = 2 or
ai = 1 and pi − 1 to be a power of 2.

◦ In the latter case (requiring p = 2k + 1) then if k has an odd prime factor d then 2k + 1 is divisible by

2d + 1 and is therefore not prime. Hence the only primes of this form are 22
k

+ 1 for some integer k, as
claimed.

◦ Remark: The primes of the form pn = 22
n

+ 1 are called Fermat primes. Fermat conjectured that all of
these numbers were prime based on the fact that p0 = 3, p1 = 5, p2 = 17, and p3 = 65537 are prime;
however, p4 was shown to be composite by Euler. The numbers p5 through p32 have subsequently been
proven composite, and it is now unknown whether there are any other Fermat primes at all!

4.4 Galois Groups of Polynomials

• If K/F is a Galois extension and we have an explicit description of the action of Gal(K/F ) on the elements of
K, we have described in detail how to use the fundamental theorem of Galois theory to compute intermediate
�elds and minimal polynomials of elements.

◦ However, all of this discussion presupposes our ability to compute the Galois group and its action on K.

◦ If K is described only as the splitting �eld of a polynomial p(x) ∈ F [x], it is not generally obvious how
to determine the Galois group nor even how to compute the degree K/F .

◦ Our goal in this section is to describe methods for computing Galois groups of general polynomials (recall
that the Galois group of p(x) over F is simply the Galois group of the splitting �eld).

◦ Since this can become quite di�cult when the degree of the polynomial is large, we will focus primarily
on polynomials of small degree.

• As we have previously observed, if p(x) ∈ F [x] is a separable polynomial of degree n with splitting �eld K,
then any σ ∈ Gal(K/F ) is completely determined by its permutation of the roots of p.

◦ If we �x an ordering of the roots, then we obtain an injective homomorphism from Gal(K/F ) into the
symmetric group Sn, and so we may view the Galois group interchangeably with its image in Sn.

◦ For example, for p(x) = (x2 − 2)(x2 − 3)(x2 − 6) over Q, the splitting �eld is K = Q(
√

2,
√

3) with
Galois group generated by the automorphisms σ and τ with σ(

√
2,
√

3) = (−
√

2,
√

3) and τ(
√

2,
√

3) =
(
√

2,−
√

3).

◦ If we label the six roots {
√

2,−
√

2,
√

3,−
√

3,
√

6,−
√

6} as {1, 2, 3, 4, 5, 6}, then σ corresponds to the per-
mutation (1 2)(5 6), τ corresponds to the permutation (3 4)(5 6), and στ corresponds to the permutation
(1 2)(3 4).

• We also observe that automorphisms must act as permutations on the roots of the irreducible factors of p(x).

◦ Thus, we may study the action of each element of Gal(K/F ) on the roots of each irreducible factor of
p(x) separately.

◦ If q(x) is an irreducible factor of p(x) of degree m, then as we have shown, the roots of q(x) are all Galois
conjugates.
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◦ Thus, the Galois group permutes the roots of q(x) transitively, meaning that for any roots α, β of q(x),
there is some σ ∈ Gal(K/F ) with σ(α) = β.

◦ In particular, if p(x) is itself irreducible, then Gal(K/F ) must be a transitive subgroup of Sn. This
information reduces (rather substantially) the number of possibilities.

4.4.1 Symmetric Functions

• We �rst analyze the Galois group of a �generic� polynomial, which requires studying the relationship between
the coe�cients of a polynomial and its roots.

◦ If p(t) = tn+an−1t
n−1+· · ·+a0 is monic and has roots x1, x2, . . . , xn, then p(t) = (t−x1)(t−x2) · · · (t−xn).

◦ Expanding out and comparing coe�cients shows that an−1 = −(x1 + x2 + · · · + xn), an−2 = x1x2 +
x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn, ... , and a0 = (−1)nx1x2 · · ·xn.
◦ The functions of the xi appearing in the coe�cients are symmetric functions in the roots:

• De�nition: If x1, . . . , xn are �xed indeterminates, then for 1 ≤ k ≤ n, the kth elementary symmetric function
sk in x1, . . . , xn is given by the sum of all products of the xi taken k at a time. Explicitly, we have

s1 = x1 + x2 + x3 + · · ·+ xn

s2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn

s3 = x1x2x3 + · · ·+ xn−2xn−1xn
...

...
...

sn = x1x2x3 · · ·xn

◦ From the discussion above, we see that if p(t) is monic and has roots x1, x2, . . . , xn, then p(t) = (t −
x1)(t− x2) · · · (t− xn) = tn − s1tn−1 + s2t

n−2 + · · ·+ (−1)nsn.

• If F is any �eld, this means that the �eld F (x1, x2, . . . , xn) is a Galois extension of F (s1, s2, . . . , sn), since
it is the splitting �eld of the polynomial p(t) = tn − s1tn−1 + s2t

n−2 + · · · + (−1)nsn. Our �rst goal is to
determine the Galois group of this extension:

• Proposition (Generic Galois Group): The �eld F (x1, x2, . . . , xn) is a Galois extension of F (s1, s2, . . . , sn)
whose degree is n! and whose Galois group is isomorphic to Sn. Explicitly, the isomorphism is provided by
the group action of Sn on F (x1, x2, . . . , xn) via index permutation.

◦ Proof: As noted above, the extension is Galois because it is the splitting �eld of the polynomial p(t) =
tn − s1tn−1 + s2t

n−2 + · · ·+ (−1)nsn. Let G be the Galois group.

◦ As we have discussed previously, Sn acts on F [x1, . . . , xn] via index permutation, with the action given
by σ · p(x1, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)). It is easy to see that this action is also well-de�ned on
rational functions.

◦ Furthermore, each of the elementary symmetric functions s1, s2, . . . , sn is invariant under any permutation
of the variable indices, so F (s1, s2, . . . , sn) is �xed under this action, and therefore is an automorphism
of F (x1, x2, . . . , xn)/F (s1, s2, . . . , sn).

◦ This means Sn is (isomorphic to) a subgroup ofG, since the only permutation map �xing F (x1, x2, . . . , xn)
is the identity permutation.

◦ In particular, we see |G| ≥ |Sn| = n!, and therefore [F (x1, x2, . . . , xn) : F (s1, s2, . . . , sn)] = |G| ≥ n!.

◦ On the other hand, because F (x1, x2, . . . , xn) is the splitting �eld of the degree-n polynomial p(t) over
F (s1, s2, . . . , sn), we see that [F (x1, x2, . . . , xn) : F (s1, s2, . . . , sn)] ≤ n! by our bounds on the degree of
a splitting �eld.

◦ Therefore, we must have equality, so [F (x1, x2, . . . , xn) : F (s1, s2, . . . , sn)] = n!.

◦ Then |G| = n! = |Sn|, and the elements of G are precisely the automorphisms induced by index permu-
tations, so that G ∼= Sn.
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• As a corollary, we obtain the following classical result about symmetric functions:

• Corollary (Symmetric Functions): If p(x1, x2, . . . , xn) is a rational function over a �eld F that is symmetric
in the variables x1, x2, . . . , xn, then it is a rational function in the symmetric functions s1, s2, . . . , sn.

◦ As an example, the function p(x1, x2, x3) = x31 + x32 + x33 is symmetric in x1, x2, and x3, and indeed one
can verify that p(x1, x2, x3) = s31 − 3s1s2 + 3s3.

◦ Proof: Let L = F (x1, x2, . . . , xn) and K = F (s1, s2, . . . , sn). If p(x1, x2, . . . , xn) is a rational function
that is symmetric in x1, x2, . . . , xn, then it lies in the �xed �eld of G = Gal(L/K).

◦ But by our characterization of Galois extensions, the �xed �eld of G is simply the base �eld: thus, p is
an element of K, meaning that it is a rational function in s1, s2, . . . , sn.

◦ Remark: If p(x1, x2, . . . , xn) is a polynomial that is symmetric in the xi, then in fact one can show that
p is necessarily a polynomial function of the elementary symmetric functions.

• Our results above, loosely speaking, say that the Galois group of a �generic� degree-n polynomial is Sn, in
the sense that if the si are indeterminates, then the Galois group of p(t) = tn − s1tn−1 + · · · + (−1)nsn is
isomorphic to Sn.

◦ However, by itself, this result does not actually give any information about the Galois group for any
speci�c values of the parameters si.

◦ We would like to be able to �specialize� the choices of the si by setting them equal to speci�c elements
of the �eld F . However, choosing values for the si may introduce algebraic relations between them that
shrink the size of the Galois group.

◦ Over a �nite �eld, for example, no matter what values we choose for the coe�cients, the Galois group
will always be cyclic (since every extension of �nite �elds is Galois with cyclic Galois group), so for n ≥ 3
we will always obtain some �collapsing� of the Galois group structure from Sn.

◦ Over Q (or more generally �nite extensions of Q), however, a theorem of Hilbert known as Hilbert's
irreducibility theorem gives a su�cient condition for specializations not to collapse, in the sense that the
Galois group of the specialization will be isomorphic to the Galois group of the original �generic� family.

◦ In particular, by applying Hilbert's irreducibility theorem to the extension F (x1, x2, . . . , xn)/F (s1, s2, . . . , sn),
one may deduce that �most� specializations of the si at elements of Q will yield a polynomial with Galois
group Sn.

4.4.2 Discriminants of Polynomials

• If F is a �eld of characteristic not equal to 2, then we may �nd the roots of a degree-2 polynomial in F [x] via
the usual procedure of completing the square.

◦ Explicitly, if p(t) = at2 + bt + c, then p(t) = 0 is equivalent to a(t + b/(2a))2 + (c − b2/(4a)) = 0, and

then rearranging and extracting the square root yields the usual quadratic formula t =
−b±

√
b2 − 4ac

2a
.

◦ The nature of the roots is closely tied to the value of the discriminant D = b2 − 4ac: for example, the
polynomial has a repeated root (i.e., is inseparable) precisely when D = 0, and the roots generate the
extension F (

√
D), which has special properties when D is a perfect square.

◦ In terms of the roots r1 and r2 themselves, we can see that when p(t) is monic, D = (r1 − r2)2.

• We can generalize the idea of a discriminant to an arbitrary polynomial:

• De�nition: If x1, x2, . . . , xn are arbitrary, we de�ne the discriminant ∆(x1, . . . , xn) as the product∏n
i=1

∏n
j=i+1(xi−xj)2 =

∏
i<j(xi−xj)2, and we de�ne the discriminant ∆(p) of the polynomial p with roots

r1, . . . , rn (including multiplicities) to be ∆(r1, . . . , rn).

◦ When the terms are clear from context, we will often write the discriminant merely as ∆.

◦ Note that ∆(x1, . . . , xn) is a symmetric polynomial in the xi, and is thus an element of F [s1, . . . , sn].
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◦ In particular, this means that ∆(p) is a polynomial function in the coe�cients of p. However, since the
total degree of ∆ in the xi is n(n− 1), for large n the resulting expressions will be quite complicated.

◦ Even for the degree-3 polynomial p(t) = t3+at2+bt+c, the formula is ∆ = −27c2+18abc−4b3−4a3c+a2b2.

• We have also encountered the discriminant in our analysis of the alternating group An.

◦ Speci�cally, we showed that the square root of the discriminant
√

∆ =
∏
i<j(xi − xj) has the property

that σ(
√

∆) =
√

∆ for σ ∈ An, and σ(
√

∆) = −
√

∆ for σ 6∈ An.
◦ If the characteristic of F is not equal to 2, this means

√
∆ is not �xed by all of Sn, but its square is:

thus,
√

∆ generates a degree-2 extension of F (s1, s2, . . . , sn).

◦ Since [Sn : An] = 2, by the fundamental theorem of Galois theory, we conclude that
√

∆ generates the
�xed �eld of An.

• By applying this to speci�c polynomials, we obtain the following very useful fact:

• Proposition (An and Discriminants): If F is a �eld of characteristic not 2, and p(x) ∈ F [x] is any separable
polynomial, then the Galois group of p(x) is a subgroup of An if and only if

√
∆(p) ∈ F .

◦ Proof: As we remarked above, ∆ = ∆(p) is symmetric in the roots of p and is therefore �xed by every
element of the Galois group G of p.

◦ If we �x an ordering of the roots r1, . . . , rn of p, then
√

∆(p) =
∏
i<j(ri−rj) is an element of the splitting

�eld K.

◦ Then if σ is any element of the Galois group, we see that σ(
√

∆) = ε(σ) ·
√

∆, where ε(σ) is the sign of
the permutation that σ induces on the roots.

◦ Since the characteristic of F is not 2 (so that
√

∆ 6= −
√

∆) we see that σ �xes
√

∆ if and only if σ ∈ An.
◦ Thus, the Galois group is a subgroup of An if and only if every element of the Galois group �xes

√
∆,

which is in turn equivalent to saying that
√

∆ ∈ F .

4.4.3 Cubic Polynomials

• We now study degree-3 polynomials using the tools we have developed so far.

◦ If f(t) ∈ F [t] is a reducible degree-3 polynomial, everything reduces to the case of lower degree.

◦ If f(t) factors either as a product of 3 degree-1 terms, then the splitting �eld of f is F and the Galois
group is trivial.

◦ If f(t) factors as a product of a degree-1 term and an irreducible degree-2 term, then the splitting �eld
of p is a quadratic extension of F (obtained by solving the quadratic equation) and the Galois group is
Z/2Z.

• The interesting case is for an irreducible polynomial, so suppose f(t) = t3 − a1t2 + a2t− a3 is an irreducible
cubic polynomial in F [t] with splitting �eld K.

◦ If f has roots β1, β2, β3, then since a1 = s1 is the sum of the roots, we have β3 = a1 − β1 − β2. Thus,
K = F (β1, β2, β3) = F (β1, β2).

◦ We therefore have a tower of extensions F ⊂ F (β1) ⊆ F (β1, β2) = K, where [F (β1) : F ] = 3 and
[K : F (β1)] ≤ 2.

◦ Since p is irreducible, the Galois group of f is a transitive subgroup of S3. It is easy to see that there
are only two such subgroups, namely S3 and A3, and from our discussion above, we can tell these cases
apart by looking at the discriminant (as long as the characteristic of F is not 2).

◦ When the Galois group is A3, this means that if α is any root of f in K, then K = F (α). (In particular,
the other roots of f will be polynomials in α.) Furthermore, there are no proper nontrivial intermediate
�elds of K/F since A3 has no nontrivial proper subgroups.
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◦ When the Galois group is S3, there are nontrivial proper subgroups, which (by the Galois correspondence)
correspond to intermediate �elds: speci�cally, there is the quadratic sub�eld of K �xed by A3 (which by
our discussion is generated by the square root of the discriminant), and also the three cubic sub�elds of
K each �xed by a transposition (each of which will be generated by one of the three roots of f).

• We summarize these observations in the following proposition:

• Proposition (Galois Groups of Cubics): If F is a �eld of characteristic not equal to 2 and f(t) = t3 − a1t2 +
a2t− a3 is an irreducible cubic polynomial in F [t], then the Galois group of p is either A3 or S3, and it is A3

precisely when the discriminant ∆(p) = −27a23 + 18a1a2a3 − 4a32 − 4a31a3 + a21a
2
2 is a square in F .

◦ Proof: As noted above, if f is irreducible then the Galois group is a transitive subgroup of S3, hence is
either S3 or A3. By our results on discriminants, it is A3 precisely when the discriminant is a square in
F .

◦ To compute the formula for the discriminant, if the characteristic of F is not 3, we may make a change
of variables y = t− a1/3 and then analyze the polynomial g(y) = y3 + py + q where p = a2 − a31/3 and
q = (−2/27)a31 + a1a2/3− a3 are F -rational polynomials in the original coe�cients.

◦ Since the roots of g are translates of the roots of f , the discriminants of f and g are the same (since the
discriminant only involves the pairwise di�erences of the roots).

◦ Since ∆(g) is a symmetric polynomial of homogeneous degree 6 (i.e., every term has degree 6) in its roots
r1, r2, r3, it is a polynomial in s1, s2, s3, and since s1 = 0 we may ignore it. Since s2 is homogeneous of
degree 2 and s3 is homogeneous of degree 3, we must have ∆(g) = c1 · s32 + c2 · s23 since these are the only
homogeneous polynomials in s1, s2, s3 of degree 6.

◦ We may compute c1 and c2 by picking values for r1, r2, r3 and then comparing the value of ∆(s) to
c1 · s32 + c2 · s23. Choosing, for example, (r1, r2, r3) = (−1, 0, 1) and (−2, 1, 1) leads to the equations
4 = c1(−1)3 + c2(0) and 0 = c1(−3)3 + c2(−2)2, whence c1 = −4 and c2 = −27.

◦ Hence ∆(f) = ∆(g) = −4p3 − 27q2, and then plugging back in for a1, a2, a3 and simplifying eventually
yields the given formula (which one may verify is also correct in characteristic 3).

• The technique employed in the proof above, of making a change of variables to simplify the form of the cubic
equation, is very useful and will allow us to reduce (sometimes, greatly) the amount of computation required
in examples.

• Example: Find the Galois group of f(t) = t3 − 3t+ 1 over Q and identify all sub�elds of its splitting �eld.

◦ This cubic is irreducible over Q since it has no roots by the rational root test.

◦ Using the formula from the (proof of) the proposition, we see that ∆(f) = 4 · 33 − 27 = 81. Since this is

a perfect square in Q, the Galois group is A3 .

◦ Since the splitting �eld has degree 3, its only sub�elds are itself and Q.
◦ After some e�ort, one may show that if α is a root of f then so is α2 − 2. Hence, if α is one root of f ,
then the others are α2 − 2 and (α2 − 2)2 − 2 = −α2 − α− 2.

• Example: Find the Galois group of f(t) = t3 + t+ 1 over Q and identify all sub�elds of its splitting �eld.

◦ This cubic is is irreducible over Q since it has no roots by the rational root test.

◦ Using the formula from the (proof of) the proposition, we see that ∆(f) = −4 · 13 − 27 = −31. Since

this is not a perfect square in Q, the Galois group is S3 .

◦ By the fundamental theorem of Galois theory, there is a unique quadratic sub�eld of the splitting �eld,
namely Q(

√
D) = Q(

√
−31).

◦ There are also three conjugate degree-3 sub�elds, namely, Q(β1), Q(β2), and Q(β3) where β1, β2, β3 are
the three roots of f .

◦ Another way of seeing that the Galois group must be S3 is that by calculus, the polynomial has one real
root and two (necessarily) complex-conjugate roots. Therefore, complex conjugation is an element of the
Galois group that transposes two of the roots (hence has order 2), so the Galois group must be S3.
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• Although we have computed the Galois group of an arbitrary cubic, the results do not actually give us an
explicit description of the �elds of interest, since we do not have formulas for the roots.

◦ The problem of �nding a general formula for the roots of a cubic equation was considered by the ancient
Egyptians and Greeks (one aspect of which was the attempt to construct cube roots using straightedge
and compass, as we have previously discussed), and also by a number of later mathematicians.

◦ Ultimately, the story of how the cubic formula was eventually publicized is rather convoluted, and we
will brie�y summarize it.

◦ Minimal progress was made on solving the cubic until the early 1500s, when del Ferro discovered a
method for solving cubics of the form t3 + pt = q. However, due to the nature of Renaissance patronage,
he did not publicize his method, but only taught it to his student Fior.

◦ In 1535, Fior in turn challenged another scholar, Niccolo Fontana (nicknamed Tartaglia due to a physical
deformity), who eventually (re)discovered the solution to the cubic, and (again, as was normal at the
time) kept it a secret.

◦ Eventually, Gerolamo Cardano (an avid astrologer and gambler who at one time was one of the most
well-regarded physicians in Europe, who was eventually jailed for heresy and then pardoned by the Pope)
was able, after repeated entreaties and vows never to reveal Tartaglia's method, to coax Tartaglia into
revealing it.

◦ Cardano was then able to extend Tartaglia's method to solve the general cubic equation, and eventually
took a student, Ludovico Ferrari, who was able to extend Cardano's techniques to solve degree-4 equa-
tions. Cardano and Ferrari eventually discovered that del Ferro had solved the cubic prior to Tartaglia's
discovery of the solution, and published his generalization in 1545, giving credit to del Ferro, Fior, and
Tartaglia. (Despite receiving proper attribution, Tartaglia nonetheless felt betrayed by Cardano, despite
the fact that del Ferro had developed the technique prior to Tartaglia.)

• We will present a solution of the cubic similar to Cardano's (and presumably, also to Tartaglia's).

• Theorem (Cardano's Formulas): If the characteristic of F is not 2 or 3, and the polynomial g(t) = t3 + pt+ q

is irreducible and separable over F , then for A =
3

√
−q

2
+

√
q2

4
+
p3

27
and B =

3

√
−q

2
−
√
q2

4
+
p3

27
with

cube roots chosen so that AB = −p/3, the three roots of g are A + B, ζ3A + ζ23B, and ζ
2
3A + ζ3B, where

ζ3 = −1

2
+

1

2

√
−3 is a primitive 3rd root of unity over F .

◦ Proof: From the algebraic identity (x+ y)3 − 3xy(x+ y) = x3 + y3, we can see that if we take x+ y = t,
3xy = −p, and x3 + y3 = −q, then the identity becomes t3 + pt+ q = 0.

◦ The equation 3xy = −p implies y = −p/(3x), and then x3 + y3 = −q becomes x3 − p3/(27x3) = −q,

whence x6 + qx3 − p3

27
= 0. (Note that we need the characteristic not to be 3, in order to divide by 27.)

◦ This is a quadratic in x3, so solving yields x3 = −q
2
±
√
q2

4
+
p3

27
and then y3 = −q−x3 = −q

2
∓
√
q2

4
+
p3

27
.

(Note that we are using the fact the characteristic is not 2 to invoke the quadratic formula here.)

◦ Since we may interchange x and y, let us assume x3 = −q
2

+

√
q2

4
+
p3

27
and y3 = −q

2
−
√
q2

4
+
p3

27
.

◦ Then there are three possible values for x, namely x = ζk3
3

√
−q

2
+

√
q2

4
+
p3

27
, and since we must also

have 3xy = p, any choice of x yields a unique value for y, namely y = ζ2k3
3

√
−q

2
−
√
q2

4
+
p3

27
.

◦ Thus, we obtain the claimed solutions t = ζk3
3

√
−q

2
+

√
q2

4
+
p3

27
+ζ2k3

3

√
−q

2
−
√
q2

4
+
p3

27
for k ∈ {0, 1, 2}.

• Example: Find the roots of the cubic f(t) = t3 + t+ 1 over Q.
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◦ By Cardano's formulas, we compute A =
3

√
−1

2
+

√
31

108
and B =

3

√
−1

2
+

√
31

108
.

◦ Thus, the three roots of f are A+B, ζ3A+ ζ23B, and ζ
2
3A+ ζ3B.

• Example: Find the roots of the cubic f(t) = t3 − 3t+ 1 over Q.

◦ By Cardano's formulas, we compute A =
3

√
−1

2
+

√
−3

4
and B =

3

√
−1

2
−
√
−3

4
.

◦ Thus, the three roots of f are A+B, ζ3A+ ζ23B, and ζ
2
3A+ ζ3B.

◦ For this polynomial we can compute more explicit descriptions of the roots, since the term under the

cube root for A is −1

2
+

√
−3

2
= ζ3, while the term under the cube root for B is ζ23 .

◦ Then we have A = 3
√
ζ3 = ζ9 while B = ζ89 (note that we must choose the cube roots so that AB = 1).

◦ Hence the roots are in fact A + B = ζ9 + ζ89 = 2 cos(2π/9), ζ3A + ζ23B = ζ49 + ζ59 = 2 cos(8π/9), and
ζ23A+ ζ3B = ζ79 + ζ29 = 2 cos(4π/9).

• In the second example above, notice that all of the original expressions for the roots from Cardano's formulas
involved complex numbers, even though all of the roots are real.

◦ In fact, this will always be the case when the polynomial has three real roots: if all three roots are real,
then

√
∆ is also clearly real (since it is a polynomial in the roots), and so ∆ is a nonnegative real number.

◦ But in Cardano's formulas, we have A =
3

√
−q

2
+

√
q2

4
+
p3

27
= 3

√
−q

2
+
√
−∆, and likewise B also

involves
√
−∆.

◦ On the other hand, if the polynomial has two complex-conjugate roots, then in fact ∆ will always be
negative: to see this, suppose the roots are x+ iy, x− iy, w with x, y, w real.

◦ Then
√

∆ = (2iy)(x+ iy−w)(x− iy−w) = (2iy)[(x−w)2 +y2] is purely imaginary, and so ∆ is negative.

◦ As a coda to the tortuous history of the cubic, we will remark that it is this perplexing appearance of
square roots of negative numbers in the formulas for real solutions to cubic equations that led to the
initial development of complex numbers in mathematics.

◦ To illustrate, for the cubic p(t) = t3 − 15 − 4, Cardano's formulas give A = 3
√

2 +
√
−121 and B =

3
√
−2 +

√
−121, even though one may verify that the three roots of this cubic are the real numbers 4

and −2±
√

3.

◦ To resolve this di�culty, Bombelli in 1572 observed that one may formally compute (2 ±
√
−1)3 =

±2 +
√
−121, and so one may take A = 2 +

√
−1 and B = 2−

√
−1 to obtain the correct root A+B = 4.

◦ It turns out to be impossible to give general formulas involving only real radicals for the solutions of
irreducible cubics with ∆ < 0, and so resolving this di�culty could only be achieved by working with
non-real numbers.

4.4.4 Quartic Polynomials

• Wemay use similar techniques to analyze degree-4 polynomials, although because S4 has many more subgroups
than S3, there are numerous possible Galois groups.

◦ As before, if the polynomial is reducible then we may reduce to lower-degree cases, so assume that the
polynomial f(t) = t4 − a1t3 + a2t

2 − a3t+ a4 is an irreducible quartic polynomial in F [t] with splitting
�eld K.

◦ As in the cubic case, if β1, β2, β3, β4 are the roots of f , then β4 = a1−β1−β2−β3 and soK = F (β1, β2, β3).

◦ In this case we obtain a tower of extensions F ⊂ F (β1) ⊆ F (β1, β2) ⊆ F (β1, β2, β3) = K, where
[F (β1) : F ] = 4, [F (β1, β2) : F (β1)] ≤ 3, and [K : F (β1, β2)] ≤ 2.
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◦ By making a substitution y = t − a1/4, as with the cubic, we may equivalently analyze the polynomial
g(y) = y4 + py2 + qy + r, which will have the same Galois group and discriminant as f .

◦ A brief search will reveal that there are �ve possible isomorphism classes for the Galois group of g as
transitive subgroups of S4, namely, S4, A4, D2·4, C4 (the cyclic group of order 4), and V4 (the Klein
4-group). As explicit permutation groups, one can write D2·4 = 〈(1 2 3 4), (1 3)〉, C4 = 〈(1 2 3 4)〉, and
V4 = 〈(1 2)(3 4), (1 3)(2 4)〉.
◦ By using the discriminant we can distinguish some possibilities: if the discriminant is a square, then the
Galois group is a subgroup of A4, and it is easy to see that there are two such subgroups: A4 and V4. If
the discriminant is not a square, then the Galois group is one of the others: S4, D2·4, and C4.

• To di�erentiate further between these possibilities, we may study other functions of the roots that are not
�xed by all the elements in S4.

◦ As �rst described by Lagrange, one method is to consider the elements θ1 = (β1 + β2)(β3 + β4), θ2 =
(β1 + β3)(β2 + β4), and θ3 = (β1 + β4)(β2 + β3).

◦ These elements are permuted by S4, and the stabilizer of each individual element is a dihedral subgroup
of S4: for example, θ2 is stabilized by the dihedral subgroup 〈(1 2 3 4), (1 3)〉 we wrote earlier, while
the others are stabilized by appropriate conjugate subgroups. The stabilizer of all three elements is the
Klein-four group V4.

◦ Since θ1, θ2, θ3 are permuted by S4, their elementary symmetric functions are �xed by S4, and so the
cubic polynomial whose roots are θ1, θ2, θ3 is �xed by the entire Galois group, so its coe�cients lie in F .8

◦ Wemay then compute θ1+θ2+θ3 = 2s2, θ1θ2+θ1θ3+θ2θ3 = s1s3+s22−4s4, and θ1θ2θ3 = s21s2s3−s21s4−s23.
◦ Since s1 = 0, this means that θ1, θ2, θ3 are the three roots of the polynomial h(z) = z3 − 2pz2 + (p2 −

4r)z + q2, which is called the resolvent cubic of g(y).

◦ Very conveniently, the discriminant of this cubic is the same as the discriminant of the quartic, since
(θ1 − θ2)2 = (β1 − β4)2(β2 − β3)2 and likewise for the other two squared di�erences. (In particular, we
see that the elements θi are distinct as long as the βi are.)

◦ If we can �nd the factorization of the resolvent cubic over F , then this will yield information about
whether the elements θi are in F , which in turn gives information about the possible elements in the
Galois group.

• Theorem (Galois Groups of Quartics): Suppose F has characteristic not 2 or 3, and let f(y) = y4+py2+qy+r
be an irreducible separable quartic over F with associated resolvent cubic g(z) = z3 − 2pz2 + (p2 − 4r)z + q2

and discriminant ∆ = ∆(f) = ∆(g). Then the Galois group of f is one of S4, A4, D2·4 ∼= 〈(1 2 3 4), (1 3)〉,
C4
∼= 〈(1 2 3 4)〉, and V4 = 〈(1 2)(3 4), (1 3)(2 4)〉. More speci�cally:

1. The Galois group is V4 if and only if ∆ is a square in F and the resolvent cubic splits completely over F .

2. The Galois group is A4 if and only if ∆ is a square in F and the resolvent cubic has no roots in F .

3. The Galois group is S4 if and only if ∆ is not a square in F and the resolvent cubic has no roots in F .

4. The Galois group is C4 if and only if ∆ is not a square in F , the resolvent cubic has exactly one root r′

in F , and the polynomials x2 + r′ and x2 + (r′ − p)x+ r both split over F (
√

∆).

5. The Galois group is D2·4 if and only if ∆ is not a square in F , the resolvent cubic has exactly one root
in F , and at least one of the polynomials x2 + r′ and x2 + (r′ − p)x+ r is irreducible over F (

√
∆).

◦ Remark: The condition di�erentiating C4 and D2·4 is a result due to Kappe and Warren from 1989.
There is a more classical condition (speci�cally, whether f(y) splits over F (

√
∆)) that is harder to check

that can also tell these groups apart.

8If one has the idea of trying to construct a cubic polynomial with coe�cients in F whose roots θ1, θ2, θ3 are functions of β1, β2, β3, β4,
then since θ1, θ2, θ3 would be Galois conjugates, the stabilizer of any one of them would necessarily be a subgroup of S4 of index 3 (i.e.,
of order 8) and the only such subgroups of S4 are dihedral groups of order 8. If one chooses a speci�c one of these dihedral subgroups,
say 〈(1 2 3 4), (1 3)〉, then the corresponding element θ must be a function of β1, β2, β3, β4 that is �xed by both generators but not by
all of S4. There is no such function of degree 1, but there are essentially two choices of degree 2 given by θ = (β1 + β3)(β2 + β4) and
θ = β1β3 + β2β4.
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◦ Implicit in our characterization is the fact that no other scenarios (e.g., ∆ being a square and the resolvent
cubic having exactly one root in F ) can occur.

◦ We will also remark that the most e�cient way to compute the discriminant ∆ is to use the formula for
the discriminant of the cubic g(z).

◦ Proof: As we have shown above, if β1, β2, β3, β4 are the roots of f(y), then the roots of the resolvent
cubic g(z) are θ1 = (β1 + β2)(β3 + β4), θ2 = (β1 + β3)(β2 + β4), and θ3 = (β1 + β4)(β2 + β3), and that
∆(p) = ∆(g).

◦ As we have also noted, up to conjugacy the only transitive subgroups of S4 are S4, A4, D2·4, C4, and V4,
so the Galois group G must be one of these.

◦ First suppose that ∆ is a square: then the Galois group is one of A4 and V4.

◦ If the resolvent cubic has all its roots in F , then all three of the θi are in F , meaning that they are �xed
by G. Since the only elements of S4 �xing each of θ1, θ2, θ3 are the elements of the Klein 4-group V4, this
means G ⊆ V4, hence G = V4

◦ If the resolvent cubic does not have all its roots in F , then the only possibility is to have G = A4. In this
case, none of the θi is �xed by all of G (since the stabilizer of any given θi is a dihedral group of order
8), and so none of them lies in F .

◦ Now suppose ∆ is not a square: then the Galois group is one of S4, D2·4, and C4.

◦ If the resolvent cubic has no roots in F and ∆(g) is not a square, the Galois group of the resolvent cubic
is S3: thus, the degree [K : F ] is divisible by 6, meaning that |G| is divisible by 6. The only possibility
here is that G = S4.

◦ It is not possible for the resolvent cubic to split completely over F , since then the Galois group would
stabilize each of the θi hence be contained in V4.

◦ Thus, the only remaining case is that the resolvent cubic factors over F as the product of a degree-1 and
an irreducible degree-2 polynomial (i.e., it has exactly one root in F ), and in this case the Galois group
is either D2·4 or C4.

◦ To distinguish between these, notice that F (
√

∆) is the �xed �eld of G∩A4 by the fundamental theorem
of Galois theory.

◦ Now let r′ be the root of g in F and assume that G contains the 4-cycle (1 2 3 4), so that it is either
C4 = 〈(1 2 3 4)〉 or D2·4 = 〈(1 3), (1 2 3 4)〉: then r′ = (β1 + β3)(β2 + β4) since this is the only θi �xed by
(1 2 3 4).

◦ If the Galois group is C4 then the unique quadratic sub�eld of K/F is F (
√

∆), and is also the �xed �eld
of the subgroup 〈(1 3)(2 4)〉. Then the roots of the two polynomials (x−(β1+β3))(x−(β2+β4)) = x2+r′

and (x− β1β3)(x− β2β4) = x2 + (r′ − p) + r are both �xed by this subgroup, and hence lie in F (
√

∆).
In other words, these polynomials both split over F (

√
∆).

◦ If the Galois group is D2·4 then F (β1) = F (β3) is the �xed �eld of 〈(2 4)〉 and F (
√

∆) is the �xed �eld of
〈(1 2)(3 4), (1 3)(2 4)〉, since the given elements are �xed by the indicated subgroups (the latter because
it lies inside A4) and the �elds have the correct degrees.

◦ Now consider the two polynomials (x−(β1+β3))(x−(β2+β4)) and (x−β1β3)(x−β2β4): we claim that at
least one is irreducible over F (

√
∆). Otherwise, both β1 +β3 and β1β3 would be elements of F (

√
∆), and

then F (
√

∆) would be a sub�eld of F (β1) = F (β3). But this cannot occur because the �xing subgroup
of F (

√
∆), namely 〈(1 2)(3 4), (1 3)(2 4)〉, does not contain the �xing subgroup of F (β1) = F (β3), namely

〈(2 4)〉.
◦ Thus, if the Galois group is D2·4, at least one of the polynomials (x− (β1 +β3))(x− (β2 +β4)) = x2 + r′

and (x − β1β3)(x − β2β4) = x2 + (r′ − p) + r is irreducible over F (
√

∆). The converse conditions are
then immediate since these cases are disjoint.

• Example: Find the Galois group of f(y) = y4 − 2 over Q.

◦ This polynomial is irreducible by Eisenstein, and its resolvent cubic is g(z) = z3 + 8z with discriminant
∆ = −4 · 83 = −2048.

◦ Since the discriminant is not a square and the resolvent cubic factors as g(z) = z(z2 + 8) we see that the
Galois group is either C4 or D2·4.
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◦ To determine which of these it is, we see that the root of g(z) is r′ = 0, so we must test the reducibility
of x2 + r′ = x2 and x2 + (r′ − p)x+ r = x2 − 2 over Q(

√
−2048) = Q(

√
−2).

◦ Although the �rst polynomial is reducible, the second is irreducible over Q(
√
−2). Hence the Galois

group is the dihedral group D2·4 of order 8 (as we have shown previously by computing the action

explicitly on the splitting �eld).

• Example: Find the Galois group of f(y) = y4 + 8y + 12 over Q.

◦ One may verify by direct calculation that f is irreducible (it has no roots by the rational root test, and
also does not factor as the product of two integral quadratics).

◦ Then the resolvent cubic is g(z) = z3− 48z+ 64, with discriminant ∆ = −4(−48)3− 27(64)2 = 214 · 33−
33 · 212 = 212 · 34.
◦ Since the discriminant is a square, and the resolvent cubic has no rational roots (again via the rational

root test), by our criterion we conclude that the Galois group is A4 .

• Example: Find the Galois group of f(y) = y4 + 2y − 2 over Q.

◦ This polynomial is irreducible by Eisenstein, and its resolvent cubic is g(z) = z3+8z+4 with discriminant
∆ = −4 · 83 − 27 · 42 = −24 · 5 · 31.

◦ Since the discriminant is not a square, and the resolvent cubic has no rational roots (via the rational

root test), by our criterion we conclude that the Galois group is S4 .

• Example: Find the Galois group of f(y) = y4 − 14y2 + 9 over Q.

◦ One may verify by direct calculation that f is irreducible (it has no roots by the rational root test, and
also does not factor as the product of two integral quadratics).

◦ Then the resolvent cubic is g(z) = z3 + 28z2 + 160z = z(z+ 8)(z+ 2), with discriminant ∆ = 214 · 32 · 52.
◦ Since the discriminant is a square, and the resolvent cubic splits completely over Q, by our criterion we

conclude that the Galois group is V4 .

◦ In this case, we may compute the roots explicitly using the quadratic formula to solve for y2 and then
compute and simplify the square root: eventually, we can see that the roots are ±

√
2±
√

5.

• Example: Find the Galois group of f(y) = y4 + 5y + 5 over Q.

◦ This polynomial is irreducible by Eisenstein, and its resolvent cubic is g(z) = z3−20z+ 25 with discrim-
inant ∆ = −4 · (−20)3−27 ·252 = 53 ·112. Note that the resolvent cubic factors as (z+5)(z2−20z+25).

◦ Since the discriminant is not a square, and the resolvent cubic has a root, the Galois group is either C4

or D2·4.

◦ To determine which of these it is, we see that the root of g(z) is r′ = −5, so we must test the reducibility

of x2 + r′ = x2 − 5 and x2 + (r′ − p)x+ r = x2 − 10x+ 5 over Q(
√

53 · 112) = Q(
√

5).

◦ These quadratics both factor over Q(
√

5) since their roots are ±
√

5 and 5±2
√

5. Hence the Galois group

is C4 .

• By exploiting the resolvent cubic, we can extend Cardano's formulas to solve the general quartic as well.

◦ Explicitly, by Cardano's formulas, we may compute the solutions θ1, θ2, θ3 of the resolvent cubic.

◦ To �nd the roots β1, β2, β3, β4 of the original quartic, we must then solve the system θ1 = (β1 +β2)(β3 +
β4), θ2 = (β1 + β3)(β2 + β4), and θ3 = (β1 + β4)(β2 + β3).

◦ However, since β1+β2+β3+β4 = 0, we see that θ1 = −(β1+β2)2, θ2 = −(β1+β3)2, and θ3 = −(β2+β3)2.

◦ Taking the square roots then yields β1 + β2 = ±
√
−θ1, β1 + β3 = ±

√
−θ2, and β2 + β3 = ±

√
−θ3.

◦ The square roots are not independent, however, since we must also satisfy the relation (β1 + β2)(β1 +
β3)(β2 +β3) = −q, so the choice of any two determines the third. We may then easily compute β1, β2, β3
from the linear equations above, and then β4 = −β1 − β2 − β3.
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◦ In practice, the solutions obtained by this technique are su�ciently complicated that they are not espe-
cially useful (other than as a demonstration of the existence of a general formula for the roots).

◦ For example, for the quartic g(y) = y4 + 2y − 2 with resolvent cubic h(z) = z3 + 8z + 4, Cardano's

formulas yield A =
3

√
−2 +

√
620

27
and B =

3

√
−2−

√
620

27
, with both cube roots real for concreteness.

◦ Then the three roots of g are A+B, ζ3A+ ζ23B, and ζ
2
3A+ ζ3B, so we obtain an explicit root of f as

1

2

√√√√ 3

√
−2 +

√
620

27
+

3

√
−2−

√
620

27
+

1

2

√√√√ζ3
3

√
−2 +

√
620

27
+ ζ23

3

√
−2−

√
620

27
−1

2

√√√√ζ23
3

√
−2 +

√
620

27
+ ζ3

3

√
−2−

√
620

27
.

◦ One may verify that this value is approximately 0.34845− 1.24753i, which is indeed one of the roots of
f (as can be estimated numerically, e.g., via Newton's method).

4.4.5 Computing Galois Groups over Q

• We would like to extend our work on the Galois groups of cubic and quartic polynomials to higher degree.

◦ Unfortunately, there is a substantial computational obstruction to doing this, namely that we require
a description of the transitive subgroups of Sn in order to analyze the possible Galois groups of an
irreducible polynomial.

◦ When n is large or has many prime factors, there are very many transitive subgroups of Sn (since, for
example, any subgroup containing an n-cycle is automatically transitive) and there is no obvious method
for cataloguing them.

◦ Assuming that we do have a list of all of the transitive subgroups of Sn, and have veri�ed that a
polynomial f(t) ∈ F [t] is irreducible, then the Galois group of f must be one of the groups on our list.

◦ If we can somehow glean enough information about the permutations in this subgroup, in principle we
should be able to determine the Galois group exactly.

• If F is a sub�eld of R, one simple way we can obtain information is by looking at the action of complex
conjugation on the roots of f .

◦ Since the roots of f necessarily come in complex conjugate pairs, complex conjugation will act as a
product of k 2-cycles, where k is the number of conjugate pairs of roots.

◦ In some cases this is enough to show that the Galois group must actually be Sn.

• Example: Show that the Galois group of f(t) = t5 − 4t+ 2 over Q is S5.

◦ Since f(−2) = −14, f(0) = 2, f(1) = −1, and f(2) = 18, the intermediate value theorem implies that f
has at least 3 real roots.

◦ On the other hand, since f ′(t) = 5t4 − 4, we see that there are two values at which f ′(t) = 0 (namely
t = ± 4

√
4/5) and therefore by Rolle's theorem f can have at most 3 real roots. (Alternatively, one could

apply Descartes' rule of signs to see that f has at most 3 real roots.)

◦ Hence f has exactly 3 real roots, and thus also has 2 complex-conjugate roots.

◦ Then complex conjugation is an element of the Galois group that acts as a transposition.

◦ Furthermore, since f is irreducible by Eisenstein's criterion, any root generates an extension of degree 5
over Q.
◦ Thus by the fundamental theorem of Galois theory, the Galois group must have order divisible by 5, so
by Cauchy's theorem, it must contain an element of order 5. But the only elements of order 5 in S5 are
5-cycles, so G contains a 5-cycle.

◦ By relabeling we may assume the transposition is (1 2), and then by taking an appropriate power of the
5-cycle we may assume that 2 follows 1 in its cycle decomposition, and then by relabeling we may assume
it is (1 2 3 4 5).

◦ It is then straightforward to see that these elements generate S5, and so we must have G = S5.
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• We may obtain additional information about the cycle structures of elements in the Galois group by appealing
to the following theorem from algebraic number theory:

• Theorem (Dedekind-Frobenius): If f(t) ∈ Z[t] is irreducible with Galois group G over Q, then for any prime p
not dividing the discriminant ∆(f), if the mod-p reduction of f(t) factors over Fp as a product of terms having
degrees k1, k2, . . . , kd, then G contains a permutation having a cycle decomposition of lengths k1, k2, . . . , kd.

◦ There is a more general result about factorizations of ideals in certain rings due to Dedekind that contains
this fact as a special case.

◦ Using this theorem, we may therefore determine cycle types for elements of the Galois group by factoring
f(t) modulo p for many primes p.

◦ Furthermore, it follows from another theorem of algebraic number theory (the Chebotarev density theo-
rem) that the asymptotic proportion of primes for which f(t) factors into terms of degrees k1, k2, . . . , kd
is proportional to the number of permutations in G with cycle type k1, k2, . . . , kd.

◦ By computing the factorization of f(t) modulo p for a reasonably large number of primes p and tallying
the results, one may therefore identify an optimal candidate for the Galois group by comparing the
proportions of cycle types observed to the proportion of cycle types in the possible transitive subgroups
of Sn.

• We will now list the transitive subgroups of Sn for some smaller values of n (along with the distribution of
cycle types):

◦ There is a standard labeling of the transitive subgroups of Sn due to Conway, Hulpke, and McKay, which
we include with the tables. We also remark that many subgroups have (isomorphic) conjugates inside
Sn, and the list of generators is only one possibility among many.

◦ For degree 5, there are 5 transitive subgroups of S5, with generators and cycle types as follows:

# Order Name Generators 1 2 2,2 3 2,3 4 5
5T1 5 C5 (1 2 3 4 5) 1 4
5T2 10 D2·5 (1 2 3 4 5), (1 5)(2 4) 1 5 4
5T3 20 F20 (1 2 3 4 5), (1 2 4 3) 1 5 10 4
5T4 60 A5 (1 2 3), (3 4 5) 1 15 20 24
5T5 120 S5 (1 2 3 4 5), (1 2) 1 10 15 20 20 30 24

◦ For degree 6, there are 16 transitive subgroups of S6, with generators and cycle types as follows:

# Order Name Generators 1 2 2,2 2,3 2,4 2,2,2 3 3,3 4 5 6
6T1 6 C6 (1 2 3 4 5 6) 1 1 2 2
6T2 6 S3 (1 3 5)(2 4 6), (1 4)(2 3)(5 6) 1 3 2
6T3 12 S3 × C2 (1 2 3 4 5 6), (1 4)(2 3)(5 6) 1 3 4 2 2
6T4 12 A4 (1 4)(2 5), (1 3 5)(2 4 6) 1 3 8
6T5 18 F18 (2 4 6), (1 4)(2 5)(3 6) 1 3 4 4 6
6T6 24 A4 × C2 (3 6), (1 3 5)(2 4 6) 1 3 3 1 8 8
6T7 24 S4 (a) (1 4)(2 5), (1 3 5)(2 4 6), (1 5)(2 4) 1 9 6 8
6T8 24 S4 (b) (1 4)(2 5), (1 3 5)(2 4 6), (1 5)(2 4)(3 6) 1 3 6 8 6
6T9 36 S3 × S3 (2 4 6), (1 5)(2 4), (1 4)(2 5)(3 6) 1 9 6 4 4 12
6T10 36 F36 (2 4 6), (1 5)(2 4), (1 4 5 2)(3 6) 1 9 18 4 4
6T11 48 S4 × C2 (3 6), (1 3 5)(2 4 6), (1 5)(2 4) 1 3 9 6 7 8 6 8
6T12 60 A5 (1 2 3 4 6), (1 4)(5 6) 1 15 20 24
6T13 72 F36 o C2 (2 4 6), (2 4), (1 4)(2 5)(3 6) 1 6 9 12 18 6 4 4 12
6T14 120 S5 (1 2 3 4 6), (1 2)(3 4)(5 6) 1 15 10 20 30 24 20
6T15 360 A6 (1 2)(3 4 5 6), (1 2 3) 1 45 90 40 40 144
6T16 720 S6 (1 2 3 4 5 6), (1 2) 1 15 45 120 90 15 40 40 90 144 120

◦ For degree 7, there are 7 transitive subgroups of S7, with generators and some cycle types as follows (for
any cycle type not listed, S7 is the only transitive subgroup containing it):
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# Order Name Generators 1 2,2 2,4 2,2,2 2,2,3 3 3,3 5 6 7
7T1 7 C7 (1 2 3 4 5 6 7) 1 6
7T2 14 D2·7 (1 2 3 4 5 6 7), (2 7)(3 6)(4 5) 1 7 6
7T3 21 F21 (1 2 3 4 5 6 7), (1 2 4)(3 6 5) 1 14 6
7T4 42 F42 (1 2 3 4 5 6 7), (1 3 2 6 4 5) 1 7 14 14 6
7T5 168 PSL2(F7) (1 2 3 4 5 6 7), (1 2)(3 6) 1 21 42 56 48
7T6 2520 A7 (3 4 5 6 7), (1 2 3) 1 105 630 210 70 280 504 720
7T7 5040 S7 (1 2 3 4 5 6 7), (1 2) 1 105 630 105 210 70 280 504 840 720

◦ For degree 8, there are 50 transitive subgroups of S8. We will not list these, although we will mention that
there are two subgroups of order 96 (speci�cally, groups 8T32 and 8T33) that have the same collection
of cycle types appearing with the same frequencies.

◦ Here are the numbers9 of transitive subgroups of Sn for the values of n up through 23:

n 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

# Transitive Subgroups 34 45 8 301 9 63 104 1954 10 983 8 1117 164 59 7

• We can use these tables to compute probable Galois groups for irreducible polynomials of degree ≤ 7 by
computing the factorization of the polynomial modulo primes not dividing its discriminant and listing the
corresponding cycles that must appear in its Galois group. (We may also check whether the discriminant is
a square, which will tell us whether G is a subgroup of An.)

• Example: Determine the probable Galois group of f(t) = t5 − t2 − 2t− 3.

◦ We can compute that this polynomial has discriminant ∆ = 172 · 292, so its Galois group is a subgroup
of A5.

◦ Computing the factorization of f(t) modulo p for the 100 smallest primes excluding 17 and 29 yields the
following cycles:

Factorization Type 1 2 2,2 3 2,3 4 5

# Appearances 1 20 30 49

◦ The only transitive subgroup contained in A5 having these cycle types is A5 itself, so in fact we have
proven that the Galois group of this polynomial is A5.

◦ Note that the distribution of the factorization types matches fairly closely with the distribution of cycle
types in A5, as should be expected.

• Example: Determine the probable Galois group of f(t) = t5 − 5t2 − 3.

◦ We can compute that this polynomial has discriminant 32 · 56, so its Galois group is a subgroup of A5.

◦ Computing the factorization of f(t) modulo p for the 100 smallest primes excluding 3 and 5 yields the
following cycles:

Factorization Type 1 2 2,2 3 2,3 4 5

# Appearances 8 54 38

◦ The only transitive subgroups contained in A5 having these cycle types are D2·5 and A5.

◦ Since D2·5 has no 3-cycles (in contrast to S6, 1/3 of whose elements are 3-cycles) we would expect no
factorizations to have a 3-cycle if the Galois group were D2·5, while we would expect about 1/3 of them
to have a 3-cycle if the Galois group were A5.

◦ Since no 3-cycles appear in the computed factorizations, it seems overwhelmingly likely that the Galois
group is D2·5.

• Example: Determine the probable Galois group of f(t) = t6 − t5 − t2 + t+ 1.

◦ This polynomial has discriminant −33 · 433, so its Galois group is not a subgroup of A6.

9This information courtesy of John Jones' database of transitive groups at https://hobbes.la.asu.edu/Groups/ .

43



◦ Computing the factorization of f(t) modulo p for the 100 smallest primes excluding 3 and 433 yields the
following cycles:

Factorization Type 1 2 2,2 2,3 2,4 2,2,2 3 3,3 4 5 6

# Appearances 1 4 14 17 29 6 8 3 18

◦ There are only two transitive subgroups that contain cycles of each of these types: the subgroup 6T13
of order 72 and the subgroup 6T16 (which is S6).

◦ Since 6T16 has no 4-cycles or 5-cycles (in contrast to S6, roughly 1/3 of whose elements are 4-cycles
or 5-cycles), and no 4-cycles or 5-cycles appear in the computed factorizations, it seems overwhelmingly
likely that the Galois group is 6T13.

• Example: Determine the probable Galois group of f(t) = t7 − 7t+ 3.

◦ We can compute that this polynomial has discriminant 38 · 78, so its Galois group is a subgroup of A7.

◦ Computing the factorization of f(t) modulo p for the 100 smallest primes excluding 3 and 7 yields the
following cycles:

Factorization Type 1 2,2 2,4 2,2,2 2,2,3 3 3,3 5 6 7

# Appearances 15 32 32 21

◦ There are only two transitive subgroups contained in A7 that contain cycles of each of these types, namely
PSL2(F7) and A7.

◦ As above, since the observed factorization types match the cycles of PSL2(F7) very closely (in contrast
to A7, which also has 3-cycles, 2,2,3-cycles, and 5-cycles), the probable Galois group is PSL2(F7).

• Once a candidate for the Galois group has been identi�ed, it is then possible to construct resolvent polynomials
(similar to the resolvent cubic we used for the quartic) and then use information about their roots and
factorizations to eliminate all of the other possible Galois groups.

◦ For example, to establish that a particular polynomial of degree 5 has Galois groupD2·5 = 〈(1 2 3 4 5), (1 5)(2 4)〉
requires eliminating the possibility that the Galois group is A5 = 〈(1 2 3), (3 4 5)〉.
◦ One way to do this is to compute the resolvent polynomial whose roots are the S5-permutations of
β1β2 + β2β3 + β3β4 + β4β5 + β5β1, which in this case has degree 12 (since there are 11 other possible
results of permuting the indices, such as β1β3 + β2β4 + β3β5 + β4β1 + β5β2). This will di�erentiate
between D2·5 and A5 since D2·5 �xes several of these elements (so the resolvent polynomial will have a
rational root) but A5 does not.

◦ Notice that, unlike the case of the resolvent cubic for the quartic, the resolvent polynomial for D2·5
has degree 12, which much larger than the degree of the original quintic polynomial. (This is a typical
phenomenon when n ≥ 5.)

4.4.6 Solvability in Radicals

• We have described ways to compute Galois groups for polynomials of moderate degree, and a natural followup
is to try to �nd �formulas in radicals�, similar to the cubic and quartic formulas, for the roots of these
polynomials.

◦ Explicitly, we consider a formula in radicals to be one that is constructed via some combination of �eld
operations (addition, subtraction, multiplication, division) and extraction of nth roots.

◦ In order to do this, we need to study �eld extensions obtained by adjoining nth roots of elements.

• De�nition: If F is a �eld, the extension �eld K/F is a simple radical extension of K if K = F (β) for some β
with βn ∈ F for some n.

◦ For any a ∈ F we will write a1/n to denote an arbitrary choice of a root β of the polynomial xn − a in
an algebraic closure of F .

◦ Observe that for an arbitrary F , the extension F (a1/n) will not be Galois in general: its normal closure
will be the splitting �eld of xn − a over F , which is only equal to F (a1/n) when F (a1/n) contains the
nth roots of unity.
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◦ In particular, if F itself contains the nth roots of unity, then F (a1/n) will automatically be Galois over
F for any a ∈ F , as long as xn − a is separable (which occurs precisely when n is not divisible by the
characteristic of F and a 6= 0).

◦ In this case, any automorphism σ ∈ Gal(F (a1/n)/F ) is uniquely determined by the value of σ(a1/n) =
a1/nζ for some nth root of unity ζ.

◦ We may then essentially compute the Galois group Gal(F (a1/n)/F ), which turns out always to be cyclic.

• Theorem (Simple Radical Extensions): Let F be a �eld of characteristic not dividing n that contains the nth
roots of unity. Then for any a ∈ F×, the �eld F (a1/n)/F is Galois and its Galois group is cyclic of order
dividing n. Conversely, any cyclic Galois extension K/F of order dividing n has the form K = F (a1/n) for
some a ∈ F .

◦ Proof: First suppose a ∈ F×. If F contains the nth roots of unity, then F (a1/n) is the splitting �eld of
xn − a over F . Since char(F ) does not divide n and a 6= 0, xn − a is separable, and so F (a1/n)/F is
Galois.

◦ If G = Gal(F (a1/n)/F ), then for any σ ∈ G we have σ(a1/n) = a1/nζ(σ) for some nth root of unity ζ(σ).

◦ We therefore have a map ϕ : G → µn from G to the cyclic group µn of nth roots of unity by setting
ϕ(σ) = ζ(σ) = σ(a1/n)/a1/n.

◦ Then ϕ(στ) = σ(τ(a1/n))/a1/n = σ(a1/nζ(τ))/a
1/n = σ(a1/n)ζ(τ)/a

1/n = ζ(σ)ζ(τ) = ϕ(σ)ϕ(τ) for any
σ, τ ∈ G, so ϕ is a group homomorphism.

◦ Furthermore, kerϕ consists of the automorphisms �xing a1/n, hence is trivial. Thus, by the �rst iso-
morphism theorem, we see that ϕ yields an isomorphism of G with its image inside µn. Since imϕ is a
subgroup of µn, it is cyclic of order dividing n as claimed.

◦ For the converse, suppose K/F is cyclic Galois of order dividing n, where F contains the nth roots of
unity and char(F ) does not divide n.

◦ Let σ be a generator of G = Gal(K/F ) and ζ be a primitive nth root of unity.

◦ Then because the automorphisms 1, σ, σ2, . . . , σn−1 are linearly independent, there exists an element
α ∈ K such that the element β = α+ ζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α) is nonzero.

◦ We can then compute ζσ(β) = ζσ(α) + ζ2σ2(α) + · · · + ζn−1σn−1(α) + ζnσn(α) = β, since both ζ and
σ have order dividing n.

◦ This implies σ(β) = ζ−1β, and so iterating this yields σk(β) = ζ−kβ. In particular, since β 6= 0 we see
that β is not �xed by any nonidentity element of G, and so K = F (β).

◦ Finally, we have σ(βn) = ζ−nβn = βn so βn is �xed by σ hence by all of G, and thus βn = a is an
element of F . This means K = F (a1/n) for some a ∈ F , as claimed.

◦ Remark: The element β is called a Lagrange resolvent, and its construction can be motivated by looking
for an element of K with the property that σ(β) = ζ−1β: writing β = α+ c1σ(α) + · · ·+ cnσ

n−1(α), and
then computing the coe�cients ci.

• Now that we have characterized the extensions obtained by adjoining nth roots of individual elements, we can
give a precise de�nition for solving an equation in radicals:

• De�nition: If α ∈ F , we say α can be expressed in radicals of α is an element of some tower of simple radical
extensions, namely, if there exist extensions F = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kd = K such that α ∈ K and
Ki+1/Ki is a simple radical extension for each i, and we sayK/F is a root extension. We also say a polynomial
f(x) ∈ F [x] is solvable in radicals if each of its roots can be expressed in radicals.

◦ Example: Any constructible number can be expressed in radicals, since (as we proved) the constructible
numbers are those which are contained in some tower of quadratic extensions.

◦ Example: The algebraic number
3

√
2 + 7

√
2 +
√

5− 8 9
√

17 can be expressed in radicals over Q.
◦ Example: Any root of unity can be expressed in radicals, since by de�nition any nth root of unity is an
nth root of 1.
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◦ It is straightforward to see that the composite of two root extensions of F is also a root extension of F :
explicitly, if F = K0 ⊆ K1 ⊆ · · · ⊆ Kd = K and F = L0 ⊆ L1 ⊆ · · · ⊆ Lk = L are two towers of simple
radical extensions, then so is F = K0L0 ⊆ K1L0 ⊆ K2L0 ⊆ · · · ⊆ KdL0 ⊆ KdL1 ⊆ · · · ⊆ KdLk = KL.

◦ In particular, the set of all elements in the algebraic closure F that can be expressed in radicals is a
sub�eld of F . Also, if α can be expressed in radicals and σ(α) is any Galois conjugate, then σ(α) can
also be expressed in radicals, because F = K0 ⊆ σ(K1) ⊆ · · · ⊆ σ(Kd) = σ(K) is also a tower of simple
radical extensions.

• We would like to characterize the elements α ∈ F that can be expressed in radicals, which (by our observation
about Galois conjugates) is equivalent to characterizing the polynomials in F [x] that are solvable in radicals.

◦ We would like to be able to give a statement requiring information only about the minimal polynomial
of α, but in order to do this we �rst need to see that α is contained in a Galois root extension.

• Proposition (Elements Expressible in Radicals): If α can be expressed in radicals over F , then α is contained
in a root extension L having a tower F = L0 ⊆ L1 ⊆ · · · ⊆ Lk = L where L is Galois over F and each
intermediate extension Li+1/Li is Galois with cyclic Galois group.

◦ Proof: Suppose α can be expressed in radicals over F . Then by our observation above, all Galois
conjugates σ(α) can also be expressed in radicals over F , and so the splitting �eld K of the minimal
polynomial of α is a root extension of F .

◦ This means that there is a tower of simple radical extensions F = K0 ⊆ K1 ⊆ · · · ⊆ Kd = K, where
Ki+1/Ki is obtained by extracting an nith root.

◦ If we let E be the �eld obtained by adjoining all nith roots of unity to F , then E/F is a simple radical
extension of F , since it is obtained by adjoining a root of the polynomial xn1n2···nd−1 − 1.

◦ Now consider the tower F ⊆ E = EK0 ⊆ EK1 ⊆ · · · ⊆ EKd = EK. Each extension EKi+1/EKi is
a simple radical extension obtained by extracting an nith root of unity, and since all of these roots of
unity are in E (hence in EKi), by our characterization of simple radical extensions, these extensions are
all Galois with cyclic Galois group.

◦ Now just set L1 = E and Li+1 = EKi for i ≥ 1, with L = EK. Then L is Galois over F (since it is
the composite of two Galois extensions E/F and K/F ) and each extension Li+1/Li is Galois with cyclic
Galois group, as required.

• By applying the fundamental theorem of Galois theory to the tower constructed above, we obtain a condition
on the Galois group of L/F .

◦ Explicitly, if Gi is the subgroup of G = Gal(L/F ) associated to the intermediate extension Li, then we
obtain a chain of subgroups G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in Gi and the
quotient group Gi/Gi+1 is cyclic for each i.

• De�nition: A �nite group G is solvable if there exists a chain of subgroups G = G0 ≥ G1 ≥ · · · ≥ Gk = {e}
such that Gi+1 is normal in Gi and the quotient group Gi/Gi+1 is cyclic for each 0 ≤ i ≤ k − 1.

◦ We emphasize that Gi+1 is only required to be a normal subgroup of the previous subgroup Gi, and does
not have to be a normal subgroup of G itself.

◦ Example: Any �nite abelian group is solvable, since every �nite abelian group is a direct product of
cyclic groups.

◦ Example: The dihedral group D2·n is solvable, since the subgroup G1 = 〈r〉 is cyclic and the quotient
group D2·n/G1 is also cyclic (it has order 2 and is generated by s).

◦ Example: The symmetric group S4 is solvable, via the chain S4 ≥ A4 ≥ V4 ≥ 〈(1 2)(3 4)〉 ≥ {e}, where
V4 = 〈(1 2)(3 4), (1 3)(2 4)〉. Note that V4 is normal in A4 since it is in fact normal in S4, and each
successive quotient is cyclic because it has prime order (either 2 or 3).

• Here are some of the fundamental properties of solvable groups:

• Proposition (Properties of Solvable Groups): Let G be a group.
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1. If G is solvable, then any subgroup H is solvable and any quotient group G/N is solvable.

◦ Proof: Suppose G is solvable with a chain G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal
in Gi and Gi/Gi+1 is cyclic.

◦ If H is a subgroup of G, let Hi = Gi∩H for each i. Then Hi+1 = Hi∩Gi+1, so by the second isomor-
phism theorem, we see that Hi+1 is normal in Hi and Hi/Hi+1 = Hi/(Hi ∩Gi+1) ∼= HiGi+1/Gi+1.

◦ But since HiGi+1 is a subgroup of Gi, the latter is a subgroup of Gi/Gi+1 and hence cyclic. Hence
we obtain a chain H = H0 ≥ H1 ≥ · · · ≥ Hk = {e} such that Hi+1 is normal in Hi and Hi/Hi+1 is
cyclic, so H is solvable.

◦ If N is a normal subgroup of G, let Gi = Gi/(Gi ∩N) ∼= GiN/N be the image of Gi in G/N .

◦ Then by the second and third isomorphism theorems, (GiN/N)/(Gi+1N/N) ∼= GiN/Gi+1N , and
the latter is isomorphic to a quotient of Gi/Gi+1 by the second isomorphism theorem, hence is cyclic.

◦ Hence the chain G/N = G0 ≥ G1 ≥ · · · ≥ Gk = {e} has the property that Gi+1 is normal in Gi and
Gi/Gi+1 is cyclic, so G/N is solvable.

2. If N is a normal subgroup of G such that N and G/N are solvable, then G is solvable.

◦ Proof: Suppose that N has a chain N = N0 ≥ N1 ≥ · · · ≥ Nd = {e} and G/N has a chain
G/N = G0 ≥ G1 ≥ · · · ≥ Gk = {e}.
◦ Then by the fourth isomorphism theorem we may lift each of the Gi to a subgroup Gi of G containing
N with Gi/Gi+1

∼= Gi/Gi+1.

◦ Then the chain G = G0 ≥ G1 ≥ · · · ≥ Gk = N = N0 ≥ N1 ≥ · · · ≥ Nd = {e} shows G is solvable.

3. G is solvable if and only if G has a chain of subgroups G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1

is normal in Gi and the quotient group Gi/Gi+1 is abelian.

◦ We note that this is often taken as the de�nition of a solvable group, rather than the one we gave
where successive quotients are cyclic.

◦ Proof: If G is solvable then it clearly has such a chain (since cyclic groups are abelian).

◦ For the converse, we induct on k. The base case k = 1 is trivial since abelian groups are solvable as
noted above. For the inductive step, suppose we have a chain G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such
that Gi+1 is normal in Gi and the quotient group Gi/Gi+1 is abelian.

◦ Then G1 is solvable by the inductive hypothesis, and G/G1 is also solvable (since it is abelian).
Hence by (2), G is solvable.

• From our results above, we see that if f(x) is solvable in radicals, then each of its roots is contained in a
Galois extension L/F whose Galois group Gal(L/F ) is solvable.

◦ The Galois group of f(x) is Gal(K/F ) where K is the splitting �eld for f . Since this is a quotient group
of Gal(L/F ) and quotient groups of solvable groups are solvable, Gal(K/F ) is solvable.

◦ Our central result is that the converse is true also.

• Theorem (Solvability in Radicals): Let F be a �eld and f(x) ∈ F [x] be a polynomial of degree n, where
the characteristic of F does not divide n! (in particular, if F has characteristic 0). Then f(x) is solvable in
radicals if and only if the Galois group of f is a solvable group.

◦ This result (at least for F = Q) is essentially due to Galois, and was the historical motivation for Galois'
development of Galois theory.

◦ Proof: Note that any irreducible factor of f has degree at most n, hence dividing n!, so all irreducible
factors of f are separable. By replacing f with the least common multiple of its irreducible factors (which
does not change the roots), we may therefore assume f is separable.

◦ Now suppose f is solvable in radicals, and let K be the splitting �eld of f , with G = Gal(K/F ).

◦ If α is any root of f , then α is expressible in radicals, and so by our proposition, there exists a Galois
extension Lα/F containing α such that Gal(Lα/F ) is solvable.

◦ Then the composite L of all the Lα over all roots α of f is also Galois over F , and its Galois group is a
subgroup of the direct product of the Gal(Lα/F ) by our results on Galois groups of composite extensions.

◦ Since the direct product of solvable groups is solvable, and subgroups of solvable groups are solvable,
this means the Galois group of L/F is solvable.
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◦ Since L contains all roots of f , it contains K, and so by the fundamental theorem of Galois theory
G = Gal(K/F ) is a quotient of Gal(L/F ). Thus G is a quotient of a solvable group, hence is solvable.

◦ For the converse, suppose G is solvable and has a chain G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1

is normal in Gi and Gi/Gi+1 is cyclic of order ni.

◦ By the fundamental theorem of Galois theory, the corresponding �xed �elds F = K0 ⊆ K1 ⊆ · · · ⊆ Kk =
K such that Ki+1/Ki is Galois with cyclic Galois group of order ni.

◦ If we let E be the extension of F containing all of the nith roots of unity for each i, then E/F is Galois
and a simple radical extension (as we have noted).

◦ Then EKi+1/EKi is also Galois with cyclic Galois group of order dividing ni by the �sliding-up� property
of the Galois extension Ki+1/Ki. Then since E contains the nith roots of unity, we conclude that
EKi+1/EKi is a simple radical extension.

◦ This means F ⊆ E ⊆ EK1 ⊆ EK2 ⊆ · · · ⊆ EKk = EK is a tower of simple radical extensions containing
all the roots of f , and so f is solvable in radicals as claimed.

• By the theorem above, we may immediately determine whether a polynomial is solvable in radicals by check-
ing whether its Galois group is solvable. In particular we obtain the famed Abel-Ru�ni theorem on the
insolvability of the general quintic:

• Corollary (Abel-Ru�ni Theorem): The groups An and Sn are not solvable for n ≥ 5, and therefore the general
equation of degree n is not solvable in radicals for any n ≥ 5.

◦ Proof: For n ≥ 5 the group An is simple and therefore not solvable: it has no nontrivial proper normal
subgroups, so the only possibilities for the �rst subgroup G1 in a chain would be G1 = An or G1 = {e},
neither of which will work.

◦ Then Sn is also cannot be solvable, since subgroups of solvable groups are solvable. The second part
follows immediately from our result that the Galois group of the general equation of degree n is Sn.

• We can also give speci�c examples of polynomials that are not solvable in radicals using the methods we have
described previously for computing Galois groups.

◦ For example, as we noted earlier, the polynomial f(t) = t5 − 4t + 2 has Galois group S5 over Q, and is
therefore not solvable in radicals.

◦ Likewise, we also showed (by analyzing factorizations over Fp) that the polynomial f(t) = t5− t2−2t−3
has Galois group A5 over Q, hence also is not solvable in radicals.

• For polynomials whose Galois group is solvable, there do exist formulas in radicals for the roots. We brie�y
outline the situation for n = 5, where (it is not hard to see) C5, D2·5, and F20 are all solvable.

◦ Since each of C5, D2·5, and F20 is contained in F20, an irreducible quintic is solvable in radicals precisely
when its Galois group is a subgroup of F20.

◦ As detailed in a 1991 paper of D. Dummit, this may in turn be determined by determining whether an
associated resolvent polynomial for F20 (of degree 6) has a rational root, and if so, one may give explicit
formulas in radicals for the roots of the quintic.

◦ For the quintic f(x) = x5 + px + q in particular, the resolvent sextic is f20(x) = x6 + 8px5 + 40p2x4 +
160p3x3 + 400p4x2 + (512p5 − 3125q4)x+ (256p6 − 9375pq4), and the quintic f(x) is solvable in radicals
if and only if the resolvent sextic has a rational root.

◦ Example: For f(x) = x5 +120x−1344 of discriminant ∆ = 211 ·34 ·56, the resolvent sextic has a rational
root x = 1440, and therefore f is solvable. Since the discriminant is not a square, its Galois group is not
contained in A5, and must therefore be F20.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2017-2020. You may not reproduce or distribute this
material without my express permission.
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