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3 Groups

The set of symmetries of a geometric or algebraic object carries a natural structure under composition. This
composition operation is associative (since function composition is associative), there is always an identity element
(namely, the identity symmetry that leaves the object unchanged), and every element has an inverse (namely, the
�inverse� symmetry that reverses everything). To study the collection of symmetries, therefore, is essentially the
same as studying algebraic structures with a single operation that satisfy these three properties: namely, groups.
Our goal in this chapter is to give an overview of groups and basic group theory, with the ultimate goal of describing
(in the next chapter) how to use groups to study the structure of �elds and �eld extensions; as such, we will focus
on understanding elementary properties of �nite groups and only survey a portion of some of the deeper results.
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3.1 Examples and Basic Properties of Groups

• We have already discussed rings, which yield a large class of examples of groups. Here is the formal de�nition
of a group:

• De�nition: A group is any set G having a (closed) binary operation ? that satis�es the three axioms [G1]-[G3]:

[G1] The operation ? is associative: g ? (h · k) = (g ? h) ? k for any elements g, h, k in G.

[G2] There is a (two-sided) identity element e: e ? g = g = g ? e for any element g in G.

[G3] Every element has a (two-sided) inverse: for any g in G, there exists g−1 in G with g ?g−1 = e = g−1 ?g.

• Like with rings, certain groups will also possess additional properties. However, due to the comparatively
minimal structure imposed by the axioms for a group, there is only one term that we will introduce now:

• De�nition: If a group satis�es axiom [G4], we say it is an abelian group1.

[G4] The operation ? is commutative: g ? h = h ? g for any elements g, h in G.

• There are a number of common conventions regarding group notation.

◦ We will frequently omit the symbol for the group operation ? and simply write gh for g ? h. We will also
often write the operation as · or + when it represents multiplication or addition in a ring, and write 1
or 0 for the corresponding identity elements respectively.

◦ Because the group operation is associative, we do not need to specify the order in which the multiplications
are performed when we have more than 2 terms, and can simply write expressions like ghk without needing
to use parentheses to distinguish between (gh)k and g(hk).2

◦ If g ∈ G, for any positive integer n we de�ne gn = g ? g ? · · · ? g︸ ︷︷ ︸
n terms

, g−n = g−1 ? g−1 ? · · · ? g−1︸ ︷︷ ︸
n terms

, and g0 = e.

◦ In an abelian group, we often write the group operation �additively� using the addition symbol (+),
denote the identity element as 0, and denote additive inverses with minus signs (−).
◦ Thus (for example) in an additive abelian group we would de�ne ng = g + g + · · ·+ g︸ ︷︷ ︸

n terms

for n > 0.

• De�nition: If G is a group, the order of G, denoted as |G| or #G, is the cardinality of G as a set.

• Like with rings, we can deduce a few properties of group arithmetic immediately from the axioms:

• Proposition (Basic Arithmetic): Let G be a group. The following properties hold in G:

1. The identity element e is unique, and e−1 = e.

◦ Proof: For (1), if there were two identity elements e and e′, then e′ = e · e′ = e by the left-identity
property of e and the right-identity property of e′. The second statement follows immediately by
observing that ee = e.

2. G has left and right cancellation: for any g, h, k in G, either of gh = gk or hg = kg implies h = k.

◦ Proof: If gh = gk then h = eh = (g−1g)h = g−1(gh) = g−1(gk) = (g−1g)k = ek = k. The other
statement follows similarly.

3. Inverses are unique. Also, a one-sided inverse of g is automatically a two-sided inverse of g.

◦ Proof: If h and k are both inverses of g, then gh = e = gk, so by cancellation we see h = k.

◦ The second statement follows by observing that gh = e implies h = eh = (g−1g)h = g−1(gh) =
g−1e = g−1, and likewise hg = e also implies h = g−1.

1Less commonly, abelian groups are also called commutative groups. A group that is not abelian is called non-abelian. The term
�abelian� is named after Neils Henrik Abel, who was a foundational �gure in the study of groups; it is stylized in lowercase (rather than
in uppercase as �Abelian�) in honor of the depth of his contribution.

2Technically, this statement requires a proof; it is straightforward though tedious to use induction on the number of terms in the
product to establish that all such products are equal to the one where the order is composed left-to-right, as in ((gh)k)l.
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4. For any g, h ∈ G, (gh)−1 = h−1g−1, and (g−1)−1 = g.

◦ Proof: We have (h−1g−1)(gh) = h−1(g−1g)h = h−1eh = h−1h = e and likewise for the product in
the other order.

◦ For the second statement observe that (g−1)−1g−1 = e = gg−1, and then cancelling g−1 yields
(g−1)−1 = g.

5. For any g ∈ G and any integers m,n, we have gm+n = gmgn, gmn = (gm)n, and (gn)−1 = g−n.

◦ Proof: If m and n are both nonnegative then gm+n = g · g · · · · · g︸ ︷︷ ︸
m+n terms

= (g · g · · · · · g︸ ︷︷ ︸
m terms

) · (g · g · · · · · g︸ ︷︷ ︸
n terms

) =

gmgn and gmn = g · g · · · · · g︸ ︷︷ ︸
mn terms

= gm · gm · · · · · gm︸ ︷︷ ︸
n terms

= (gm)n. The other cases (e.g., m nonnegative, n

negative) follow in the same way.

◦ The last statement follows by observing that (g · g · · · · · g︸ ︷︷ ︸
n terms

) · (g−1 · g−1 · · · · · g−1︸ ︷︷ ︸
n terms

) = e by repeatedly

cancelling in the middle.

3.1.1 Basic Examples of Groups

• Here are some basic examples (and non-examples) of groups:

• Example (Additive Groups): Any ring R forms an abelian group under its addition operation +, as follows
immediately from the ring axioms.

◦ Thus for example, (Z,+), (Z/mZ,+), (F [x],+), and (Mn×n(F ),+) are all groups. The identity element
is 0, and inverses are simply additive inverses.

• Example (Vector Spaces): If F is a �eld and V is an F -vector space, then (V,+) is an abelian group, as follows
immediately from the vector space axioms.

• Example (Multiplicative Groups): If R is any ring with 1, then the collection of units in R, denoted R×, forms
a group under multiplication ·.

◦ Explicitly, this follows because multiplication is associative, the multiplicative identity 1 is a unit, and
the product and multiplicative inverse of units are units. If R is commutative, then (R×, ·) is an abelian
group.

◦ Thus for example, (Z/mZ)×, the collection of residue classes in Z/mZ relatively prime to m, forms an
abelian group under multiplication.

• Example (Matrix Groups): The set GLn(F ) of invertible n × n matrices with entries in the �eld F , forms a
group under multiplication.

◦ This is a special case of the previous example, since GLn(F ) is the collection of units in the ringMn×n(F )
of n× n matrices with entries in F . When n ≥ 2 this group is non-abelian.

◦ If F = Fq is a �nite �eld, we can compute the order of this group by observing that an n× n matrix is
invertible precisely when its rows are linearly independent.

◦ There are qn − 1 possible choices for the �rst row (any nonzero vector). Once we have chosen the �rst k
rows, the (k+1)st row must be linearly independent from the subspace spanned by the �rst k rows, which
by assumption has dimension k: thus, there are qn−qk possible choices for the (k+1)st row. This holds for
each row, so we see that the total number of elements in GLn(F ) is (qn−1)(qn−q)(qn−q2) · · · (qn−qn−1).

• Example: The set G = {e}, with operation e · e = e, is a group called the trivial group.

• Non-Example: The integers do not form a group under multiplication, because 0 has no multiplicative inverse.

◦ More generally, no ring (except the trivial ring) will form a group under multiplication, since 0 cannot
have a multiplicative inverse in any ring where 1 6= 0.
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• Example (Klein 4-Group): The set V4 = {e, a, b, c} with identity e, and other multiplications given by a2 =
b2 = c2 = 1, ab = ba = c, ac = ca = b, and bc = cb = a, forms a group. This group is called the Klein 4-group
(in German, �Viergruppe�), and is an abelian group of order 4.

◦ It is straightforward (although tedious) to verify that multiplication is associative. In this group, every
element is its own inverse.

• Example (Group of nth Roots of Unity): For any positive integer n, if ζn = e2πi/n, then the set G =
{1, ζn, ζ2n, . . . , ζn−1n } forms a group under multiplication.

◦ Explicitly: associativity is inherited from C, the identity element is 1, and (ζkn)−1 = ζn−kn for any
0 ≤ k ≤ n− 1.

◦ This group consists of the solutions to the equation xn−1 = 0 in C, which are called the nth roots of unity.

◦ For example, when n = 4, we obtain the multiplicative group G = {1, i,−1,−i}.

• Example (Quaternion Group): The set Q8 = {1,−1, i,−i, j,−j, k,−k} forms a group under the multiplication
relations i2 = j2 = k2 = −1, ij = −ji = k, ki = −ik = j, and jk = −kj = i. This group is called the
quaternion group, and is a non-abelian group of order 8.

◦ It is straightforward (although tedious) to verify that the multiplication is associative, and clearly 1 is
an identity element.

◦ Furthermore, 1 and −1 are their own multiplicative inverses, while the inverses of i, j, k are −i,−j,−k
respectively.

• We can also construct new groups using Cartesian products.

◦ Recall that if S and T are sets, the Cartesian product S×T is the set of ordered pairs (s, t) where s ∈ S
and t ∈ T .

• Proposition (Cartesian Products of Groups): If (G, ?) and (H, ◦) are groups, then the Cartesian product
G ×H is also a group, with operation performed componentwise: (g1, h1)4(g2, h2) = (g1 ? g2, h1 ◦ h2). The
identity element is eG×H = (eG, eH) and inverses are given by (g, h)−1 = (g−1, h−1). The group G ×H has
order |G| · |H|, and is abelian if and only if both G and H are abelian.

◦ Proof: Each of the group axioms for G × H follows immediately from the corresponding axioms in G
and H, and the statement about the order follows from the de�nition of Cartesian product for sets.

◦ For the abelian condition, clearly (g1, h1)4(g2, h2) = (g1 ? g2, h1 ◦ h2) is equal to (g2, h2)4(g1, h1) =
(g2 ? g1, h2 ◦ h1) for all g1, g2 ∈ G and h1, h2 ∈ H if and only if g1 ? g2 = g2 ? g1 and h1 ◦ h2 = h2 ◦ h1 for
all g1, g2 ∈ G and h1, h2 ∈ H.

• Example: The Cartesian product Q8 × (Z/5Z) is a non-abelian group of order 8 · 5 = 40.

3.1.2 Dihedral Groups

• As we brie�y outlined, groups arise naturally from studying symmetries of objects. Among the simplest
objects in geometry are regular n-gons, whose associated symmetry group is called the dihedral group, and
denoted3 D2·n.

◦ Geometrically, these symmetries are the possible ways to move an n-gon around in space (rotating or
re�ecting it) and then placing it back on top of itself so that all of the vertices and edges line up.

◦ For example, for n = 4 (corresponding to the symmetries of a square), one possibility is to rotate the
square π/2 radians counterclockwise in the plane around its center. Another possibility is to re�ect the
square about one of its diagonals (in fact there are two such maps).

3Many authors denote the symmetry group of the n-gon as Dn (emphasizing the geometric �avor of the group), but in group
theory literature the notation D2n (emphasizing the elements of the group) is more common. We adopt the notation D2·n as a sort of
compromise between these two.
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• If we label the vertices of the n-gon 1, 2, . . . , n, then we can identify all of these symmetries by their corre-
sponding permutations of the vertices.

◦ For example, if we label the vertices of the square as 1, 2, 3, 4 counterclockwise, then a counterclockwise
rotation of π/2 radians would correspond to the permutation σ with σ(1) = 2, σ(2) = 3, σ(3) = 4, and
σ(4) = 1.

◦ The collection of symmetries D2·n of the regular n-gon can then be made into a group as follows: if g
and h are both elements of D2·n, we de�ne the composition g · h to be the symmetry obtained by �rst
applying h, and then g (i.e., by function composition).

◦ This operation is associative since function composition is associative, the identity element is the identity
transformation (i.e., the symmetry leaving all vertices �xed), and the inverse of a symmetry g is the
symmetry g−1 that reverses all of the rigid motions of g.

• Proposition (Order of D2·n): For any integer n ≥ 3, the dihedral group D2·n has order 2n.

◦ Proof: Under a symmetry, the vertex labeled 1 can be moved to any of the n vertices, and then the
vertex labeled 2 must go to one of the 2 vertices adjacent to it. But once we have �xed the locations of
vertices 1 and 2, then all of the other vertices' locations are determined uniquely (since vertex 3 must go
to the unique vertex adjacent to the new position of vertex 2 that is not already occupied by vertex 1,
and so forth).

◦ Thus there are at most 2n possible symmetries of a regular n-gon, so |D2·n| ≤ 2n.

◦ On the other hand, we can explicitly list 2n distinct symmetries: there are the n possible rotations
counterclockwise about the center by 2πk/n radians for 0 ≤ k ≤ n − 1, and there are also n possible
re�ections about a line through the center of the n-gon.

◦ Explicitly: if n is odd, these are the n lines passing through one vertex and the center, while if n is
even there are n/2 lines passing through a pair of opposite vertices and n/2 others that bisect a pair of
opposite sides.

◦ Each of these symmetries is di�erent, so D2·n has order 2n as claimed.

• We can give a more concrete description of the elements in D2·n in terms of particular rotations and re�ections.

◦ Explicitly, let r represent the counterclockwise rotation of the n-gon by 2π/n radians: as a permutation,
we have r(1) = 2, r(2) = 3, ... , r(n − 1) = n, and r(n) = 1. Then rk represents a counterclockwise
rotation by 2πk/n radians, so the elements {e, r, r2, . . . , rn−1} are distinct, and rn = e.

◦ Also, let s represent the re�ection of the n-gon across the line through vertex 1 and the center of the
n-gon. As a permutation, we have s(1) = 1, s(2) = n, s(3) = n− 1, ... , and s(n) = 2. It is then easy to
see that s2 is the identity element, and that s 6= ri for any i, since the only power of r that �xes vertex
1 is the identity element.

◦ From this we can conclude that all of the elements {s, sr, sr2, . . . , srn−1} are distinct, since sri = srj

would imply ri−j = e by cancellation, and they are also all distinct from the elements {e, r, r2, . . . , rn−1}
since sri = rj would imply s = rj−i by cancellation.

◦ Hence we see that D2·n = {e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}.
◦ To describe the multiplication of any two elements in this list, we �rst observe that rs = sr−1 (so in
particular, D2·n is always non-abelian). This relation can be visualized geometrically, since rotating and
then re�ecting is equivalent to re�ecting and then rotating in the opposite direction.

◦ Alternatively, we can compute rs(1) = r(1) = 2 and rs(2) = r(n) = 1, and also sr−1(1) = s(n) = 2 and
sr−1(2) = s(1) = 2. Then since rs and sr−1 agree on vertices 1 and 2, they agree on all vertices, so they
are equal.

◦ Then by an easy induction, we see that ris = sr−i for all i.

• To summarize the discussion, D2·n = {e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}, where r and s are elements
satisfying the relations rn = s2 = e and rs = sr−1.

◦ Using these relations (and the ancillary fact that ris = sr−i for any i) we can compute the product of
any two elements in D2·n.

◦ For example, in D2·7, we have (sr5)(r4) = sr9 = sr2, (r4)(sr5) = sr−4(r5) = sr, and (sr2)(sr) =
s(r2s)r = s(sr−5)r = s2r−4 = r3.
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3.1.3 Symmetric Groups and Cycle Decompositions

• Another natural class of groups arises from �symmetries� of sets.

◦ To illustrate the idea, observe that the set S3 of permutations of the set A = {1, 2, 3} (formally, the set
of bijections of S with itself) forms a group under composition.

◦ Note that there are a total of 3! = 6 such bijections. A somewhat-convenient way to represent these
maps is to write a list of the elements of the domain and range vertically: thus the map f with f(1) = 2,

f(2) = 3, and f(3) = 1 would be written as

(
1 2 3
2 3 1

)
.

◦ In this notation, the 6 elements of S3 are

(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,(

1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)
.

◦ To compute the product of two elements in S3, we can simply trace the behavior of each element of
{1, 2, 3} under the corresponding composition of functions.

◦ Thus, for example, if g =

(
1 2 3
2 1 3

)
and h =

(
1 2 3
3 1 2

)
, to compute the product gh we observe

that (i) h sends 1 to 3, and g sends 3 to 3, so gh sends 1 to 3, (ii) h sends 2 to 1, and g sends 1 to 2, so
gh sends 2 to 2, and (iii) h sends 3 to 2, and g sends 2 to 1, so gh sends 3 to 1.

◦ Thus, gh =

(
1 2 3
3 2 1

)
. In a similar way we can compute hg =

(
1 2 3
1 3 2

)
, so we see in particular

that S3 is non-abelian.

◦ It is very tedious to verify that these operations actually form a group using this explicit description
(checking associativity, for example, requires 63 individual calculations), and the notation is also quite
cumbersome.

• We can clarify matters by generalizing this idea to arbitrary sets.

• Proposition (Symmetric Groups): If A is any set, the set of bijections from A to itself forms a group under
function composition. This group is the symmetric group on the set A and is denoted SA.

◦ Proof: The group operation is well-de�ned because the composition of two bijections is also a bijection.
Property [G1] follows because function composition is associative, property [G2] follows because the
identity map is a bijection, and property [G3] follows because the inverse of a bijection is also a bijection.

◦ If A is a �nite set of cardinality n, then |SA| = n!, since bijections on a �nite set are the same as injections,
and there are clearly n! injections from A to itself (the �rst element has n possible destinations, the second
then has n− 1, and so forth). If A is in�nite, then clearly |SA| =∞.

• We will primarily be interested in the case where A = {1, 2, . . . , n}, in which case we will write the group as
Sn, the symmetric group on n objects.

◦ First, we would like a more convenient way to describe the elements in Sn. We can achieve this by
writing permutations in terms of cycles (a1 a2 . . . ak).

◦ Explicitly, the cycle (a1 a2 . . . ak) is the permutation σ with σ(a1) = a2, σ(a2) = a3, ... , σ(ak−1) = ak,
and σ(ak) = a1, where all other elements are mapped to themselves. This permutation �cycles� the
elements a1, a2, . . . , ak one step forward (whence the name).

◦ Thus, for example, inside S4 the cycle (2 1 4) is the permutation with σ(2) = 1, σ(1) = 4, σ(4) = 2, and
σ(3) = 3.

◦ Not every permutation can be written as a single cycle, but it is not hard to see that every permutation
can be written as a product of disjoint cycles (i.e., cycles having no elements in common) such as
(1 3) (2 4), which represents the permutation with σ(1) = 3, σ(3) = 1, σ(2) = 4, and σ(4) = 2. Such a
representation is called the cycle decomposition of σ.
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◦ Explicitly, to determine all of the cycles in the cycle decomposition of a permutation σ, we start with
the smallest number x not contained in one of the cycles we have identi�ed, and repeatedly apply σ until
we obtain a repeated element. In other words, we evaluate a1 = x, a2 = σ(a1), a3 = σ(a2), a4 = σ(a3),
... until the list repeats.

◦ It is easy to see that the �rst repeated value will always be x (since ai = aj implies σ(ai−1) = σ(aj−1) so
that ai−1 = aj−1 since σ is a bijection), and so we obtain a cycle (x a2 . . . ak) containing x. We repeat
this process until we have identi�ed the cycles containing every element in {1, 2, . . . , n}.

• Example: Find the cycle decomposition of the permutation σ ∈ S6 with σ(1) = 3, σ(2) = 5, σ(3) = 4,
σ(4) = 1, σ(5) = 2, and σ(6) = 6.

◦ We start with n = 1: we compute σ(1) = 3, σ(3) = 4, and σ(4) = 1. This gives the cycle (1 3 4).

◦ The smallest number not yet used is n = 2: then σ(2) = 5 and σ(5) = 2, so we obtain the cycle (2 5).

◦ The smallest number not yet used is n = 6: since σ(6) = 6 we obtain the cycle (6).

◦ Since we have used all 6 elements in cycles, we see that the cycle decomposition of σ is (1 3 4)(2 5)(6) .

• De�nition: The length of a cycle is the number of elements it contains. A cycle of length k is called a k-cycle,
and 2-cycles are often called transpositions.

• The notation for cycle decompositions is not unique. For example, the cycle (1 3 4) corresponds to the same
permutation as the cycle (3 4 1), and the cycle decomposition (1 3 4)(2 5)(6) is the same as (2 5)(6)(1 3 4).

◦ We typically will adopt the convention of writing the cycles with the smallest element �rst, and ordering
the cycles in increasing order of their �rst element. Under this convention, it follows by a straightforward
induction argument that the cycle decomposition is unique, and that the algorithm we described above
will compute it.

◦ We will also usually omit 1-cycles when we write cycle decompositions, with the convention always
being that any unlisted elements are �xed (i.e., mapped to themselves). Thus, we would simply write
(1 3 4)(2 5) ∈ S6 and omit the 1-cycle (6). This convention is useful when describing permutations that
�x most of the elements in the set.

• We can also compute products using cycle decompositions, with the important remark that the products of
cycles are read right-to-left, since they are representing compositions of functions.

◦ We can compute the cycle decomposition of the product by tracing what happens to each element
1, 2, . . . , n under each of the cycles from right-to-left, and then using the cycle decomposition algorithm.

• Example: If g = (1 3 4)(2 5) and h = (1 2)(3 5) inside S5, compute the cycle decomposition of gh.

◦ Since h sends 1 to 2, and g sends 2 to 5, the composition gh sends 1 to 5.

◦ To compute the next element in the cycle containing 1 we need to determine where gh sends 5. Since h
sends 5 to 3, and g sends 3 to 4, we see that gh sends 5 to 4.

◦ Continuing, we see gh(4) = g(4) = 1, which completes a cycle (1 5 4).

◦ Also, since gh(2) = g(1) = 3 and gh(3) = g(5) = 2, we get the other cycle (2 3). Thus the cycle

decomposition of gh is (1 5 4)(2 3) .

• Example: The six elements in S3 have respective cycle decompositions 1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2).

◦ We can compute, for example, (1 2)(1 3) = (1 3 2), by tracing what happens to each element from right
to left in each of the cycles. (Explicitly, these tracings would look something like 1→ 3→ 3, 3→ 1→ 2,
and 2→ 2→ 1.)

◦ Similarly, (1 3)(1 2) = (1 2 3), (1 3 2)(1 2) = (2 3), and (1 2)(1 3 2)(1 3) = (2 3) as well.

• As a �nal remark we observe that any two disjoint cycles commute, and so (by a trivial induction) two
permutations with disjoint cycle decompositions will also commute.
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3.1.4 Orders of Elements

• If g is an element of G, the powers of g, namely {. . . , g−2, g−1, e, g, g2, . . . } play an important role in under-
standing the behavior of multiplication by g.

• De�nition: If g is an element of the group G, the order of g, written |g|, is the smallest positive integer n such
that gn = e, if such an n exists. If gn 6= e for any positive integer n, we say |g| =∞.

◦ If G is a �nite group, then every element of G has �nite order, since the set of powers {e, g, g2, . . . } must
be �nite, and if ga = gb with a < b then cancelling ga yields gb−a = e.

◦ Example: The order of the identity element in any group is always 1.

◦ Example: Inside G = {1, i,−1,−i}, the element −1 has order 2 since (−1)2 = 1 but −1 6= 1. Similarly,
both i and −i have order 4.
◦ Example: Inside (Z,+), the order of every nonidentity element is∞, whereas inside (Z/7Z,+), the order
of every nonidentity element is 7.

◦ Example: Inside (C×, ·), the order of ζ6 = e2πi/6 is 6, while the order of 2 is ∞.

◦ Example: Inside (Z/11Z)×, the powers of 2 are {1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1}. We see that 2
10

= 1 but no
lower power is equal to 1, so the order of 2 is 10 inside Z/11Z.

◦ Example: Inside GL2(Q), the order of A =

[
0 1
−1 −1

]
is 3, since A3 is the identity matrix, but neither

A nor A2 is.

◦ Example: Every nonidentity element in the group (Z/pZ)n, the Cartesian product of n copies of Z/pZ,
has order p.

• Proposition (Properties of Order): Suppose g, h are elements of the group G. Then the following hold:

1. If gn = e for some n > 0, then g has �nite order and the order of g divides n.

◦ Proof: Clearly, if gn = e for some n > 0, then gk = e for some minimal positive integer k by the
well-ordering axiom of Z.
◦ Now let k be the order of u and apply the division algorithm to write n = qk + r with 0 ≤ r < k:
then we have gr = gn(gk)−q = e · e−q = e.

◦ If r were not zero, then we would have gr = e with 0 < r < k, which contradicts the de�nition of
order. Thus r = 0, meaning that k divides n.

2. If g has order k, then ga = gb if and only if k divides b−a. If g has in�nite order, then ga 6= gb for a 6= b.

◦ Proof: If b− a = dk then gb−a = (gk)d = ed = e, and then multiplying by ga yields gb = ga.

◦ Conversely, if ga = gb then gb−a = e, and so by (1) we conclude k divides b− a.
◦ For the second statement, if ga = gb with a 6= b, then gb−a = e = ga−b so gn = e for n = |b− a|;
then by (1), g would have �nite order.

3. If g has order k, then gn has order k/ gcd(n, k). In particular, if n and k are relatively prime, then gn

also has order k.

◦ Proof: Let d = gcd(n, k): then (gn)k/d = (gk)n/d = en/d = e, so the order of gn cannot be larger
than k/d.

◦ Furthermore, if e = (gn)a = gna, the result above implies that k divides na, so that k/d divides
(n/d)a.

◦ But since k/d and n/d are relatively prime, this implies k/d divides a, and so a ≥ k/d.
◦ Thus, the order of gn is equal to k/d as claimed. The second statement is simply the case d = 1.

4. If gn = e and gn/p 6= e for any prime divisor p of n, then g has order n.

◦ Proof: Suppose g has order k: then by (1), k must divide n. If k < n, then there must be some
prime p in the prime factorization of n that appears to a strictly lower power in the factorization of
k: then k divides n/p.

◦ But then gn/p would be an integral power of gk = e, so that gn/p = e, which is a contradiction.
Thus, k = n.
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5. If gh = hg, g has order n, h has order m, and m and n are relatively prime, then gh has order mn.

◦ Proof: If gh = hg then by a trivial induction every power of g commutes with every power of h.

◦ Then we can observe that (gh)mn = (gn)m(hm)m = emen = e, so gh has some �nite order d ≤ mn.
◦ Since (gh)d = e, we see that e = en = (gh)dn = (gn)dwdn = wdn, so by (1), m divides dn.

◦ Then since m and n are relatively prime, this implies m divides d. By a symmetric argument, n
divides d.

◦ Since m and n are relatively prime, this means mn divides d, and so the only possibility is d = mn.

◦ Warning: This result fails (essentially completely) in non-abelian groups. For example, in the matrix

group GL2(R), the matrices g =

[
1 0
1 −1

]
and h =

[
1 1
0 −1

]
both have order 2, but the product

matrix gh =

[
1 1
1 2

]
has in�nite order.

• We will be able to say more about orders of elements in particular groups later, once we discuss cosets. For
now we record a few basic observations about element orders in dihedral and symmetric groups:

◦ In the dihedral group D2·n, since r
n = e but rk 6= e for 0 < k < n, we see that |r| = n. Then by our

results above on orders, the order of rk is n/ gcd(k, n).

◦ Also, since (srk)2 = s(rks)rk = s(sr−k)rk = s2 = e, we see that
∣∣srk∣∣ = 2 for any k.

◦ In the symmetric group Sn, the order of any n-cycle σ = (a1 a2 . . . an) is n, since σn = 1, but σk(a1) = ak
(so σk 6= 1) for 1 ≤ k ≤ n− 1.

◦ In particular, we can see that every nonidentity element in S3 has order 2 or 3.

◦ Furthermore, in Sn, if a lies in a k-cycle for the permutation τ , then τn(a) = a only when k divides n
by the argument given above. Thus, the order of τ is the least common multiple of the lengths of the
cycles in its cycle decomposition.

◦ For example, the powers of τ = (1 3 5)(2 6) ∈ S6 are τ
2 = (1 5 3), τ3 = (2 6), τ4 = (1 3 5), τ5 = (1 5 3)(2 6),

and τ6 = 1, so τ indeed has order 6.

• As we have seen (in the examples of S3 and (Z/pZ)n), even when the order of G is composite it is possible
that all its nonidentity elements have prime order. We can therefore only expect a general existence result for
elements of prime order:

• Theorem (Cauchy's Theorem): Suppose G is a group and p is a prime dividing |G|. Then there exists an
element of G of order p.

◦ Proof: Consider the set S of ordered p-tuples of elements (g1, g2, . . . , gp) in G such that g1g2 · · · gp = e.

Since gp = (gp−1 · · · g2g1)−1 there are exactly |G|p−1 such p-tuples, so the cardinality of S is divisible by
p.

◦ Also observe that if (g1, g2, . . . , gp) ∈ S then any cyclic permutation, such as (g2, . . . , gp, g1), is also in S.
If not all the elements in the tuple are equal, then there are p distinct cyclic permutations of this tuple
in S, while if all elements are equal there is only 1, namely (g, g, . . . , g).

◦ Thus, since #S is divisible by p, and the number of tuples of the �rst type is divisible by p, the number
of tuples of the second type must be divisible by p. In particular, there must be at least one tuple
(g, g, . . . , g) with g 6= e: then gp = e so g is an element of order p.

3.1.5 Subgroups

• Like with subrings, sub�elds, and vector subspaces, we have a natural notion of subgroup:

• De�nition: If G is a group, we say a subset S of G is a subgroup if it also possesses the structure of a group,
under the same operations as G.

◦ Observe that if S is a subset of a group, in order for the operation ? to be well-de�ned inside S, we must
have g ? h ∈ S for any g, h ∈ S.
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◦ Then axiom [G1] automatically holds, since it holds in G. In order for [G2] to hold, there must be an
identity element eS in S with the property that geS = g for every g ∈ S. However, by the cancellation
law in G, since geS = g = geG, we see that eS = eG: in other words, S must contain the identity element
of G.

◦ Finally, in order for [G3] to hold, we require that for every g ∈ S, it must have an inverse g−1S . Since
gg−1S = eS = eG = gg−1G by cancellation in G we must have g−1S = g−1G , which is to say, the inverse of g
must be in S.

• Example: For any group G, the sets {e} and G are always subgroups of G. The subgroup {e} is called the
trivial subgroup.

• Proposition (Subgroup Criterion): A subset S of G is a subgroup if and only if S contains the identity of G
and is closed under the group operation of G and inverses. Equivalently, S is a subgroup if and only if eG ∈ S
and for any g, h ∈ S, the element gh−1 ∈ S.

◦ Proof: If S is a subgroup, then as noted above S must contain the identity of G and be closed under the
group operation and inverses. Conversely, if S contains the identity of G and is closed under the group
operation and inverses, then it is also a group.

◦ For the second statement, if S is a subgroup then eG ∈ S and for any g, h ∈ S we must have h−1 ∈ S
and then gh−1 ∈ S.
◦ Conversely, if eG ∈ S and gh−1 ∈ S for any g, h ∈ S, setting g = eG implies that h−1 ∈ S so S is closed
under inverses.

◦ Then for any k ∈ S, setting h = k−1 and using the fact that (k−1)−1 = k implies that gh−1 = gk ∈ S so
S is closed under the group operation, hence is a subgroup.

• Corollary (Intersection of Subgroups): The intersection of an arbitrary collection of subgroups of G is also a
subgroup of G.

◦ Proof: Let S =
⋂
i∈I Gi where the Gi are subgroups of G. Then by the subgroup criterion, eG ∈ Gi for

all i ∈ I, so S contains eG.

◦ Furthermore, for any g, h ∈ S we have g, h ∈ Gi for all i. Thus, gh−1 ∈ Gi for all i by the subgroup
criterion, so gh−1 ∈ S so S is a subgroup.

• Using the subgroup criterion, we can construct additional examples of groups.

• Example: The set (Q+, ·) of positive rational numbers under multiplication is a subgroup of (C, ·) since it
satis�es the subgroup criterion.

• Non-Example: The set (Z≥0,+) of nonnegative integers under addition is not a subgroup of (Z,+) since it is
not closed under additive inverses.

• Non-Example: The set of odd integers together with 0, under addition, is not a subgroup of (Z,+) since it is
not closed under the group operation of addition.

• Example: The set (SLn(F ), ·) of matrices with coe�cients in F having determinant 1 is a subgroup of
(GLn(F ), ·).

◦ Explicitly, det(In) = 1, and if det(A) = det(B) = 1, then det(AB) = det(A) det(B) = 1 and det(A−1) =
det(A)−1 = 1 by basic properties of determinants.

• Example (Centers): If G is a group, the center Z(G) is the subgroup consisting of all of elements G that
commute with every other element of G. Explicitly, Z(G) = {a ∈ G : ag = ga for all g ∈ G}.

◦ To see that Z(G) is a subgroup, observe that it contains the identity, and if a, b ∈ Z(G) and g ∈ G,
then (ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab) so that ab ∈ Z(G), and also ga−1 = a−1(ag)a−1 =
a−1(ga)a−1 = a−1g so that a−1 ∈ Z(G).

◦ Example: The group G is abelian if and only if Z(G) = G.
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◦ Example: The center of the dihedral group D2·4 is {e, r2} since both of these elements commute with
all the other elements of the group (powers of r all commute with one another, and also (r2)(srk) =
(r2s)rk = (sr2)rk = (srk)(r2)), but no other elements do (since srk = rks implies srk = sr−k so that
r2k = e, and also r(srk) = srk−1 while (srk)r = srk+1).

◦ Example: The center of the symmetric group S3 is {1}, since one may verify that none of the 2-cycles
commutes with any of the 3-cycles.

• Example (Alternating Groups): For a positive integer n, we de�ne the subgroup An of Sn to be all the
elements in Sn that can be written as the product of an even number of transpositions (not necessarily
disjoint transpositions). This subgroup is called the alternating group.

◦ We can see that An is a subgroup: the identity is the product (1 2)(1 2) (or, perhaps better, the empty
product of 0 transpositions), it is closed under multiplication (since the product of two even numbers
of transpositions is clearly also of that form), and it is closed under inverses since the inverse of a
transposition is itself (so the inverse of a product of an even number of transpositions is also the product
of an even number of transpositions).

◦ It is not hard to see that every permutation in Sn is a product of some number of transpositions, since for
any n-cycle we can write (a1 a2 . . . an) = (a1 an)(a1 an−1) · · · (a1 a2) as a product of n−1 transpositions.

◦ Thus, An contains every cycle of odd length, along with the product of any two cycles of even length.
Thus, by taking products of such elements, we see that An contains every permutation whose cycle
decomposition contains an even number of cycles of even length.

◦ In fact, we will prove later that these are all of the permutations in An, and that there are precisely n!/2
such elements.

◦ For example, we have A3 = {1, (1 2 3), (1 3 2)}, and also
A4 = {1, {1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

3.1.6 Generation and Presentations

• If S is a subset of a group, it need not necessarily be a subgroup. We can, however, formulate a notion of
�smallest subgroup� containing S.

• De�nition: If G is a group and S is a subset of G, the set 〈S〉, the subgroup generated by S, is the intersection
of all subgroups of G containing S.

◦ Although this de�nition is clearly well-posed, we have not really described what the elements in this
subgroup 〈S〉 actually are.

◦ If g1, g2, . . . , gn ∈ S, then since S is closed under multiplication and inverses, we see that any �word� in
the gi and their inverses (namely, any product whose terms are all among the gi and their inverses, like
g1g
−1
3 g1g4 or g8g

−1
2 g4g4g4) is contained in S.

◦ Conversely, the collection of such �nite words does in fact form a subgroup, since the identity element is
a �nite word, the product of any two �nite words is also a �nite word, and the inverse of a �nite word is
also a �nite word via the formula (h1h2 · · ·hd)−1 = h−1d · · ·h

−1
2 h−11 .

◦ We will remark that if S is the empty set, then 〈S〉 = {e}. (This agrees with the explicit description
of 〈S〉 as the collection of all possible words if we adopt the usual convention that an empty product
represents the identity element.)

• De�nition: If G is a group and S is a subset of G with G = 〈S〉, we say G is generated by S. If G is generated
by a �nite set, we say G is �nitely generated.

◦ Example: The group (Z,+) is generated by {1}, since the subgroup 〈1〉 contains all positive and negative
multiples of 1, and zero, hence is the entire group.

◦ Example: From our explicit description of the dihedral group D2·n = {e, r, r2, . . . , s, sr, sr2, . . . }, we can
see that D2·n is generated by {r, s}.
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◦ Example: The group (Q,+) is generated by the in�nite set {1, 1/2, 1/3, 1/4, . . . } since any rational
number p/q ∈ Q is equal to p(1/q). In fact (Q,+) is not �nitely generated: if S is any �nite set of
generators, and p is any prime not dividing any of the generators' denominators, then 1/p is not in the
subgroup 〈S〉.

• We would like (whenever possible) to �nd a small set of generators for G, since we can then describe all of
the elements of G in terms of this small set of generators.

◦ Of course, simply knowing a list of generators of G does not say very much about the actual structure
of G, because there may be numerous relations between these generators. For example, in D2·n, the
generators r and s satisfy the relations rn = e, s2 = e, and rs = sr−1.

◦ In fact, inside D2·n these three relations imply all other possible relations between r and s (e.g., r2n = e
and srs3 = r−1).

◦ To see this consider any group generated by elements r and s such that rn = e, s2 = e, and rs = sr−1.
Any element in this group is a �nite product of terms r, s, r−1, s−1, and by using r−1 = rn−1 and s−1 = s
each product can be rewritten to use only r and s. By using the third relation to move all s terms to the
left of all r terms, we see any element is in fact of the form sarb, and then we may reduce the exponents
so that a ∈ {0, 1} and b ∈ {0, 1, . . . , n−1} using the �rst two relations. Thus, we see that any such group
must have at most 2n elements, but since D2·n already has 2n elements, there cannot be any further
�collapsing�. This means that these three relations are enough to fully describe all of the behavior of
D2·n.

◦ We will be interested in searching for generators and relations that describe the structure of other groups.

• De�nition: If G is a group generated by S, and there is some collection of relations R1, R2, . . . , Rn, . . . among
the elements of S (and their inverses, and the identity e) that imply any other such relation, we call this
collection of generators and relations a presentation of G, and write G = 〈S |R1, R2, . . . , Rn, . . . 〉.

◦ Explicitly, a �relation� is an equation in the elements of S, the inverses of the elements in S, and the
identity e. We can always write any relation in the form [word] = e, for some word (i.e., �nite product
of elements) in S ∪ S−1.
◦ Example: From our analysis above, a presentation of D2·n is D2·n =

〈
r, s | rn = s2 = e, rs = sr−1

〉
.

◦ Example: A presentation of (Z/mZ,+) is Z/mZ = 〈a | am = e〉. Note that we have written the presen-
tation multiplicatively (the generator a corresponds to the element 1 ∈ Z/mZ, with e = 0).

◦ It is possible, for in�nite groups, that there may be in�nitely many independent relations among its
elements (even if the group itself is �nitely generated). In general, if G has a presentation with a �nite
number of generators and relations, we say it is �nitely presented. Finite groups are always �nitely
presented: we could simply take the generators to be the full list of elements in G, and the relations to
be the entire multiplication table for G.

• Example: A presentation of the quaternion group Q8 is Q8 =
〈
i, j | i4 = e, i2 = j2, ij = ji−1

〉
.

◦ It is not hard to see that the elements i and j generate Q8 and satisfy the three indicated relations.

◦ Conversely, the relations i2 = j2 and i4 = e imply j4 = e, and by similar logic as in the dihedral groups
we can write every element in the form iajb. By replacing i2 with j2 if necessary, and using i4 = j4 = e,
we can always take a ∈ {0, 1} and b ∈ {0, 1, 2, 3}.
◦ Thus, this presentation describes a group of order at most 8. Thus, it is a presentation of Q8, as claimed.

• Presentations give a convenient way to describe the elements of a group, but it is often very di�cult to tell
whether two given elements (written in terms of the generators) of the group are necessarily equal4.

◦ In fact, it is quite di�cult even to determine whether a given presentation contains any elements other
than the identity (i.e., whether the presentation describes anything other than the trivial group).

4This problem of deciding whether two words are equal in an arbitrary presentation is known as the word problem for groups. It
has been proven that there exists a �nitely presented group G such that the word problem is undecidable in G, meaning that it is not
possible to construct an algorithm that always answers the question correctly in a �nite amount of time.
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◦ For example, the presentation
〈
r, s | r4 = s2 = e, rs = sr−1

〉
describes5 D2·4, a group of order 8.

◦ On the other hand, the very similar presentation
〈
r, s | r4 = s2 = e, rs = sr2

〉
turns out to describe a

group of order 2, since in this group one has r = rs2 = (rs)s = sr2s = (sr)rs = (sr)sr2 = s(rs)r2 =
s(sr2)r2 = s2r4 = e.

3.1.7 Cyclic Groups

• The simplest nontrivial case of (sub)group generation is the case where S consists of a single element g: in
this case, 〈S〉 = {. . . , g−2, g−1, e, g, g2, . . . } consists of the powers of g.

• De�nition: A group G is cyclic if it is generated by a single element: in other words, if there exists some g ∈ G
such that G = 〈g〉 = {. . . , g−2, g−1, e, g, g2, . . . }.

◦ Example: Z/mZ and Z, under addition, are both cyclic groups generated by 1.

◦ Example: The group {1, ζn, . . . , ζn−1n } of nth roots of unity is cyclic, generated by ζn.

◦ Example: The subgroups {1, r, r2, . . . , rn−1} and {e, srk} for any k are cyclic subgroups of D2·n.

◦ It is easy to see that every cyclic group is abelian, since powers of g all commute with one another. Hence
in particular, D2·n and Sn are not cyclic groups.

◦ If G is cyclic with generator g of in�nite order, then ga 6= gb for any a 6= b as we have previously noted,
and so G = {. . . , g−2, g−1, e, g, g2, . . . } has in�nitely many elements.

◦ On the other hand, if H is cyclic with generator g having �nite order n, then ga = gb if and only if a ≡ b
(mod n). Thus in fact G = {e, g, g2, . . . , gn−1} so that G contains n elements.

◦ In both cases, we see that the order of G is equal to the order of its generator g: thus, the two uses of
�order�, one referring to elements and the other referring to groups, are related in a very natural way.

◦ Also from our results on order, if g has order n then the order of gk in H is then n/ gcd(k, n), and so H
is generated by any element of the form gd for d relatively prime to n.

• The subgroups of cyclic groups have a particularly nice structure, in that they are all cyclic also:

• Proposition (Subgroups of Cyclic Groups): If G = 〈g〉 is a cyclic group, then every subgroup of G is cyclic.
More speci�cally, if |g| =∞, then every subgroup of G can be uniquely written as

〈
gd
〉
for some nonnegative

integer d (and all of these subgroups are distinct), and if |g| = n, then every subgroup of G can be uniquely
written as

〈
gd
〉
for some nonnegative integer d dividing n, and this subgroup has order n/d (and all of these

subgroups are also distinct). Subgroups of the listed forms have 〈ga〉 ⊆
〈
gb
〉
if and only if a divides b.

◦ Proof: Suppose G = 〈g〉 is cyclic and H is a subgroup of G.

◦ If h = gk is any element of H, then g|k| is also in H, since it is either equal to h or to h−1 (and H is a
subgroup). Since g0 = e is always in H, we see that H is completely characterized by the set of positive
integers S = {n ∈ N : gn ∈ H}.
◦ If S is empty, then H = {e} and all of the results follow (in the case where |g| = n note that H = 〈gn〉).
◦ Otherwise, S is nonempty, so by the well-ordering axiom we see that S has a minimal element d. Then
H contains gd hence

〈
gd
〉
. If h = ga is any other element of H, if we write a = qd + r by the division

algorithm, we would have gr = ga(gd)−q ∈ H, so by minimality of d we must have r = 0. This means
h = ga = (gd)q and so h is in

〈
gd
〉
. Thus, H ⊆

〈
gd
〉
hence H =

〈
gd
〉
.

◦ For the remaining statements, if |g| =∞ then since all the powers of g are distinct, the subgroups 〈ga〉
and

〈
gb
〉
are distinct because the set of multiples of a is distinct from the set of multiples of b for any

positive a 6= b.

5Technically, we have not described exactly what an arbitrary presentation of this form actually means. Brie�y: �rst de�ne the
collection of all �nite words on S to be the set of all �nite strings of elements in S ∪ S−1 ∪ {e}. Then de�ne an equivalence relation on
the set of �nite words by de�ning a �direct equivalence� to be replacement of gg−1 or g−1g with e or the reverse, or by applying one of
the relations once. We then de�ne two words to be equivalent if there is some sequence of direct equivalences that turns one word into
the other. The set of elements in the presentation is then the collection of equivalence classes under this equivalence relation, and the
group operation is concatenation of strings. One must, of course, verify that this operation respects the equivalence relation to ensure
it is well de�ned, and then show that it is associative (both of these veri�cations are fairly technical, but not conceptually di�cult: the
idea is to work with �reduced words�). The identity element is e, and the inverse of a word g1g2 . . . gn is g−1

n . . . g−1
2 g−1

1 .

13



◦ If |g| = n, suppose H =
〈
gd
〉
where d is minimal and positive. If we write n = q′d + r′ by the division

algorithm, then gr
′

= gn(gd)−q
′ ∈ H, so by minimality of d we must have r = 0, meaning that d divides

n. Then the order of
〈
gd
〉
is the same as the order of gd, which is n/ gcd(d, n) = n/d. All of these

subgroups are then clearly distinct because their orders are distinct.

◦ The �nal statement, about the containments of subgroups, is immediate.

• Example: The subgroups of Z/18Z are 〈1〉 (order 18), 〈2〉 (order 9), 〈3〉 (order 6), 〈6〉 (order 3), 〈9〉 (order 2),
and 〈0〉 (order 1).

• Cyclic groups also arise naturally from the multiplicative groups of �elds:

• Theorem (Cyclic Groups and Fields): If F is a �nite �eld, then the group of units F× is cyclic. More generally,
if G is any �nite subgroup of the group of units in any �eld (�nite or not), then G is cyclic.

◦ Our proof is nonconstructive: we will establish the existence of an element in G having order |G| without
explicitly �nding one. (Such an element is called a primitive root in the context of Z/mZ or �nite �elds.)

◦ Proof: First we will show that if M is the maximal order among all elements in G, then the order of
every element in G divides M . Then we will show that M = |G|, which will establish that G is cyclic.

◦ For the �rst claim, suppose g has order M , and let h be any other element of order k. If k does not
divide M , then there is some prime q which occurs to a higher power qf in the factorization of k than
the corresponding power qe dividing M .

◦ By properties of orders, the element gq
f

has orderM/qf , and the element hk/q
e

has order qe. Since these
two orders are relatively prime and gh = hg (since these are elements in a �eld), we see that the element

gq
f · hk/qe has order M · qf−e. This is a contradiction because this element's order is larger than M .

Thus, k divides M as claimed.

◦ For the second claim, any element of orderM generates a subgroup of G havingM elements, soM ≤ |G|.
◦ Furthermore, by the above, we know that all elements in G have order dividing M , so the polynomial
p(x) = xM − 1 has |G| roots in F [x]. But by unique factorization in F [x], this is impossible unless
M ≥ |G|, since a polynomial of degree M can only have at most M roots in F [x].

◦ Hence we conclude M = |G|, meaning that some element has order |G|. This element is then a generator
of G and G is cyclic.

• Example: The group (Z/7Z)× is cyclic of order 6. Indeed, 3 is a generator, since its powers are {1, 3, 2, 6, 4, 5}.

• Example: The unit group G of F3[x]/(x2 + x+ 2) is cyclic of order 8.

◦ With some calculation, we can see that x is a generator of G.

◦ Explicitly, we can compute x2 ≡ 2x+ 1 so that x4 ≡ 2, and thus x8 ≡ 1.

◦ By our results on orders, this implies that x has order 8 inside G, so it is a generator.

3.1.8 Group Isomorphisms and Homomorphisms

• We now formalize the notion of when two groups have identical structures, which captures the same idea as
with rings:

• De�nition: Let (G, ?) and (H, ◦) be groups. A group isomorphism ϕ from G to H is a bijective function
ϕ : G→ H such that ϕ(g1 ? g2) = ϕ(g1) ◦ϕ(g2) for all g1 and g2 in G. If there is an isomorphism ϕ : G→ H,
we say G and H are isomorphic, and write G ∼= H.

◦ We will often suppress the notation for the group operations and write the condition simply as ϕ(g1g2) =
ϕ(g1)ϕ(g2).

◦ If R and S are rings, then it is easy to see any ring isomorphism ϕ : R→ S yields a group isomorphism
of the groups (R,+) and (S,+), and also (when restricted to the respective unit groups) yields a group
isomorphism of (R×, ·) with (S×, ·).

14



◦ Example: For G = Z/6Z and H = (Z/2Z) × (Z/3Z), the map ϕ : G → H de�ned via ϕ(n mod 6) =
(n mod 2, n mod 3) is an isomorphism of groups, since we have previously shown it is a ring isomorphism.

◦ Example: For G = D2·3 and H = S3, the map ϕ : G → H de�ned by associating a symmetry of
the equilateral triangle with its associated permutation on the labeled vertices of the triangle is a group
isomorphism. The geometric description implies that it respects the group operations, and it is a bijection
because it is injective and both groups have order 6. (Alternatively, of course, one could write down all
the operations explicitly and just check.)

◦ Example: For G = (R,+) and H = (R+, ·), the map ϕ : G→ H de�ned via ϕ(x) = ex is an isomorphism
from G to H. The map respects the group operation since ex+y = exey, and it is a bijection since it has
an inverse map ϕ−1(x) = ln(x).

• As with rings we can establish a number of basic properties of isomorphisms, including the fact that being
isomorphic is an equivalence relation:

• Proposition (Properties of Isomorphisms): If G,H,K are any groups, the following hold:

1. The identity map I : G→ G de�ned by I(g) = g for all g ∈ G is an isomorphism from G to G.

◦ Proof: I is clearly a bijection and respects the group operation.

2. If ϕ : G→ H is an isomorphism, then the inverse map ϕ−1 : H → G is also an isomorphism.

◦ Proof: Essentially by de�nition, ϕ−1 is also a bijection.

◦ Now suppose ϕ−1(h1) = g1 and ϕ−1(h2) = g2, so that ϕ(g1) = h1 and ϕ(g2) = h2.

◦ Then ϕ(g1g2) = ϕ(g1)ϕ(g2) = h1h2, meaning that ϕ−1(h1h2) = g1g2 = ϕ−1(h1)ϕ−1(h2), so ϕ−1 is
also an isomorphism.

3. If ϕ : G → H and ψ : H → K are isomorphisms, then the composition ψϕ : G → K is also an
isomorphism.

◦ Proof: The composition of two bijections is a bijection, and also (ψϕ)(g1g2) = ψ(ϕ(g1g2)) =
ψ(ϕ(g1)ϕ(g2)) = ψϕ(g1)ψϕ(g2), so ψϕ is an isomorphism.

4. If ϕ : G → H is an isomorphism and g ∈ G, then ϕ(eG) = eH and ϕ(gn) = ϕ(g)n for any n ∈ Z. In
particular, |g| = |ϕ(g)|.
◦ Proof: First, we have ϕ(eG)ϕ(g) = ϕ(eGg) = ϕ(g) = eHϕ(g), so cancelling ϕ(g) yields eH = ϕ(eG).

◦ For n ≥ 0 the statement ϕ(gn) = ϕ(g)n follows by a trivial induction using ϕ(gn) = ϕ(gn−1g) =
ϕ(gn−1)ϕ(g) = ϕ(g)n.

◦ If n < 0 it follows again by induction, starting with the base case ϕ(g−1) = ϕ(g)−1, which follows
from ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(eG) = eH .

◦ For the last statement, combine the �rst two to see that gn = eG if and only if ϕ(g)n = eH , so g and
ϕ(g) must have the same order.

5. If ϕ : G → H is an isomorphism, then gh = hg if and only if ϕ(g)ϕ(h) = ϕ(h)ϕ(g). In particular, G is
abelian if and only if H is abelian.

◦ Proof: If gh = hg then ϕ(g)ϕ(h) = ϕ(gh) = ϕ(hg) = ϕ(h)ϕ(g), and the reverse implication follows
the same way because ϕ−1 is also an isomorphism. The second statement follows immediately.

6. If ϕ : G→ H is an isomorphism and K is any subset of G, then K is a subgroup of G if and only if the
set ϕ(K) = {ϕ(k) : k ∈ K} is a subgroup of H.

◦ Proof: If K is a subgroup of G, then for any h1, h2 ∈ ϕ(K) there exist k1, k2 ∈ K such that
ϕ(k1) = h1 and ϕ(k2) = h2.

◦ Then eH = ϕ(eG) ∈ ϕ(K) and h1h
−1
2 = ϕ(k1)ϕ(k2)−1 = ϕ(k1k

−1
2 ) ∈ ϕ(K), so ϕ(K) satis�es

the subgroup criterion. The reverse implication follows in the same way because ϕ−1 is also an
isomorphism.

• In order to show that two given groups are isomorphic, we essentially need to construct an isomorphism
between them, which can often be di�cult to do6. Even if we are handed an isomorphism, actually verifying
that it is an isomorphism can be very time-consuming.

6More speci�cally, it has been shown that the isomorphism problem for groups (given two groups, decide whether or not they are
isomorphic) is undecidable.
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◦ On the other hand, it is often easier to show that two given groups cannot be isomorphic to one another,
if one of the properties of isomorphisms above fails.

◦ For example, the group D2·4 is not isomorphic to S3, because the former has order 8 and the latter has
order 6, and so there cannot even exist a bijection between their underlying sets of elements.

◦ In a similar way we can see that D2·4 is not isomorphic to Z/8Z, because the latter is abelian and the
former is not; likewise, S3 is not isomorphic to Z/6Z.
◦ Also, D2·4 is not isomorphic to Q8, because there are 5 elements of order 2 in D2·4 (namely, r2 and srk

for 0 ≤ k ≤ 3) but only 1 element of order 2 in Q8 (namely, −1).

• A fundamental goal of group theory is to classify (up to isomorphism) all of the groups of a given order.

◦ By extending arguments like the ones given above, one can show, for example, that the �ve groups D2·4,
Q8, Z/8Z, (Z/4Z)× (Z/2Z), and (Z/2Z)× (Z/2Z)× (Z/2Z) are nonisomorphic groups of order 8.

◦ It turns out that any group of order 8 must be isomorphic to one of these �ve, but to prove this fact only
from the results we have developed so far would be very di�cult.

• A �rst step towards such a classi�cation is to classify cyclic groups:

• Proposition (Isomorphism and Cyclic Groups): Any two cyclic groups of the same order are isomorphic. More
explicitly, any cyclic group of order n is isomorphic to Z/nZ and any in�nite cyclic group is isomorphic to Z.

◦ Proof: We show the second statement, which implies the �rst one because isomorphism is an equivalence
relation.

◦ First suppose G = 〈g〉 = {e, g, g2, . . . , gn−1} is cyclic of order n, and consider the map ϕ : Z/nZ → G
de�ned via ϕ(a) = ga.

◦ This map is well-de�ned because gn = e implies that ga = gb whenever a ≡ b (mod n), it is clearly
surjective and hence a bijection (since both sets have the same size), and ϕ(a + b) = ga+b = gagb =
ϕ(a)ϕ(b). Thus, it is an isomorphism.

◦ In the case where G = 〈g〉 = {. . . , g−2, g−1, e, g, g2, . . . } is an in�nite cyclic group, consider the map
ϕ : Z → G de�ned via ϕ(a) = ga. This map is injective (since ga 6= e for any a 6= 0), surjective (by
de�nition of 〈g〉), and ϕ(a+ b) = ga+b = gagb = ϕ(a)ϕ(b), so it is an isomorphism.

• We now study maps that respect the structure of group operations without the requirement that they be
bijections.

• De�nition: Let (G, ?) and (H, ◦) be groups. A group homomorphism ϕ from G to H is a function ϕ : G→ H
such that ϕ(g1 ? g2) = ϕ(g1) ◦ ϕ(g2) for all g1 and g2 in G.

◦ As with rings, every isomorphism is a homomorphism, but the reverse is not generally true.

◦ Example: If R and S are any rings, then a ring homomorphism ϕ : R → S is automatically a group
homomorphism on the additive and multiplicative groups of R and S.

◦ Example: As particular special cases of the above, the projection maps ϕ : Z → Z/mZ and ϕ : F [x] →
F [x]/p, de�ned in each case by ϕ(a) = a, are group homomorphisms.

◦ Example: The map ϕ : (Z/nZ)→ D2·n given by ϕ(a) = ra is a group homomorphism: it is well-de�ned
because a ≡ b (mod n) implies ra = rb because rn = e, and also ϕ(a + b) = ra+b = rarb = ϕ(a)ϕ(b).
This map is injective but not surjective.

◦ Example: If G is the additive abelian group of all smooth real-valued functions, the derivative map D :
G→ G given by D(f) = f ′ is a group homomorphism, since D(f+g) = (f+g)′ = f ′+g′ = D(f)+D(g).

◦ Example: Let G and H be any groups. The zero map z : G→ H given by z(g) = eH for every g ∈ G is
a group homomorphism.

◦ Example: If H is a subgroup of G, the inclusion map ι : H → G given by ι(h) = h is a group
homomorphism.

• Many of the properties we established for isomorphisms also hold for homomorphisms (using the same proofs).
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◦ Speci�cally, property (3) and most of (4) carry over: the composition of homomorphisms is a homomor-
phism, and homomorphisms respect the identity element, powers, and multiplicative inverses.

• If we do not have any structural information about the nature of the map ϕ, it can be di�cult to verify the
homomorphism condition, since it would seem that we would need to verify the condition separately for every
pair of elements in G.

◦ However, if we have a set of generators for G, we can express all of the other elements in terms of the
generators, and so it is reasonable to think that we can reduce the calculation to one involving only the
generators.

◦ Explicitly, suppose that G is generated by the set S. If g1g2 · · · gn = eG is any relation with the
gi ∈ S∪S−1, then applying ϕ to both sides yields ϕ(g1)ϕ(g2) · · ·ϕ(gn) = eH : this means that the images
of the generators must satisfy the same relation in H.

◦ Conversely, suppose that G is generated by S = {si}, and ϕ(si) = ri: then every element in G can be
written as a product of the elements in S ∪ S−1 so the values of ϕ(si) determine the value of ϕ(g) for
every g ∈ G. Furthermore, if the elements ri satisfy all of the same relations as the elements si, then
(one may verify) ϕ will be well-de�ned, and it is immediate that ϕ is then a group homomorphism.

◦ This means that if G is generated by S = {si} satisfying a collection of relations, and elements ri ∈ H
have the property that the ri satisfy the same relations, then there exists a (unique) homomorphism
ϕ : G→ H such that ϕ(si) = ri for each i.

• To summarize: if we have a presentation of G, then to verify that ϕ : G→ H is a homomorphism, all we need
to do is check that ϕ respects all of the relations in the presentation.

• Example: Show that there is a group homomorphism ϕ : D2·3 → S3 with ϕ(r) = (1 2 3) and ϕ(s) = (1 2).

◦ Since D2·3 =
〈
r, s | r3 = s2 = e, rs = sr−1

〉
, by the discussion above we need only verify the relations.

◦ We see ϕ(r)3 = (1 2 3)3 = 1, ϕ(s)2 = (1 2)2 = 1, and also that ϕ(r)ϕ(s) = (1 2 3)(1 2) = (1 3) =
(1 2)(1 3 2) = (1 2)(1 2 3)−1 = ϕ(s)ϕ(r)−1.

◦ Since ϕ(r) and ϕ(s) satisfy the required relations, we conclude that there is such a homomorphism.

◦ In fact, since S3 is generated by ϕ(r) and ϕ(s), ϕ is surjective, hence a bijection and thus an isomorphism.

• Associated to a group homomorphism are two fundamental objects: the kernel and image.

• De�nition: If ϕ : G → H is a group homomorphism, the kernel of ϕ, denoted kerϕ, is the set of elements in
G mapped to eH by ϕ. In other words, kerϕ = {g ∈ G : ϕ(g) = eH}.

◦ Intuitively, the kernel measures how close ϕ is to being the zero map: if the kernel is large, then ϕ sends
many elements to the identity, while if the kernel is small, ϕ sends few elements to the identity.

◦ Example: The kernel of the reduction homomorphism ϕ : Z → Z/mZ with ϕ(a) = a is the subgroup
mZ.
◦ Example: The kernel of the derivative map D is the collection of constant functions.

• De�nition: If ϕ : G → H is a group homomorphism, the image of ϕ, denoted imϕ, is the set of elements in
H of the form ϕ(g) for some g ∈ G.

◦ In the context of general functions, the image is often called the range of ϕ.

◦ Intuitively, the image measures how close ϕ is to being surjective: indeed (by de�nition) ϕ is surjective
if and only if imϕ = H.

• The kernel and image of a homomorphism are subgroups of G and H respectively:

• Proposition (Kernel and Image): Let ϕ : G→ H be a group homomorphism. Then

1. The image imϕ is a subgroup of H.

◦ Proof: Since ϕ(eG) = eH , the image contains eH . Furthermore, if h1, h2 ∈ imϕ so that ϕ(g1) = h1
and ϕ(g2) = h2 for some g1, g2 ∈ R, then h1h−12 = ϕ(g1g

−1
2 ) is also in imϕ. Thus imϕ is a subgroup.
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2. The kernel kerϕ is a subgroup of G. Also, if g ∈ kerϕ, then aga−1 is in kerϕ for any a ∈ G.
◦ Proof: Since ϕ(eG) = eH , the kernel contains eG. Furthermore, if g1, g2 ∈ kerϕ then ϕ(g1g

−1
2 ) =

eHe
−1
H = eH , so g1g

−1
2 ∈ kerϕ. Thus kerϕ is a subgroup.

◦ Moreover, we see ϕ(aga−1) = ϕ(a)eHϕ(a−1) = ϕ(a)ϕ(a)−1 = eH so that aga−1 ∈ kerϕ.

3. The kernel is zero (i.e., kerϕ = {eG}) if and only if ϕ is injective. In particular, ϕ is an isomorphism if
and only if kerϕ = {eG} and imϕ = H.

◦ Proof: If ϕ(g1) = ϕ(g2), then ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g2)−1 = eH , so g1g

−1
2 ∈ kerϕ. Thus, if the only

element in kerϕ is eG, then we must have g1g
−1
2 = eG so that g1 = g2.

◦ Conversely, if g ∈ kerϕ and ϕ is injective, then ϕ(g) = eH = ϕ(eG) implies g = eG, so kerϕ = {eG}.
◦ The second statement is then immediate since kerϕ = {eG} is equivalent to ϕ being injective and

imϕ = H is equivalent to ϕ being surjective.

3.2 Cosets and Quotient Groups

• We would now like to generalize the idea of modular arithmetic and quotients into the context of groups.

◦ We can give a similar sort of motivation to the development we gave with ideals of rings. However, some
of the details will be a little bit more di�cult because of the non-commutativity of the group operation.

◦ So suppose G is a group and N is a subset of G (whose properties we intend to characterize in a moment),
and let us say that two elements a, b ∈ G are �congruent modulo N � if a−1b ∈ N . (Note that this is just
the multiplicative version of the statement b− a ∈ I we used for ideals, but written in the order (−a) + b
instead.)

◦ We would like �congruence modulo N � to be an equivalence relation: this requires a ≡ a (mod N), a ≡ b
(mod I) implies b ≡ a (mod N), and a ≡ b (mod N) and b ≡ c (mod N) implies a ≡ c (mod N).

◦ The �rst condition requires a−1a = eG ∈ N .

◦ The second condition says: if a−1b ∈ N then b−1a ∈ N . Since b−1a = (a−1b)−1, this is the same as
saying that N is closed under inverses.

◦ The third condition says: if a−1b ∈ N and b−1c ∈ N , then a−1c ∈ N . Since a−1c = (a−1b)(b−1c), this is
the same as saying that N is closed under multiplication.

◦ Thus, all of these conditions together are equivalent to saying that N is a subgroup of G, which seems
quite reasonable.

• We would also like congruences to respect the group operation, which to say, if a ≡ c (mod N) and b ≡ d
(mod N) then ab ≡ cd (mod N).

◦ The hypotheses are equivalent to saying that there exist n1, n2 ∈ N such that a−1c = n1 and b
−1d = n2,

which is to say, c = an1 and d = bn2.

◦ Then the desired condition is that (ab)−1(cd) = b−1a−1an1bn2 = b−1n1bn2 is in N , for any a, b ∈ G and
n1, n2 ∈ N .

◦ This condition is a bit unwieldy, but if we set n2 = eG and b−1 = c, then it reduces to the statement
that cn1c

−1 ∈ N for any c ∈ G and any n1 ∈ N .

◦ On the other hand, if cnc−1 ∈ N for every c ∈ G and n ∈ N , then if we write b−1n1b = n3 ∈ N (by
hypothesis) then the element b−1n1bn2 = n3n2 is then also in N , since N is a subgroup.

◦ Thus, to summarize, the hypothesis that cnc−1 ∈ N for every c ∈ G and n ∈ N is equivalent to saying
that congruences respect the group operation.

◦ With this extra condition in hand, we can then de�ne residue classes: the residue class a is the collection
of all b such that a ≡ b (mod N): explicitly, a = {b ∈ G : a−1b ∈ N} = {an : n ∈ N}.
◦ Finally, we can de�ne the group operation on residue classes via a·b = ab, and observe that this operation
is well de�ned because congruence respects the group operation: if a = c and b = d, then ab = cd, because
a ≡ c (mod N) and b ≡ d (mod N) imply that ab ≡ cd (mod N) per the above discussion.
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• From this discussion, we can see that the desired conditions on N are that N be a subgroup with the additional
property that cnc−1 ∈ N for every c ∈ G and n ∈ N .

◦ With these assumptions, the collection of residue classes a = aN = {an : n ∈ N} will then have a
well-de�ned group operation given by a · b = ab.

◦ We will also note that the statement that cnc−1 ∈ N for every c ∈ G and n ∈ N is equivalent to the
statement that for every c ∈ G, the set cNc−1 = {cnc−1 : n ∈ N} is equal to N itself.

◦ One direction is clear, since if cNc−1 = N for every c ∈ G, then certainly cnc−1 ∈ N for every c ∈ G
and n ∈ N .

◦ On the other hand, if cnc−1 ∈ N for every c ∈ G and n ∈ N , then cNc−1 ⊆ N for all c. In particular,
plugging in c−1 for c yields c−1Nc ⊆ N , which is equivalent to N ⊆ cNc−1: thus we must have
cNc−1 = N for all c ∈ G.

• We will now examine more closely the properties of the sets aH for a ∈ G and H a subgroup of G (these sets
are called left cosets of H), and also the properties of normal subgroups, the subgroups for which cNc−1 = N
for all c ∈ G.

3.2.1 Cosets of Subgroups, Lagrange's Theorem

• De�nition: If H is a subgroup of G and a ∈ G, the set aH = {ah : h ∈ H} is called a left coset of H. We
also de�ne the index of H in G, denoted [G : H], to be the number of distinct left cosets of H in G.

◦ We also have a symmetric notion of Ha = {ha : h ∈ H}, which is called a right coset of H. If G is
abelian, then left and right cosets are the same, but when G is non-abelian, this need not be the case.
We will see in a moment that the de�nition of the index is independent of whether we use left or right
cosets.

◦ If G is an additive abelian group, we will write (left) cosets as a+H; note that this notation is consistent
with our prior use of r + I in rings.

◦ Example: If H = {e, r2} in G = D2·4, then there are four left cosets of H in G, namely eH = r2H =
{e, r2}, rH = r3H = {r, r3}, sH = sr2H = {s, sr2}, and srH = sr3H = {sr, sr3}.
◦ Example: If H = {1, (1 2 3), (1 3 2)} in G = S3, then there are two left cosets of H in G, so [G : H] = 2.
Explicitly, these cosets are 1H = (1 2 3)H = (1 3 2)H = {1, (1 2 3), (1 3 2)} and (1 2)H = (1 3)H =
(2 3)H = {(1 2), (1 3), (2 3)}.
◦ Example: If H = {1, (1 3)} in G = S3, then there are three left cosets of H in G, so [G : H] = 3.
Explicitly, these cosets are 1H = (1 3)H = {1, (1 3)}, (1 2)H = (1 3 2)H = {(1 2), (1 3 2)}, and (2 3)H =
(1 2 3)H = {(2 3), (1 2 3)}.
◦ Example: If H = 2Z = {. . . ,−2, 0, 2, 4, . . . } in G = Z, then there are two (left) cosets of H in G, so

[G : H] = 2. These cosets are 0 +H = {. . . ,−2, 0, 2, 4, . . . } and 1 +H = {. . . ,−3, 1, 3, 5, . . . }.

• In each of the examples above, all of the left cosets have the same size (which is then the same size as eH = H),
and the left cosets form a disjoint partition of G. This is true in general:

• Proposition (Properties of Cosets): Let H be a subgroup of G. Then the following hold:

1. For any a ∈ G, the map f : H → aH de�ned by f(h) = ah is a bijection between H and gH.

◦ Proof: By de�nition of aH, the map f is surjective. On the other hand, f(h1) = f(h2) is equivalent
to ah1 = ah2, which by cancellation implies h1 = h2: thus, f is also injective, hence it is a bijection.

2. For any a ∈ G, the only left coset of H containing a is aH.

◦ Proof: Clearly aH is a left coset of H containing a since e ∈ H, so we need to show it is the only
one.

◦ If a ∈ bH then by de�nition a = bh for some h ∈ H.

◦ Then for any h′ ∈ H, since hh′ ∈ H because H is a subgroup, we see that ah′ = b(hh′) ∈ bH. Thus
bH contains aH.
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◦ On the other hand, for any bh′′ ∈ bH, since b = ah−1 we can write bh′′ = a(h−1h′′) ∈ aH because
h−1h′′ ∈ H again because H is a subgroup. Thus, aH contains bH, so they are equal.

3. Any two left cosets of H in G are either disjoint or identical. Thus, the left cosets of H in G partition G.

◦ Proof: Suppose aH and bH are left cosets of H. If they are disjoint we are done, so suppose they
have some common element g.

◦ But then by (2), this means aH = gH = bH, so aH = bH. The other statement is immediate since
any g ∈ G is contained in the left coset gH.

4. For any a, b ∈ G, we have aH = bH if and only if a−1b ∈ H.

◦ Proof: If aH = bH then since b ∈ aH this means b = ah for some h ∈ H: then a−1b = a−1ah = h ∈
H.

◦ Conversely, if a−1b ∈ H, then b = ah for some h ∈ H, and so b ∈ aH. Then by (2), this means
bH = aH.

◦ Remark: All of these properties also hold if we replace �left coset� with �right coset� everywhere, and
modify the statements accordingly.

• These properties seem rather simple, but we can deduce a very important consequence from them:

• Theorem (Lagrange's Theorem): If H is a subgroup of G, then #G = #H · [G : H], where if one side is in�nite
then both are. In particular, if G is a �nite group, then the order of any subgroup H divides the order of G.

◦ Proof: By our properties of cosets, each left coset of H has a bijection with H, and so all of the left
cosets have the same cardinality.

◦ Since the left cosets form a partition of G, we may partition the #G elements into a total of [G : H] left
cosets each of which has size #H.

◦ Thus, #G = #H · [G : H]. The second statement follows immediately from this relation, since [G : H]
is an integer.

◦ Remark: If we work with right cosets instead of left cosets, we obtain the same formula: thus, the number
of left cosets is equal to the number of right cosets.

• Corollary (Orders of Elements): If G is a �nite group of order n, then for every g ∈ G the order of g divides
n, and gn = e.

◦ Proof: Let H = 〈g〉 be the cyclic subgroup generated by g. As we have shown, the order of H is equal
to the order of g, and by Lagrange's theorem we see that it divides n. The second statement follows
immediately.

• Although its proof is seemingly easy, Lagrange's theorem is an extremely important tool in unraveling the
structure of groups (particularly, �nite groups) since it substantially narrows the possible orders for elements
and subgroups of G. For example, we can completely classify the groups of order at most 7:

• Proposition (Groups of Small Order): Suppose G is a group. Then the following hold:

1. If G has prime order p, then G is cyclic and isomorphic to Z/pZ. In particular, any group of order 2, 3,
5, or 7 is cyclic.

◦ Proof: If G is a group of order p, consider any nonidentity element g. The order of g must divide p,
and it cannot be 1 because g is not the identity. Thus, g has order p, and then G = 〈g〉 is cyclic.

2. If G has order 4, then G is abelian and isomorphic either to Z/4Z or to V4 ∼= (Z/2Z)× (Z/2Z).

◦ Proof: If G is a group of order 4, then the order of any nonidentity element must be 2 or 4. If G has
an element of order 4 then it is cyclic and thus isomorphic to Z/4Z.
◦ Otherwise, assume that every nonidentity element has order 2. Choose any two nonidentity elements
a and b, and consider ab.

◦ We cannot have ab = e since this would imply a = ae = a(ab) = a2b = b. Likewise, we cannot have
ab = a or ab = b since cancellation would yield b = e or a = e. Thus, ab is distinct from e, a, and b,
so G = {e, a, b, ab}.
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◦ Then ba cannot equal e, a, or b in the same way as above, so we must have ab = ba, so G is abelian.

◦ It is then not hard to see that the map ϕ : (Z/2Z) × (Z/2Z) → G given by ϕ(x, y) = axby is an
isomorphism.

3. If G has order 6, then G is isomorphic either to Z/6Z or to S3
∼= D2·3.

◦ Proof: If G is a group of order 6, then the order of any nonidentity element must be 2, 3, or 6. If G
has an element of order 6 then it is cyclic and thus isomorphic to Z/6Z.
◦ Otherwise, assume that every nonidentity element has order 2 or 3. If every nonidentity element has
order 2, then by the same argument given above for groups of order 4, if we choose two of them then
they must commute and would generate a subgroup of order 4. But since 4 does not divide 6, this
cannot occur.

◦ Thus, G contains some element a of order 3, and so we obtain a subgroup H = {e, a, a2}. Since
[G : H] = 2 there is exactly one other left coset of H, say bH = {b, ba, ba2}; these cosets are disjoint,
so b 6∈ H.

◦ Since there is also exactly one other right coset of H, which must contain b since b 6∈ H, it is
Hb = {b, ab, a2b}. Since left or right cosets partition G, this means bH = Hb.

◦ Then b2H is also a left coset of H, and it cannot equal bH since (by cancellation) this would imply
bH = H, which is false.

◦ Therefore, b2H = H, and so b2 is one of e, a, a2. If b2 were equal to a then b would have to have
order 3, but then we could write b = b4 = a2, which is impossible. Likewise, b2 cannot equal a2, so
we must have b2 = e so that b has order 2.

◦ Also, since bH = Hb, we deduce ab ∈ Hb = {b, ab, a2b}, so since ab 6= b, we must have either ab = ba
or ab = ba2. But if ab = ba, then since a has order 3 and b has order 2, ab would have order 6,
contradicting our hypothesis.

◦ Thus, ab = ba2, or equivalently, ab = ba−1. SinceG = 〈a, b〉 this meansG =
〈
a, b : a3 = b2 = e, ab = ba−1

〉
which is the same as the presentation for the dihedral group D2·3. By our results on presentations,
since G and D2·3 both have order 6, we conclude that G ∼= D2·3 ∼= S3 as claimed.

• We can also use Lagrange's theorem to simplify calculations involving subgroups, toward an ultimate goal of
writing down all the possible subgroups of a given group.

• A convenient way to organize this information is by drawing the subgroup lattice of G (more formally called
the Hasse diagram of G): we arrange all of the subgroups of G starting with the smallest subgroups at the
bottom, and then draw paths to indicate immediate containments.

◦ For Z/nZ, as we have shown, the subgroups are in bijection with the divisors of n, and 〈a〉 is contained
in 〈b〉 precisely when a divides b. Here are a few examples of the resulting subgroup lattices:

◦ To compute an arbitrary subgroup lattice for a �nite group, we may work as follows: �rst write down
all of the cyclic subgroups (i.e., subgroups generated by a single element). Next, write down all possible
�joins� of two cyclic subgroups (i.e., the smallest subgroup containing both), which yield all of the
subgroups generated by two elements. Now repeat the process by computing all possible joins of three
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cyclic subgroups (equivalently, joins of a 2-generator subgroup with a cyclic subgroup), and so on, until
all subgroups have been obtained.

◦ Here is the result of following this procedure for some of the other small groups we have described:

• If G is a �nite group, then the only possible orders of a subgroup are divisors of n. However, for any given
divisor of n, there need not actually be a subgroup having that order.

◦ For example, in the group A4 of order 12, we claim that there is no subgroup of order 6. To see this we
can simply construct the full subgroup lattice of A4 using the algorithm described above:

◦ Explicitly, one can show that any two 3-cycles that are not in the same subgroup of order 3 will generate
all of A4, as will any of the elements of order 2 together with any element of order 3.

• We will discuss a partial converse to Lagrange's theorem (namely, Sylow's theorems) in a later section.

3.2.2 Normal Subgroups and Quotient Groups

• We now continue with our discussion of quotient groups. As we have already explained, in order to have
well-de�ned operations on the collection of left cosets of H, we must impose an additional condition on H:

• De�nition: If K is a subgroup of G and g ∈ G, we de�ne the conjugate of K by g, written gKg−1, as
gKg−1 = {gkg−1 : k ∈ K}. We say g ∈ G normalizes K if gKg−1 = K, and we N is a normal subgroup of
G, written N E G, if every g ∈ G normalizes N .

◦ Example: Every subgroup of an abelian group is normal. In particular, if R is a ring and I is an ideal,
then I is a normal subgroup of (R,+).

◦ When G is non-abelian, it is tedious to try to verify that gKg−1 = K for every g ∈ G.
◦ We can reduce the amount of calculation by observing that if g, h ∈ G both normalize K, then

(gh)K(gh)−1 = g(hKh−1)g = gKg−1 = K so that gh also normalizes K, and also by multiplying
by g−1 on the left and g on the right, gKg−1 = K implies K = g−1Kg so that g−1 normalizes K.

◦ Thus, since the identity clearly normalizes K, we see that the collection of elements normalizing K is a
subgroup of G. This subgroup is called the normalizer of K in G, and is denoted NG(K).

◦ Hence, to show K is normal, we need only verify that it is normalized by a set of generators for G.
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◦ Example: If H = {e, r2} in G = D2·4, then H is normal in G because rHr−1 = {e, r2} = H and
sHs−1 = {e, sr2s} = {e, r2} = H.

◦ Non-Example: If H = {e, s} in G = D2·4, then H is not normal in G because rHr−1 = {e, rsr−1} =
{e, sr2} 6= H.

◦ Example: If H = {1, (1 2 3), (1 3 2)} in G = S3, then H is normal in G because (1 2 3)H(1 2 3)−1 = H
since H contains (1 2 3), and also (1 2)H(1 2)−1 = {1, (1 3 2), (1 2 3)} = H.

◦ Non-Example: If H = {1, (1 3)} in G = S3, then H is not normal in G because (1 2)H(1 2)−1 =
{1, (2 3)} 6= H.

• Now we can construct quotient groups. When N E G, we will also write the left coset aN as a.

• Theorem (Quotient Groups): Let N be a normal subgroup of G. Then the collection of left cosets of N in G
forms a group (the quotient group of G by N , denoted G/N) under the operation (aN) · (bN) = (ab)N , or,
in residue class notation, a · b = ab. In particular, the identity element is e = eN and inverses are given by
(gN)−1 = g−1N . Furthermore, we have #(G/N) = [G : N ], and also if G is abelian then so is G/N .

◦ If G is an additive abelian group we instead write (a+N) + (b+N) = (a+ b) +N . As noted earlier, any
ideal of a ring under addition is a normal subgroup, so our notation here is completely consistent with
the notation we used for quotient rings.

◦ Proof: First we must show that the operation is well-de�ned: that is, if we choose di�erent elements
c ∈ aN and d ∈ bN , then the coset of cd is the same as that of ab.

◦ To see this, if c ∈ aN then c = an1 for some n1 ∈ N , and similarly d = bn2 for some n2 ∈ N .

◦ Because xN = yN if and only if x−1y ∈ N , we see that (ab)N = (cd)N is equivalent to (ab)−1(an1bn2) ∈
N .

◦ We see that (ab)−1(an1bn2) = b−1a−1an1bn2 = (b−1n1b)n2, and then since b−1n1b ∈ N because b−1

normalizes N , we conclude that (ab)−1(an1bn2) ∈ N .

◦ Therefore, (ab)N = (cd)N , and so the operation is well-de�ned.

◦ The three group axioms [G1]-[G3] then follow from the corresponding properties in G.

◦ For example, for [G1] we have (a · b) · c = ab · c = (ab)c = a(bc) = a · bc = a · (b · c).
◦ For [G2], the multiplicative identity is e, since a · e = ae = a = ea = e · a, and for [G3] we have
a · a−1 = aa−1 = e = a−1a = a−1 · a, so a−1 = a−1.

◦ For the last statements, by de�nition #(G/N) is the number of left cosets of N in G, which is [G : N ].
Finally, if G is abelian then a · b = ab = ba = b · a so G/N is also abelian.

• For convenience we can collect a number of equivalent properties for normality (some of which are more useful
in particular contexts):

• Proposition (Normality Conditions): If N is a subgroup of G, the following are equivalent:

1. N is a normal subgroup of G (i.e., gNg−1 = N for every g ∈ G).
2. The collection of left cosets of G forms a group under the operation (aN)(bN) = abN .

3. gNg−1 ⊆ N for every g ∈ G.
4. gN = Ng for every g ∈ G.
5. Every left coset of G is also a right coset of G, and vice versa.

◦ Condition (3) is usually the easiest to check, and to show (3) it is only necessary to verify that
ginjg

−1
i ∈ N for a set of generators gi of G and a set of generators nj of N .

◦ Proof: In our motivation for the de�nition of normality, we showed that (2) implies (1) and that
(3) implies (1). Our theorem constructing quotient groups shows that (1) implies (2), and also (1)
clearly implies (3). Thus, (1), (2), and (3) are all equivalent.

◦ For (4), gN = Ng implies for any n ∈ N there exists n′ ∈ N with gn = n′g. Thus gng−1 = n′ ∈ N
for every g ∈ G and n ∈ N , which is (3). Conversely, if gNg−1 = N , then multiplying every element
in both sets on the right by g shows that gN = Ng, so (1) implies (4).
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◦ For (5), clearly gN = Ng for every g ∈ G implies that every left coset is a right coset, so (4) implies
(5). Conversely, if every left coset is a right coset, then since gN is the unique left coset containing g
and Ng is the unique right coset containing g, we must have gN = Ng for every g: thus, (5) implies
(4).

• Here are some examples of quotient groups:

• Example: For G = S3 and N = 〈(1 2 3)〉, identify the elements of G/N and determine the structure of G/N .

◦ Since [G : N ] = |G| / |N | = 2 there are 2 left cosets of G, so G/N is a group of order 2. Thus G/N will
be isomorphic to Z/2Z.
◦ We can compute the elements ofG/N explicitly as 1N = {1, (1 2 3), (1 3 2)} and (1 2)N = {(1 2), (2 3), (1 3)}.
◦ By the de�nition of the quotient group structure, we can then compute [1N ][1N ] = 1, [1N ][(1 2)N ] =

(1 2)N = [(1 2)N ][1N ], and [(1 2)N ][(1 2)N ] = (1 2)2N = 1N .

◦ Indeed, the structure of G/N is precisely that of Z/2Z.

• Example: For G = Q8 and N = 〈−1〉, identify the elements of G/N and determine the structure of G/N .

◦ Since [G : N ] = |G| / |N | = 4 there are 4 left cosets of G, so G/N is a group of order 4.

◦ The elements of G/N are 1N = {1,−1}, iN = {i,−i}, jN = {j,−j}, and kN = {k,−k}. The identity
element is 1N .

◦ By the de�nition of the quotient group structure, we can then compute, for example, (iN)(jN) = ijN =
kN , and (jN)(iN) = jiN = −kN = kN .

◦ Also, we have (iN)2 = i2N = −1N = 1N , and likewise (jN)2 = 1N and (kN)2 = 1N , so each
nonidentity element of the group has order 2.

◦ From our characterization of the groups of order 4, this tells us that G/N is isomorphic to the Klein
4-group V4.

• Example: For G = Z/12Z and N = 〈6〉, identify the elements of G/N and determine the structure of G/N .

◦ Since [G : N ] = |G| / |N | = 6 there are 6 left cosets of G, so G/N is a group of order 6.

◦ The elements of G/N are 0+N = {0, 6}, 1+N = {1, 7}, 2+N = {2, 8}, 3+N = {3, 9}, 4+N = {4, 10},
and 5 +N = {5, 11}.
◦ We can see that k(1 +N) = k+N for any integer k, and so G/N is a cyclic group (of order 6) generated
by 1 +N .

◦ Remark: More generally, if G = 〈g〉 is cyclic and generated by the element g, it is not hard to see that
G/N is cyclic and generated by g = gN .

• Example: For G = D2·6 and N =
〈
r3
〉
, identify the elements of G/N and determine the structure of G/N .

◦ Since [G : N ] = |G| / |N | = 6 there are 6 left cosets of G, so G/N is a group of order 6.

◦ The elements of G/N are eN = {e, r3}, rN = {r, r4}, r2N = {r2, r5}, sN = {s, sr3}, srN = {sr, sr4},
and sr2N = {sr, sr2}.
◦ Note that (rN)3 = r3N = eN and (r2N)3 = r6N = eN so both rN and r2N have order 3. In a similar
way we can see that sN , srN , and sr2N each have order 2.

◦ From our characterization of the groups of order 6, this tells us that G/N is isomorphic to D2·3 ∼= S3. (In
fact, an explicit isomorphism with D2·3 can be obtained simply by reading o� the corresponding label
from the cosets, as we listed them above!)

• One of the primary reasons that quotient groups are of interest is that it is often possible to �piece together�
information about N and G/N to yield information about G.

◦ For example, using an argument of this type, we will prove later that if p is prime, then every group of
order p2 is abelian and isomorphic to one of Z/p2Z or (Z/pZ)× (Z/pZ).
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◦ We will remark that even if the isomorphism types of N and G/N are known, then this information
does not uniquely determine the structure of G. For example, we have seen that both Q8 and D2·4 have
normal subgroups N of order 2 (isomorphic to Z/2Z), such that the quotient group by N is isomorphic
to the Klein 4-group.

◦ In general, the problem of describing all groups G having a normal subgroup N isomorphic to a speci�c
group A and with G/N isomorphic to another speci�c group B is called the extension problem for groups.

• Of course, when G is large it can be quite di�cult to understand the structure of G/N in a useful way.
Nonetheless, such quotient groups can often have interesting properties.

◦ For example, every element of the quotient group Q/Z has �nite order, although element orders in this
group can be arbitrarily large. Explicitly, if p/q is in lowest terms then the coset p/q has order q, since
q · p/q = p = 0 but no smaller multiple of p/q will yield an integer.

◦ As another example, if p is a prime and G represents the group of p-power roots of unity in C (i.e., the
union of the pnth roots of unity for all n ≥ 1) and N represents the group of pth roots of unity, then G/N
is isomorphic to G itself. Explicitly, one may verify that the map given by ϕ(ζN) = ζp is well-de�ned
and yields an isomorphism of G/N with G.

• A common proof technique for establishing structural results about �nite groups is to use induction on |G|,
and piece information together from normal subgroups and quotient groups. A major obstruction to this type
of argument occurs if G possesses no nontrivial proper normal subgroups:

• De�nition: A group G is simple if |G| > 1 and the only normal subgroups of G are {e} and G.

◦ The cyclic groups Z/pZ for p prime are simple, and in fact it is not hard to see that they are the only
abelian simple groups.

◦ Another family of simple groups is given by the alternating groups An for n ≥ 5. (It is not as easy to
see that these groups are simple!)

◦ A major goal of �nite group theory is to classify the �nite simple groups, since they provide a partial
analogue to the prime numbers in that they are the �building blocks� for the construction of groups from
smaller groups.

◦ This classi�cation was completed (up to some minor components) in the 1980s, and established that there
are 18 in�nite families of �nite simple groups, along with 26 �sporadic� simple groups not belonging to
any of these families, such that every �nite simple group is isomorphic to one of these listed groups. In
total, the classi�cation is estimated to run over 10000 pages, spanning several hundred papers by dozens
of individual authors.

3.2.3 Quotients and Homomorphisms

• Like with rings, we also have various natural connections between normal subgroups and group homomor-
phisms.

◦ To begin, observe that if ϕ : G→ H is a group homomorphism, then kerϕ is a normal subgroup of G.

◦ In fact, we proved this fact earlier when we introduced the kernel, but let us remark again: if g ∈ kerϕ,
then for any a ∈ G, then ϕ(aga−1) = ϕ(a)ϕ(g)ϕ(a−1) = ϕ(a)ϕ(a−1) = e. Thus, aga−1 ∈ kerϕ as well,
and so by our equivalent properties of normality, this means kerϕ is a normal subgroup.

◦ Thus, we can use homomorphisms to construct new normal subgroups.

◦ Equally importantly, we can also do the reverse: we can use normal subgroups to construct homomor-
phisms.

◦ The key observation in this direction is that the map ϕ : G → G/N associating a group element to its
residue class / left coset (i.e., with ϕ(a) = a) is a ring homomorphism.

◦ Indeed, the homomorphism property is precisely what we arranged for the left cosets of N to satisfy:
ϕ(a · b) = a · b = a · b = ϕ(a) · ϕ(b).
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◦ Furthermore, the kernel of this map ϕ is, by de�nition, the set of elements in G with ϕ(g) = e, which is
to say, the set of elements g ∈ N .

◦ Thus, we see that kernels of homomorphisms and normal subgroups are precisely the same things.

• Let us summarize these observations:

• Proposition (Projection Homomorphisms): If N is a normal subgroup of G, then the map ϕ : G → G/N
de�ned by ϕ(a) = a = aN is a surjective group homomorphism called the projection homomorphism from G
to G/N .

◦ Proof: We have ϕ(a · b) = a · b = a · b = ϕ(a) · ϕ(b), so ϕ is a homomorphism. Also, ϕ is surjective,
essentially by de�nition: any residue class in G/N is of the form gN for some g ∈ G, and then ϕ(g) = gN .

• We also get the analogous statement of the �rst isomorphism theorem:

• Theorem (First Isomorphism Theorem): If ϕ : G→ H is a group homomorphism, then kerϕ E G and G/ kerϕ
is isomorphic to imϕ.

◦ Intuitively, ϕ is a surjective homomorphism ϕ : G → imϕ. To turn it into an isomorphism, we must
�collapse� its kernel to a single element: this is precisely what the quotient group G/ kerϕ represents.

◦ Proof: Let N = kerϕ. We have already shown that N is a normal subgroup of G, so now we will
construct a homomorphism ψ : G/N → imϕ, and then show that it is injective and surjective.

◦ The map is de�ned as follows: for any residue class gN ∈ G/N , we de�ne ψ(gN) = ϕ(g).

◦ To see ψ is well-de�ned, suppose that g′ ∈ gN is some other representative of the coset gN . Then
g′ = gn for some n ∈ N , so ψ(g′N) = ϕ(g′) = ϕ(gn) = ϕ(g)ϕ(n) = ϕ(g) = ψ(gN) since n ∈ kerϕ, so ψ
is well-de�ned.

◦ It is then easy to see ψ is a homomorphism, since ψ(a · b) = ϕ(ab) = ϕ(a)ϕ(b) = ψ(a)ψ(b).

◦ Next, we see that ψ(g) = e precisely when ϕ(g) = e, which is to say g ∈ ker(ϕ) = N , so that g = e.
Thus, the only element in kerψ is e, so ψ is injective.

◦ Finally, if h is any element of imϕ, then by de�nition there is some g ∈ G with ϕ(g) = h: then ψ(g) = h,
meaning that ψ is surjective.

◦ Since ψ is a homomorphism that is both injective and surjective, it is an isomorphism.

• By using the �rst isomorphism theorem, we can construct isomorphisms of groups.

◦ In order to show that G/N is isomorphic to a group H, we search for a surjective homomorphism
ϕ : G→ H whose kernel is N .

• Example: Show that Z/12Z is isomorphic to (Z/3Z)× (Z/4Z) as a group.

◦ We seek a surjective homomorphism ϕ : Z→ (Z/3Z)× (Z/4Z) whose kernel is 12Z.
◦ Once this idea is suggested, it is not hard to come up with a candidate, namely, ϕ(a) = (a mod 3, a mod 4).

◦ It is easy to verify that map is a homomorphism (since the individual maps of reduction mod 3 and
reduction mod 4 are homomorphisms) and it is likewise fairly easy to see that the map is surjective by
checking that the images of 0, 1, ... , 11 represent all of the elements in (Z/3Z)× (Z/4Z).

◦ Finally, the kernel of the map consists of all integers a with ϕ(a) = (0, 0), which is equivalent to saying
a ≡ 0 (mod 3) and a ≡ 0 (mod 4), so that 3|a and 4|a: thus, the kernel is precisely 12Z.
◦ Therefore, by the �rst isomorphism theorem applied to ϕ, we conclude that Z/12Z is isomorphic to

(Z/3Z)× (Z/4Z).

• By using the �rst isomorphism theorem, we can establish the group analogues of the other isomorphism
theorems:

• Theorem (Second Isomorphism Theorem): If A is a normal subgroup of G and B is any subgroup of G, then
AB = {ab : a ∈ A, b ∈ B} is a subgroup of G, A ∩ B is a normal subgroup of B, and (AB)/B is isomorphic
to A/(A ∩B).
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• Theorem (Third Isomorphism Theorem): If H and K are normal subgroups of G with H ≤ K, then H is
normal in K, K/H is normal in G/H, and (G/H)/(K/H) is isomorphic to G/K.

• Theorem (Fourth Isomorphism Theorem): IfN is a normal subgroup ofG, then there is an inclusion-preserving
bijection between the subgroups A of G containing N and the subgroups A = A/N of G/N . This bijection
preserves the subgroup lattice structure, in the sense that it respects indexes, joins, intersections, and nor-
mality.

◦ We will not give the full details of the proofs of the isomorphism theorems, although many of the details
(such as checking various subgroups are normal, etc.) are relatively straightforward. Constructing
the necessary isomorphisms for the second and third isomorphism theorems can be done via the �rst
isomorphism theorem.

◦ For example, to show that (AB)/B is isomorphic to A/(A∩B), we verify that the map ϕ : A→ (AB)/B
given by ϕ(a) = aB is a surjective homomorphism and then check that its kernel is A ∩ B. Then the
�rst isomorphism theorem yields an isomorphism of A/(A ∩B) with (AB)/B.

◦ Likewise, to show that (G/H)/(K/H) is isomorphic to G/K, we verify that the map ϕ : G/H → G/K
given by ϕ(gH) = gK is a well-de�ned, surjective homomorphism with kernel K/H.

• We can give a few illustrations of the lattice isomorphism theorem:

◦ For a �rst example, recall that we have shown that the subgroup N =
〈
r2
〉
of G = D2·4 is normal, and

that the quotient G/N is isomorphic to the Klein 4-group.

◦ By dotting the lines to emphasize only the subgroups containing
〈
r2
〉
, we can see explicitly a copy of the

subgroup lattice for the Klein 4-group inside the subgroup lattice of D2·4:

◦ In the same way we can also identify the structure of the Klein 4-group's lattice inside Q8, since the
quotient of Q8 by the subgroup N = 〈−1〉 is also isomorphic to the Klein 4-group.

3.3 Group Actions

• We initially motivated the idea of a group as arising (in a natural way) from collections of symmetries of
geometric or algebraic objects.

• We can make this interaction more precise using group actions, which formalize the notion of a group �acting
on� a set in a way that is compatible with the structure of the group.

◦ If we think of a group as a collection of symmetries of an object (and we think of the object as a set),
each element of the group will behave as a function from the set to itself, and function composition will
agree with the group operation.

◦ Furthermore, the identity element of the group will act as the identity function, and inverses in the group
will act as the corresponding inverse function.

◦ These requirements lead naturally to the de�nition of a group action.
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3.3.1 De�nition and Basic Properties

• De�nition: If G is a group and A is a set, a (left7) group action of G on A is a function from G × A to A,
written as g · a, such that

[A1] The action is compatible with the group operation: g1 · (g2 ·a) = (g1g2) ·a for any g1, g2 ∈ G and a ∈ A.
[A2] The identity acts as the identity map: e · a = a for all a ∈ A.

• Here are a few basic examples of group actions:

• Example (Sn): If A = {1, 2, . . . , n}, then Sn acts on A via permutation. Explicitly, the action is σ · a = σ(a).

◦ For example, if n = 5 we have (1 2 3 4) · 1 = 2, (1 2 3)(4 5) · 4 = 5, and (2 5 1)(3 4) · 5 = 1.

◦ For [A1] we have σ · (τ · a) = σ · (τ(a)) = σ(τ(a)) = (στ)(a) = (στ) · a by the de�nition of the group
action in Sn as function composition.

◦ For [A2] we have 1 · a = a for all a ∈ A by the de�nition of the identity permutation.

• Example (D2·n): If A = {V1, V2, . . . , Vn} is the set of vertices of a regular n-gon (labeled counterclockwise),
then D2·n acts on A by the geometric interpretation we used to de�ne D2·n.

◦ For example, we have r · V1 = V2, r · V2 = V3, ... , r · Vn−1 = Vn, and r · Vn = V1, and s · V1 = V1,
s · V2 = Vn, s · V3 = Vn−1, ... , and s · Vn = V2.

◦ The veri�cation that this actually is a group action follows from the analysis we did in originally describing
D2·n from its geometric de�nition.

• Example (Vector Space Multiplication): If A = V is an F -vector space, then we have a group action G = F×

on V via scalar multiplication.

◦ Explicitly, using ? for the group action, we have α ? v = αv for every v ∈ A and α ∈ G.
◦ Axioms [A1] and [A2] follow in this case by the corresponding axioms for vector spaces.

• Example (Trivial Action): If G is any group and A is any set, then the trivial group action with g · a = a for
all g ∈ G and a ∈ A is a group action of G on A.

◦ It is easy to see that the trivial action satis�es both [A1] and [A2].

• Example (Left-Multiplication Action): If G is any group, then the left-multiplication action of G on itself is
de�ned via g · a = ga for any g ∈ G and a ∈ G. (The underlying set in this case is A = G.)

◦ For [A1], we have g1 · (g2 · a) = g1 · (g2a) = g1(g2a) = (g1g2)a = (g1g2) · a by associativity in G.

◦ For [A2], we have e · a = ea = a by the identity property in G.

• Example (Conjugation Action): If G is any group, then G acts on the set A = G by conjugation, via
g · a = gag−1 for any g ∈ G and a ∈ A.

◦ For [A1], we have g1 · (g2 · a) = g1 · (g2ag−12 ) = g1g2(ag−12 )g−11 = (g1g2)a(g1g2)−1 = (g1g2) · a.
◦ For [A2], we have e · a = eae−1 = a.

• Example (Matrices on Fn): If F is a �eld, the general linear group GLn(F ) acts on Fn via left multiplication
M · v = Mv for all M ∈ GLn(F ) and v ∈ Fn.

◦ Axioms [A1] and [A2] follow in this case by the corresponding properties of matrix multiplication.

• Notice that we did not include as part of the de�nition of group action that inverses in the group act as the
corresponding inverse function; this is because it actually follows from [A1] and [A2].

7There is also a notion of a right group action, which is a function from A×G to A whose [A1] statement reads as (a·g2)·g1 = a·(g2g1)
and whose [A2] statement reads as a · e = a. Left and right group actions can be interchanged by observing that if g · a yields a left
action, then a · g−1 yields a right action. In certain contexts, right actions can be more natural.
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◦ Explicitly, by [A1] and [A2], for any g ∈ G we have g−1 · (g · a) = (g−1g) · a = e · a = a and also
g · (g−1 · a) = (gg−1) · a = e · a = a: thus, g−1 acts as the inverse function of g.

◦ For each g ∈ G, we obtain a map σg : A→ A given by σg(a) = g · a; the calculation above shows that σg
is a bijection with inverse σg−1 .

◦ Thus, under the group action, each element g ∈ G is associated with a bijection σg from A to itself,
which is an element of the permutation group SA.

◦ In fact, axiom [A1] tells us that this association is a group homomorphism from G to SA: for any a ∈ A,
we have σg1g2(a) = (g1g2) · a = g1 · (g2 · a) = σg1(σg2(a)), and thus σg1g2 = σg1 ◦ σg2 as functions.

◦ Conversely, any group homomorphism from G to SA yields a group action of G on A: [A1] follows by the
same calculation performed above, while [A2] follows by the observation that any homomorphism from
G to SA must map the identity of G to the identity of SA.

• Together, our observations show that a group action of G on A is the same as a group homomorphism from
G to SA: in other words, every element of G acts by permuting the elements of A in a way that is consistent
with the group operation in G.

◦ Since any group action corresponds to a group homomorphism from G to SA, it is then natural to consider
the kernel of this homomorphism.

◦ Group actions whose kernel is trivial (i.e., consists of only the identity element) are particularly note-
worthy:

• De�nition: The kernel of the group action of G on A is the kernel of the associated homomorphism from G
to SA, namely, the set of g ∈ G with g · a = a for all a ∈ A. The group action is faithful if its kernel consists
of only the identity element.

◦ Example: The action of D2·n on the vertices of an n-gon is faithful, as is the action of Sn on {1, 2, . . . , n}
and the action of F× on an F -vector space V .

◦ Example: The kernel of the trivial action of G on A is all of G, and is thus not faithful if G is not the
trivial group.

◦ Example: The kernel of the left-multiplication action of G on itself is {e} (by cancellation), and is
therefore faithful.

◦ Example: The kernel of the conjugation action of G on itself is its center Z(G). If Z(G) = {e} then the
action is faithful, and otherwise it is not faithful.

• If a group action is faithful then the associated homomorphism from G to SA is injective, and then by the �rst
isomorphism theorem we see that G is isomorphic to its image in SA. Applying this observation in particular
to the left-multiplication action of G on itself yields the following theorem:

• Theorem (Cayley's Theorem): Every group is isomorphic to a subgroup of a symmetric group. Furthermore,
if |G| = n, then G is isomorphic to a subgroup of Sn.

◦ Proof: As we noted above, the left-multiplication action of G on itself is faithful, so we obtain an injective
homomorphism ϕ : G→ SG; thus by the �rst isomorphism theorem, G is isomorphic to imϕ, which is a
subgroup of a symmetric group. The second statement is immediate.

◦ Remark: Historically, groups were initially conceived as being permutation groups (i.e., subsets of sym-
metric groups), and it was only later that the axiomatic de�nition we used was adopted. Cayley's
theorem, then, indicates that the historical and modern conceptions of a group are equivalent. Although
the historical de�nition is more concrete, the axiomatic approach has the advantage of not requiring us
to specify a particular symmetric group of which G is a subgroup, and makes many other tasks (e.g.,
involving homomorphisms and isomorphisms) much easier to handle.

◦ As an example, if G = Q8 = {1,−1, i,−i, j,−j, k,−k} and we label the elements in that order, then i
corresponds to the permutation (1 3 2 4)(5 7 6 8) and j corresponds to the permutation (1 5 2 6)(3 8 4 7).
Thus, since Q8 is generated by i and j, we see that the subgroup of S8 generated by (1 3 2 4)(5 7 6 8) and
(1 5 2 6)(3 8 4 7) is isomorphic to Q8.
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• If we have a (nontrivial) action of G on A, we can often obtain important structural information about G and
about A by studying the group action.

• De�nition: If G acts on A, then for any a ∈ A the stabilizer of a is the set Ga = {g ∈ G : g · a = a} of
elements of g �xing a.

◦ The stabilizer is a subgroup of G: clearly e ∈ Ga by [A2], and if g, h ∈ Ga then (gh)·a = g·(h·a) = g·a = a
by [A1], and also a = e · a = (g−1g) · a = g−1 · (g · a) = g−1 · a so g−1 ∈ Ga.

◦ Example: For the action of Sn on {1, 2, . . . , n} by permutation, the stabilizer of n is the collection of all
permutations that �x n. Since such permutations can permute {1, 2, . . . , n−1} arbitrarily, this stabilizer
is isomorphic to Sn−1.

◦ Example: For the action of D2·n on the vertices {V1, . . . , Vn} of a regular n-gon, the stabilizer of any
vertex Vi consists of the identity map along with the re�ection along the line passing through the center
of the n-gon and Vi.

◦ Example: For the left-multiplication action of G on itself, the stabilizer of any element a ∈ G consists of
only the identity (by cancellation).

◦ Example: For the conjugation action of G on itself, the stabilizer of any element a ∈ G consists of all
elements g ∈ G such that gag−1 = a, which is to say, all elements g ∈ G with ga = ag (i.e., all elements
of G that commute with a).

• De�nition: If G acts on A, then the orbits of G acting on A are the equivalence classes of the equivalence
relation on A given by a ∼ b if there exists g ∈ G with b = g · a. If there is a single orbit (namely, A itself)
then we say the action of G on A is transitive.

◦ It is straightforward to verify that this relation ∼ is indeed an equivalence relation, so it makes sense to
speak of its equivalence classes.

◦ Explicitly, the orbits are the sets G · a = Oa = {g · a : g ∈ G} for the various elements a ∈ A. The
set G · a is the orbit of a under G, and (per the de�nition) is the subset of A that can be obtained by
starting at a and applying an element of G.

◦ The term �orbit� is intended to connote the idea that the action of G sends a to various di�erent places,
and the orbit of a is the collection of all the places that a can go.

◦ Example: For the action of Sn on {1, 2, . . . , n} by permutation, for σ = (1 2 3 . . . n) we have σ · 1 = 2,
σ · 2 = 3, ... , and σ ·n = 1, so there is a single orbit consisting of the entire set {1, 2, . . . , n}. This means
the action is transitive.

◦ Example: The left-multiplication action of G on itself is transitive, since for any g, h ∈ G we have
(hg−1) · g = h.

◦ Example: For the conjugation action of G = S3 on itself, there are three orbits: {e}, {(1 2), (1 3), (2 3)},
and {(1 2 3), (1 3 2)}.

• We have an important combinatorial relation between orbits and stabilizers:

• Proposition (Orbit-Stabilizer Theorem): If G acts on the set A, then the number of elements in the orbit Oa
is equal to [G : Ga], the index of the stabilizer of a.

◦ Proof: We will show that there is a bijection between elements b ∈ Oa and the left cosets bGa of the
stabilizer Ga.

◦ Consider the map f : G → A with f(g) = g · a. Then for any g, h ∈ G, we see that f(g) = f(h) if and
only if g · a = h · a if and only if a = g−1 · (h · a) = (g−1h) · a if and only if g−1h ∈ Ga if and only if
gGa = hGa.

◦ Therefore, for any b ∈ Oa with b = g · a, we see that the �ber f−1(b) of the map f is precisely the left
coset gGa. This means that f yields a bijection between the left cosets of Ga with the elements of the
orbit Oa of a.

◦ The claimed result then follows immediately because the number of left cosets of Ga equals [G : Ga], as
we showed previously.
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3.3.2 Polynomial Invariants and An

• Our primary interest in groups, and in group actions in particular, is to use them to study �eld extensions.
An important action that will be relevant to our work is the action of Sn and its subgroups on polynomials.

• Example (Sn on Polynomials): If F is a �eld and x1, x2, . . . , xn are independent variables, then Sn acts on
the polynomial ring F [x1, x2, . . . , xn] via �index permutation� of the variables. Explicitly, given a polynomial
p(x1, x2, . . . , xn) and σ ∈ Sn, the action of σ is σ · p(x1, x2, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)).

◦ It is easy to see that this de�nition yields a group action, since σ1 · (σ2 · p)) = σ1 · p(xσ2(1), . . . , xσ2(n)) =
p(xσ1σ2(1), . . . , xσ1σ2(n)) = (σ1σ2) · p, and 1 · p = p(x1, . . . , xn) = p.

◦ As an example, with n = 4 and p(x1, x2, x3, x4) = (x1 − 2x2x4)(4x33 − x24) then for σ = (1 2 3 4) we have
σ · p = (x2 − 2x3x1)(4x34 − x21).

• We can use the action of Sn on particular polynomials to extract information about certain subgroups of Sn.
We will pursue additional examples when we study the roots of degree-3 and degree-4 polynomials, but we
can describe how to use this action to study the alternating group An now:

◦ For a �xed n, de�ne the polynomial D =
∏

1≤i<j≤n(xi − xj). For example, when n = 3 we have
D = (x1 − x2)(x1 − x3)(x2 − x3).

◦ Now consider the action of Sn on D via index permutation, so that for σ ∈ Sn we have σ(D) =∏
1≤i<j≤n(xσ(i) − xσ(j)).

◦ For example, with n = 3 and σ = (1 2 3) we have σ(D) = (x2 − x3)(x2 − x1)(x3 − x1) = −D.

◦ Now observe that since σ is a permutation, each term in the product for D will appear in σ(D) except
possibly with the variables in the other order. (With σ = (1 2 3) above, the x2 − x3 term remains
unchanged but the x1 − x2 term becomes x2 − x1.)
◦ By collecting all the signs, we see that D and σ(D) are the same except up to a product of some number
of −1 terms, and therefore σ(D) = ±D for all σ ∈ Sn.

• De�nition: For σ ∈ Sn we de�ne the sign sgn(σ) of σ to be +1 if σ(D) = D and −1 if σ(D) = −D. We call a
permutation σ even if sgn(σ) = 1 and odd if sgn(σ) = −1.

• Proposition (Sign Map is a Homomorphism): The sign map is a group homomorphism sgn : Sn → {±1}.
Equivalently, sgn(τσ) = sgn(τ)sgn(σ) for all σ, τ ∈ Sn.

◦ Proof: Let σ, τ ∈ Sn: by de�nition we have (τσ)(D) =
∏

1≤i<j≤n(xτσ(i) − xτσ(j)).
◦ Suppose that σ(∆) has k factors that are interchanged upon the application of σ. Consider what happens
when we compute τσ(∆) by applying σ �rst and then τ . When we do this, the action of σ will produce
exactly k factors of the form xτ(j) − xτ(i) with i < j; the rest will be xτ(i) − xτ(j) with i < j.

◦ Interchanging the ��ipped� terms introduces a sign (−1)k = sgn(σ). After we �switch back� all of these
terms, we will obtain τ(D). Symbolically,

τσ(D) = τ(σ(D)) = (−1)k
∏

1≤i<j≤n

(xτ(i) − xτ(j)) = sgn(σ) · τ(D) = sgn(σ)sgn(τ) ·D

where the last equality follows by the de�nition of sgn(τ).

◦ Combining these results yields sgn(τσ) · D = τσ(D) = sgn(σ)sgn(τ) · D, and therefore sgn(τσ) =
sgn(τ)sgn(σ), as claimed.

• Using the sign map we can characterize the elements of the alternating group:

• Theorem (Alternating Group): The alternating group An is the kernel of the sign map (hence normal in Sn),
consists of all even permutations, and has order n!/2.

◦ Proof: First, the sign map is surjective because sgn((1 2)) = −1 since the permutation (1 2) only �ips
the sign of the single term x1 − x2.
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◦ Next, for any transposition (i j), if we set σ = (1 i)(2 j) then σ(1 2)σ = (i j), so since the sign map is a
homomorphism we have sgn((i j)) = sgn(σ(1 2)σ) = sgn(σ) · (−1) · sgn(σ) = −1. Thus, all transpositions
are odd permutations.

◦ Since the sign map is a homomorphism, its kernel therefore consists of all permutations that can be
written as a product of an even number of transpositions. But this is precisely how we de�ned An, so
An is the kernel of the sign map and consists of all even permutations.

◦ Furthermore, since sgn is surjective, we see that Sn/An ∼= im(sgn) has order 2, so |An| = |Sn| /2 = n!/2.

◦ Remark: This argument also shows that even permutations are those that are the product of an even
number of transpositions, while odd permutations are those that are the product of an odd number of
transpositions, and that no permutation is both even and odd (since the sign map is well-de�ned). As
we noted earlier, a permutation is even if and only if it has an even number of even-length cycles in its
cycle decomposition.

3.3.3 Groups Acting By Conjugation

• We now study in more detail the conjugation action of a group G on its set of elements.

◦ As we noted earlier, if G is any group, then G acts on the set A = G via g · a = gag−1 for any g ∈ G and
a ∈ A.
◦ We may generalize this action by noting that G also acts elementwise on the collection of subsets of G,
by de�ning g · S = {gs : s ∈ S} for an arbitrary subset S of G.

• First, we study the orbits of the conjugation action on elements:

• De�nition: If G is a group and a ∈ G, we say that b is conjugate to a if there exists some g ∈ G with
b = gag−1. The conjugacy class of a in G is the set of elements of G conjugate to a. Explicitly, the conjugacy
class of a is the set {gag−1 : g ∈ G}, which is the orbit of a under conjugation by G.

◦ Example: In an abelian group, each element is its own conjugacy class, since the condition is simply
b = gag−1 = gg−1a = a.

◦ Example: More generally, a single element {a} is its own conjugacy class precisely when a ∈ Z(G), which
is to say, when a commutes with every element of G.

◦ Example: In D2·4, the conjugacy classes are {1}, {r2}, {r, r3}, {s, sr2}, and {sr, sr3}. We can compute
that srs−1 = r3 and rsr−1 = sr2 and r(sr)r−1 = sr3, so the given collections are indeed conjugate, and
it is not hard to verify that these sets are distinct conjugacy classes.

◦ Example: In GL2(Q), the matrices A =

[
−3 5
1 1

]
and B =

[
2 0
0 −4

]
are conjugate via the matrix

M =

[
1 −5
1 1

]
, since MAM−1 = B. We will remark that conjugacy of matrices is often studied in

linear algebra (where it also has the same name), and it is a nontrivial problem to identify the possible
conjugacy classes.

◦ Example: In S3, the conjugacy classes are {1}, {(1 2), (1 3), (2 3)}, and {(1 2 3), (1 3 2)}. We can compute
that (1 3) = g(1 2)g−1, (2 3) = h(1 2)h−1, and (1 2 3) = g(1 3 2)g−1 for g = (2 3) and h = (1 3), so the
given collections are conjugate to one another. It is not hard to verify that these sets are distinct
conjugacy classes.

• We can in fact generalize the last example to compute the conjugacy classes in Sn:

• Proposition (Conjugacy Classes in Sn): If τ ∈ Sn, then for any cycle (a1 . . . an), we have τ(a1 . . . an)τ−1 =
(τ(a1) . . . τ(an)). Thus, to conjugate a permutation σ by a permutation τ , we simply apply τ to all of the
elements in the cycles of σ. In particular, two elements of Sn are conjugate if and only if they have the same
cycle type.

◦ Proof: The �rst statement is a direct calculation: for each i, we have τ(a1 . . . an)τ−1[τ(ai)] = τ(a1 . . . an)(ai) =
τ(ai+1), where we take an+1 = a1.
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◦ Thus, by the cycle decomposition algorithm, there is a single cycle in τ(a1 . . . an)τ−1, consisting of
(τ(a1) . . . τ(an)).

◦ The second statement follows from the �rst one by writing σ as a product of disjoint cycles σ = σ1 · · ·σd
and observing that τστ−1 = (τσ1τ

−1) · · · (τσdτ−1).

◦ The last statement follows from the second one: any conjugate of σ has the same cycle type as σ by the
calculation above.

◦ Conversely, if σ′ has the same cycle type as σ, if we align cycles of corresponding lengths together from
σ and σ′, say so that the lists of all the elements in the cycles of σ are a1, . . . , an and σ′ are b1, . . . , bn,
then the permutation τ with τ(ai) = bi for each i will conjugate σ to σ′.

• Example: There are 5 conjugacy classes in S4, since there are 5 possible cycle types: the identity, transposi-
tions, 3-cycles, 4-cycles, and the 2,2-cycles.

◦ Explicitly, the conjugacy classes are {1}, {(1 2), (1 3), (1 4), (2, 3), (2 4), (3, 4)}, {(1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3)},
{(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)}, and {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
◦ In general, the number of conjugacy classes in Sn will be the number of integer partitions of n.

• Example: For σ = (1 7 4 8 6) and τ = (1 5)(2 4 3)(6 7) inside S8, compute στσ−1 and τστ−1.

◦ From the procedure given in the proposition, we have στσ−1 = (σ(1)σ(5))(σ(2)σ(4)σ(3))(σ(6)σ(7)) =

(7 5)(2 8 3)(1 4) .

◦ Likewise, τστ−1 = (τ(1) τ(7) τ(4) τ(8) τ(6)) = (5 6 3 8 7) .

• Example: Show that σ1 = (1 4 3 8)(2 5 6) and σ2 = (1 2 6)(3 7 4 5) are conjugate inside S8, and �nd an explicit
permutation τ with σ2 = τσ1τ

−1.

◦ From the procedure given in the proposition, and making sure to include the 1-cycles, we can write the two
permutations with cycles in corresponding order, as σ1 = (1 4 3 8)(2 5 6)(7) and σ2 = (3 7 4 5)(1 2 6)(8).

◦ Then, for example, the permutation τ with τ(1) = 3, τ(4) = 7, τ(3) = 4, τ(8) = 5, τ(2) = 1, τ(5) = 2,
τ(6) = 6, and τ(7) = 8 will have σ2 = τσ1τ

−1. The cycle decomposition of this permutation τ is

(1 3 4 7 8 5 2) .

• We record some useful general properties of the conjugation action:

• Proposition (Properties of Conjugation): Let G be a group acting on its set of elements by conjugation.

1. For any g ∈ G, the conjugation-by-g map ϕg : G→ G is a group isomorphism, with inverse ϕ−1g = ϕg−1 .
In particular, all elements in a given conjugacy class have the same order.

◦ Proof: We have ϕg(ab) = g(ab)g−1 = (gag−1)(gbg−1) = ϕg(a)ϕg(b) so ϕg is a group homomorphism.

◦ Furthermore, since ϕg−1(ϕg(a)) = g−1[gag−1](g−1)−1 = g−1gag−1g = a we see that ϕg−1 ◦ϕg is the
identity map; similarly ϕg−1 ◦ ϕg is also the identity, so ϕg is an isomorphism.

◦ The second statement follows from the fact that group isomorphisms preserve orders of elements.

2. If S is any subset of G, then the stabilizer of S under the conjugation action of G is the normalizer
NG(S) = {g ∈ G : gSg−1 = S}. The number of conjugates of S in G is [G : NG(S)], the index of the
normalizer.

◦ We will remark that the normalizer NG(S) is also equal to the normalizer NG(〈S〉) of the subgroup
generated by S, the normalizer of any subgroup H contains H, and that a subgroup is normal in G
if and only if its normalizer is all of G.

◦ Proof: By de�nition, g ∈ G stabilizes S under conjugation precisely when gSg−1 = S.

◦ The second statement is an immediate consequence of the orbit-stabilizer theorem.

3. If a is any element of G, the stabilizer of S under the conjugation action of G is the centralizer CG(a) =
{g ∈ G : gag−1 = a}, the set of elements of G commuting with a. The number of conjugates of a in G
is [G : CG(a)], the index of the centralizer.

33



◦ Proof: This is simply (2) applied to the set S = {a}.
4. (Class Equation) If G is a �nite group and g1, . . . , gd are representatives of the non-central conjugacy

classes of G, then #G = #Z(G) +
∑d
i=1 [G : CG(gi)].

◦ Proof: As we noted above, the distinct conjugacy classes of G partition G, since they are equivalence
classes of an equivalence relation.

◦ As we also remarked above, each element of the center Z(G) is its own conjugacy class.

◦ The remaining conjugacy classes, by hypothesis, are represented by the elements g1, . . . , gd. By (3),
the number of elements in the conjugacy class of gi is equal to [G : CG(gi)].

◦ Thus, summing the sizes of all conjugacy classes yields #Z(G) +
∑d
i=1 [G : CG(gi)], which is also

#G.

• As a consequence of the class equation, we can deduce two important facts about p-groups:

• Proposition (Centers of p-Groups): If p is a prime and P is a �nite p-group (i.e., a �nite group whose order
is a power of p), then #Z(P ) > 1.

◦ Proof: By the class equation, if g1, . . . , gd are representatives of the non-central conjugacy classes of P ,
then #P = #Z(P ) +

∑d
i=1 [P : CP (gi)].

◦ Since the centralizer CP (gi) is a subgroup of P , by Lagrange's theorem its order and index are both
powers of p. Furthermore, since each gi is by hypothesis non-central, this means CP (gi) is a proper
subgroup of P , and so its index is greater than 1.

◦ Thus, each term in the sum
∑d
i=1 [P : CP (gi)] is a multiple of p. Since #P is also a multiple of p, this

means #Z(P ) = #P −
∑d
i=1 [P : CP (gi)] is also a multiple of p. Hence it cannot be equal to 1, so

#Z(P ) > 1.

• Corollary (Groups of Order p2): If p is a prime, then every group of order p2 is abelian. Moreover, there are
two such groups, up to isomorphism: Z/p2Z and (Z/pZ)× (Z/pZ).

◦ Proof: Suppose G has order p2. By Lagrange's theorem, every nonidentity element of G must have order
p or p2.

◦ If there is an element of order p2, then G is cyclic and isomorphic to Z/p2Z.
◦ Now suppose every element has order p. By the proposition above, Z(G) is not trivial, so suppose
g ∈ Z(G) has order p.

◦ Then N = 〈g〉 is a normal subgroup of G, since g ∈ Z(G). Observe that G/N has order #G/#N = p, and
is therefore cyclic of order p. Suppose G/N is generated by h: then every coset in G/N has the form h

a

for some a ∈ {0, 1, . . . , p−1} and so every element of G has the form hagb for some a, b ∈ {0, 1, . . . , p−1}.
◦ Now consider the map ϕ : (Z/pZ)× (Z/pZ)→ G that maps (a, b) 7→ hagb. Furthermore, since g ∈ Z(G),
we have gh = hg, and since gp = hp = e by the assumption that g and h have order p, this map is a
well-de�ned group homomorphism since it is clearly multiplicative and g and h satisfy the same relations
as the generators of (Z/pZ)× (Z/pZ) do.

◦ But since there are p2 elements of the form hagb and G has p2 elements, ϕ is onto hence a bijection,
hence an isomorphism.

◦ In both cases, we see that G is abelian, and it is either isomorphic to Z/p2Z or to (Z/pZ)× (Z/pZ), as
claimed.

3.4 The Structure of Finite Groups

• In this section we will give a brief overview of some additional results that allow us to gain a better under-
standing of the structure of �nite groups: the structure theorem for �nitely-generated abelian groups, Sylow's
theorems, and some remarks about direct and semidirect products.
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3.4.1 Finitely-Generated Abelian Groups

• Our goal in this section is to establish a classi�cation theorem for �nitely generated abelian groups.

◦ As a matter of fact, we will establish two di�erent variations on the theorem, each of which has utility
in di�erent circumstances.

• Our classi�cation, broadly stated, is as follows:

• Theorem (Finitely Generated Abelian Groups): If G is a �nitely generated abelian group, then G is isomorphic
to a direct product of cyclic groups.

◦ As a pair of illustrations, we have Z/120Z ∼= (Z/3Z)×(Z/5Z)×(Z/8Z) and (Z/64Z)× ∼= (Z/2Z)×(Z/16Z).

◦ The main idea of the proof is to consider the various relations among the generators, and then use
essentially the same procedure as the one used for row-reducing a matrix to convert the relations into an
essentially diagonal form. We can then see immediately that the resulting diagonalized form corresponds
to a direct product of cyclic groups, as claimed.

◦ The approach we give is really a special case of the general classi�cation of modules over principal ideal
domains, and essentially the same method can be adapted to prove that more general classi�cation.

• To prove this theorem, we �rst establish a lemma:

• Lemma: If G is a �nitely generated abelian group, then G is �nitely presented. In other words, G has a
presentation with �nitely many generators and �nitely many relations.

◦ The content here is that any collection of relations between the generators can always be reduced to a
�nite set.

◦ Proof: We use induction on the number of generators n.

◦ For the base case n = 1, we appeal to our characterization of cyclic groups, which can all be described
using at most one relation.

◦ For the inductive step, suppose any abelian group with n generators is �nitely presented, and suppose
G is abelian and has n+ 1 generators g1, . . . , gn, h, where we write G as an additive group.

◦ Since G is abelian, any such relation has the form ah+ b1g1 + · · ·+ bngn = 0 for some a, bi ∈ Z.
◦ Consider the set of all possible tuples (a, b1, . . . , bn) ∈ Zn+1 for all possible relations between h, g1, . . . , gn.
This set is a subgroup of Zn+1 since it contains the zero vector and is closed under subtraction, since the
di�erence of two relations is also a relation.

◦ Then the set of �rst coordinates of these tuples (i.e., the possible coe�cients of h in all possible relations)
is a subgroup of Z.
◦ If the subgroup is the trivial subgroup (0), then h does not appear in any relations: thus, all relations
involve elements in the subgroup 〈g1, . . . , gn〉, and so by the inductive hypothesis we may reduce the
collection to a �nite set.

◦ Otherwise, suppose the subgroup is dZ with d > 0. Then there exists a relation of the form dh+ e1g1 +
· · ·+ engn = 0, and the coe�cient of h in every other relation is a multiple of d. We may then eliminate
h from every other relation by subtracting an appropriate multiple of this relation.

◦ Then, just as above, all of the remaining relations lie in the subgroup 〈g1, . . . , gn〉, so by the inductive
hypothesis we may reduce the collection to a �nite set. Adjoining the relation dh+ e1g1 + · · ·+ engn = 0
then yields a �nite set of relations that generate all relations, as claimed.

• We can now give the proof of one version of the theorem, using a similar idea as that used in the lemma:

• Theorem (Finitely Generated Abelian Groups, Invariant Factor Form): If G is a �nitely generated abelian
group, then there exists a nonnegative integer r (the rank of the group G) and a list of positive integers
a1, . . . , ak with a1|a2| · · · |ak such that G ∼= Zr × (Z/a1Z)× · · · × (Z/akZ).

◦ The terms in this decomposition of G are called the invariant factors of G. We will shortly establish that
they are unique.
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◦ Proof: Suppose G is a �nitely generated abelian group, written additively.

◦ By the lemma, G has a presentation with �nitely many generators and �nitely many relations: suppose
the generators are g1, . . . , gn and the relations are ri : a1,ig1 + · · ·+ a1,ngn = 0 for each 1 ≤ i ≤ m.

◦ Then we obtain a �relations matrix� A = {ai,j}1≤i≤m,1≤j≤n.
◦ We may perform various elementary row and column operations on the relations matrix: speci�cally, we
may interchange two rows or columns, we may negate a row of column, and we may add a scalar multiple
of one row or column to another.

◦ The elementary row operations correspond to performing the corresponding operations on the relations,
while the elementary column operations correspond to performing the corresponding relations on the
generators (i.e., by making a change of generators). Note that none of the listed operations changes the
isomorphism type of G.

◦ We can then perform the Euclidean algorithm on the upper left entry of A with the other entries in the

�rst row, and then the �rst column, to obtain a matrix of the form A′ =


c1 0 · · · 0
0 b2,2 · · · b2,n
...

...
. . .

...
0 bm,2 · · · bm,n

.

◦ Now we repeat the procedure on the smaller matrix

 b2,2 · · · b2,n
...

. . .
...

bm,2 · · · bm,n

, and continue until we are

left with a �diagonal� matrix D =

 c1
. . .

cl

, possibly with zero entries in the (i, i)-terms.

◦ We can then copy c2, . . . , cl into the top row of the matrix and perform the Euclidean algorithm on them
to place the resulting gcd a1 in the upper-left entry, and then remove the rest of the entries in the top
row. By construction, we see that a1 divides all of the entries of the matrix.

◦ Repeating this procedure gives a relations matrix D′ =



a1
. . .

ak
0

. . .

 , where a1|a2| · · · |ak.

◦ Therefore, since each step does not change the isomorphism type of G, we see that G is isomorphic to the
group with presentation 〈h1, . . . , hn |ha11 = e, . . . , hakk = e〉, which is a presentation of (Z/a1Z) × · · · ×
(Z/akZ)× Zn−k.
◦ Thus, G is isomorphic to a direct product of cyclic groups of the claimed form.

• To illustrate the procedure, suppose G = 〈x, y, z| − 6x+ 3y = 0, 10x+ 5y = 0〉.

◦ Then the relations matrix is

[
−6 3 0
10 5 0

]
. Now we use row and column operations:

[
−6 3 0
10 5 0

]
C1+2C2−→

[
0 3 0
20 5 0

]
C1↔C2−→
R2−2R1

[
3 0 0
−1 20 0

]
R1+3R2−→

[
0 60 0
−1 20 0

]
R1↔−R2−→

[
1 −20 0
0 60 0

]
C2+20C1−→

[
1 0 0
0 60 0

]
.

◦ The relations matrix now has the desired form, so we can read o� the presentation: it is 〈p, q, r|p = 0, 60q = 0〉,
which describes the group {e} × (Z/60Z)× Z.

• We can also decompose the terms Z/nZ into prime powers using the Chinese remainder theorem, as follows:

• Proposition (Chinese Remainder Theorem for Z): If a and b are relatively prime integers, then Z/abZ is
isomorphic to (Z/aZ)×(Z/bZ). Thus, if n has prime factorization n = pa11 · · · p

ak
k , we have Z/nZ ∼= (Z/pa11 Z)×

· · · × (Z/pakk Z).
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◦ This result is a special case of the more general Chinese remainder theorem for rings, which states that
if R is commutative with 1 and I1, I2, . . . , In are pairwise comaximal ideals of R (i.e., with Ii + Ij = R
for all pairs i 6= j), then R/(I1I2 · · · In) ∼= (R/I1)× (R/I2)× · · · × (R/In) as rings.

◦ Proof: For the �rst part, consider the map ϕ : Z→ (Z/aZ)×(Z/bZ) given by ϕ(n) = (n mod a, n mod b).

◦ This map is easily seen to be a ring homomorphism, and its kernel consists of the elements n ∈ Z divisible
by both a and b. Since a and b are relatively prime, this means kerϕ = abZ.
◦ Thus, by the �rst isomorphism theorem, we obtain an injective ring homomorphism ϕ̃ : Z/abZ →

(Z/aZ)× (Z/bZ).

◦ But since Z/abZ and (Z/aZ) × (Z/bZ) both have cardinality ab, the map is also surjective, hence is an
isomorphism.

◦ The second part follows by a trivial induction using the fact that the prime powers paii in the prime
factorization of n = pa11 · · · p

ak
k are relatively prime.

• By decomposing each of the cyclic Z/nZ factors from the invariant factor decomposition, we see that any
�nitely generated abelian group decomposes as a direct product of copies of Z with Z modulo prime powers:

• Theorem (Finitely Generated Abelian Groups, Elementary Divisor Form): If G is a �nitely generated abelian
group, then there exists a unique nonnegative integer r and a unique list of prime powers paii such that
G ∼= Zr × (Z/pa11 Z)× · · · × (Z/pakk Z).

◦ Proof: The existence follows immediately from decomposing each of the Z/nZ terms from the invariant
factor decomposition into prime powers.

◦ For the uniqueness, �rst regroup the terms in the direct product to collect identical factors together,
as G ∼= Zr × (Z/p1Z)b1,1 × (Z/p21Z)b1,2 × · · · × (Z/pr11 )b1,r1 × (Z/p2Z)b2,1 × · · · × (Z/prkk Z)bk,rk for some
nonnegative integers bi,j .

◦ For any integer m, observe that the mth-power map ϕm on G is a group homomorphism from G to G
since G is abelian. The kernel of ϕm consists of all elements of order dividing m in G.

◦ More explicitly, for a prime power pd, we can see that the elements in the kernel of ϕpd are the identity
in all components with primes pi 6= p, and if the p-power component of G is (Z/pZ)b1× (Z/p2Z)b2×· · ·×
(Z/pr1)br , then the elements in the kernel are (Z/pZ)b1 × (Z/p2Z)b2 × · · ·× (Z/pd)bd × (pZ/pd+1Z)bd+1 ×
(p2Z/pd+2Z)bd+1 × · · · × (pr1−dZ/pr1Z)br .

◦ In other words, we obtain all of the elements in the copies of Z/pZ, ... , Z/prdZ, but for higher powers
of p we only get the elements of order dividing pd in those copies.

◦ Then the order of ker(ϕpd) is equal to the product of the orders of each of the terms given. It is not hard
to see that the quotient ker(ϕpd)/ ker(ϕpd+1) is trivial in all components of the direct product except for
the terms Z/pkZ with k ≥ d, where it yields a copy of Z/pZ.
◦ Therefore, by computing the order of each quotient ker(ϕpd)/ ker(ϕpd+1), we can determine the number
of terms Z/pkZ in the direct product with k ≥ d for each positive integer d. This uniquely determines
all of the Z/piZ components in terms of the group structure of G.

◦ Furthermore, if p is a prime not appearing in any of the prime-power components, we can see that G/pG
is isomorphic to (Z/pZ)r, so the rank r is also uniquely determined.

• The argument we gave establishes the uniqueness of the elementary divisors, and (with appropriate minor
modi�cation) also gives the uniqueness of the invariant factors.

◦ Given the invariant factors, it is easy to �nd the elementary divisors, since we need only �nd the prime-
power factorizations of the invariant factors and then break the terms apart using the Chinese remainder
theorem as described above.

◦ If we have a decomposition into elementary divisor form, we can reconstruct the invariant factor form
recursively: the largest invariant factor is the product of the largest power of each prime, then the next
largest invariant factor is the product of the largest remaining power of each prime, and so forth.

• Example: Find the elementary divisor form of (Z/6Z)× (Z/240Z).
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◦ We simply break each term into prime powers. Since 6 = 2 · 3 and 240 = 24 · 3 · 5 this yields Z/6Z ∼=
(Z/2Z)× (Z/3Z) and Z/240Z ∼= (Z/16Z)× (Z/3Z)× (Z/5Z).

◦ Thus, the elementary divisor form of (Z/6Z)×(Z/240Z) is (Z/2Z)×(Z/3Z)×(Z/16Z)×(Z/3Z)×(Z/5Z).

• Example: Find the invariant factor form of (Z/16Z)× (Z/16Z)× (Z/3Z)× (Z/5Z)× (Z/5Z)× (Z/125Z).

◦ The prime powers are 24, 24, 3, and 53, 5, 5.

◦ The largest factors are 24 · 3 · 53 = 6000. Then the largest remaining factors are 24 · 1 · 5 = 80, and the
largest factors after those are 1 · 1 · 5 = 5.

◦ Since we have exhausted all factors, we have found all of the invariant factors, and the invariant factor
form is (Z/5Z)× (Z/80Z)× (Z/6000Z).

• Example: Classify the abelian groups of order 36 up to isomorphism, in both elementary divisor form and
invariant factor form.

◦ We �rst make a list of possible elementary divisors. Since 36 = 2232 we only need to work with the
primes 2 and 3.

◦ The possible cyclic factors for p = 2 are Z/4Z and (Z/2Z)× (Z/2Z), while the possible cyclic factors for
p = 3 are Z/9Z and (Z/3Z)× (Z/3Z).

◦ Thus, since all combinations are possible and distinct, we see that there are 4 abelian groups of order 36,
and their elementary divisor forms are (Z/4Z)× (Z/9Z), (Z/4Z)× (Z/3Z)× (Z/3Z), (Z/2Z)× (Z/2Z)×
(Z/9Z), and (Z/2Z)× (Z/2Z)× (Z/3Z)× (Z/3Z).

◦ To convert these into invariant factor form, we follow the procedure described above to obtain the
invariant factor forms Z/36Z, (Z/3Z)× (Z/12Z), (Z/2Z)× (Z/18Z), and (Z/6Z)× (Z/6Z).

3.4.2 Sylow's Theorems

• We continue our analysis of the structure of �nite groups: speci�cally, about the subgroups that a given group
must possess.

◦ If G has order n, then by Lagrange's theorem, the order of any subgroup of G must divide n.

◦ From the classi�cation of �nitely generated abelian groups, it is not hard to see that if G is abelian, then
G has a subgroup of order d for every divisor d of n.

◦ However, if G is non-abelian, then it is not the case that there necessarily exists a subgroup of order
d for every d dividing n: we saw explicitly that A4, of order 12, has no subgroup of order 6. (A4 does
contain subgroups of orders 1, 2, 3, 4, and 12.)

◦ Indeed, by Cauchy's theorem, if p is a prime dividing n, then G necessarily contains an element of order
p, which will then generate a subgroup of G of order p.

◦ What we will do now is extend this result by showing that if pd is a prime power dividing the order of
G, then in fact G must possess a subgroup of order pd.

• First, some terminology:

• De�nition: If p is a prime, a p-group is a group whose order is a power of p.

◦ For example, Z/64Z, D2·4, and Q8 are 2-groups, while Z/25Z is a 5-group.

• De�nition: If G is a group and p is a prime, a subgroup of G that is a p-group is called a p-subgroup of G. If
pd is the largest power of p dividing #G, then a p-subgroup of G of order pd is called a Sylow p-subgroup of
G.

◦ Remark: Some authors, at times, refer to Sylow p-subgroups as p-Sylow subgroups.

◦ If pd is the largest power of p dividing #G, then pd is the largest possible order of a p-subgroup of G, by
Lagrange's theorem. A Sylow p-subgroup, therefore, is a p-subgroup of G of the maximum possible size.
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◦ Example: S4 contains a subgroup H = 〈(1 2 3 4), (2 4)〉 isomorphic to the dihedral group D2·4 of order 8.
Since #S4 = 24 = 23 · 3, this subgroup H is a Sylow 2-subgroup of S4.

◦ Example: The subgroup 〈4〉 of Z/36Z, which has order 9, is a Sylow 3-subgroup of Z/36Z. There is also
a unique Sylow 2-subgroup of Z/36Z: the subgroup 〈9〉, which has order 4.

• Example: Identify all of the Sylow subgroups of A5.

◦ Note that A5 has order 5!/2 = 60 = 22 · 3 · 5. Therefore, the Sylow 2-subgroups have order 4, the Sylow
3-subgroups have order 3, and the Sylow 5-subgroups have order 5.

◦ Observe that 〈(1 2)(3 4), (1 3)(2 4)〉 is a subgroup of order 4 inside A5, isomorphic to the Klein 4-group,
so it is a Sylow 2-subgroup. In fact, there are 5 of these subgroups inside A5, obtained by �xing one
point and taking the Klein 4-subgroup of the resulting subgroup isomorphic to A4. Explicitly, they are
〈(1 2)(3 5), (1 3)(2 5)〉, 〈(1 2)(4 5), (1 4)(2 5)〉 , 〈(1 3)(4 5), (1 4)(3 5)〉 , and 〈(2 3)(4 5), (2 4)(3 5)〉. In fact,
these are all of the Sylow 2-subgroups, because the only elements of A5 with order dividing 4 are the
2,2-cycles, and it is not hard to see that these are the only 2-groups that can be formed from them.

◦ Likewise, the Sylow 3-subgroups are generated by 3-cycles. Since there are 5 · 4 · 3/3 = 20 3-cycles, and
each Sylow 3-subgroup contains 2 di�erent ones, there are 10 Sylow 3-subgroups.

◦ Finally, the Sylow 5-subgroups are generated by 5-cycles. Since there are 5 · 4 · 3 · 2 · 1/5 = 24 5-cycles,
and each Sylow 5-subgroup contains 4 di�erent ones, there are 6 Sylow 5-subgroups.

• It is not obvious that Sylow p-subgroups exist. This fact, and substantially more, is the content of the following
results of Sylow:

• Theorem (Sylow's Theorems): Suppose that G is a �nite group, p is a prime, and pd is the largest power of p
dividing the order of G. Then the following hold:

1. G contains a Sylow p-subgroup.

2. If P is any Sylow p-subgroup of G and Q is any p-subgroup of G, then Q is contained in some conjugate
of P (and thus, Q is contained in a Sylow p-subgroup of G). As a consequence, all Sylow p-subgroups of
G are conjugate in G (so in particular, they are all isomorphic).

3. If np denotes the number of Sylow p-subgroups, then np ≡ 1 (mod p). Furthermore, np = [G : NG(P )]
where P is any Sylow p-subgroup of G, and so as a consequence, np is a divisor of #G/pd.

• We will prove each piece separately. Each of our arguments will use our results on group actions in a
fundamental way.

◦ Proof (Sylow 1): We induct on the order n of G. The base case n = 1 is trivial.

◦ For the inductive step, let p be a prime and suppose any group of order strictly less than n has a Sylow
p-subgroup.

◦ Recall that the class equation in G says that #G = #Z(G) +
∑e
i=1 [G : CG(gi)], where the g1, . . . , ge are

representatives of the non-central conjugacy classes of G and Z(G) is the center of G.

◦ If p divides #Z(G), then by Cauchy's theorem, Z(G) has an element of order p, which then generates a
normal subgroup N of G of order p. (The subgroup is normal because it is contained in Z(G).)

◦ Then G/N is a group of order n/p, so by the inductive hypothesis it has a Sylow p-subgroup P , which
is necessarily of order pd−1.

◦ Then by the lattice isomorphism theorem, the subgroup P of G containing N with P/N = P (i.e., the
preimage of P under the projection map from G to G/N) has order #P ·#N = pd−1 ·p = pd in G. Thus,
P is a Sylow p-subgroup of G.

◦ Now suppose that p does not divide #Z(G). Then since p divides #G, at least one of the terms
[G : CG(gi)] must not be divisible by p.

◦ Let H = CG(gi). Since [G : H] is not divisible by p, the order of H is divisible by pd, and also because
gi is not in the center of G, H is a proper subgroup of G.

◦ Thus, by the induction hypothesis, H has a Sylow p-subgroup P of order pd: then P is also a Sylow
p-subgroup of G.
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◦ In either case, we see that G has a Sylow p-subgroup, as claimed.

• For the next part of the proof, we �rst establish a lemma about actions of p-groups:

• Lemma (Fixed-Point Congruence for p-Group Actions): Let p be a prime and suppose P is a p-group acting
on a �nite set A. Then #A ≡ #FixP (A) mod p, where FixP (A) denotes the number of �xed points of P on
A (in other words, the number of a ∈ A such that g · a = a for all g ∈ P ).

◦ Proof: By the orbit-stabilizer theorem, the size of the orbit of any a ∈ A is equal to [P : Pa], the index
of the stabilizer Pa of a, which is a divisor of #P by Lagrange's theorem.

◦ Therefore, any orbit either has size 1, or has size divisible by p since P is a p-group. Note that a ∈ A
has an orbit of size 1 if and only if its stabilizer Pa is all of P , which is equivalent to saying that a is a
�xed point of P .

◦ Since the orbits partition A, this means that #A is equal to the total number of �xed points (the orbits
of size 1) plus a multiple of p (the other orbits), and so #A ≡ #FixP (A) mod p as desired.

◦ Remark: This argument we gave to prove Cauchy's theorem is an application of this lemma to the cyclic
permutation action of Z/pZ on ordered p-tuples (g1, . . . , gp) with g1 · · · gp = 1.

• We now continue with the proof of Sylow's theorems:

◦ Proof (Sylow 2): Let P be any Sylow p-subgroup of G and Q be any p-subgroup of G.

◦ Observe that Q acts on the left cosets of P by left multiplication: explicitly, the action is g ·(hP ) = (gh)P
for any g ∈ Q and left coset hP of P .

◦ Therefore, since Q is a p-group, by the lemma above, we see that the number of �xed points of this
action is congruent to the number of left cosets [G : P ] modulo p.

◦ But since P is a Sylow p-subgroup of G, the index [G : P ] is relatively prime to p, so the number of �xed
points is nonzero.

◦ Suppose that hP is a �xed point: this means g · (hP ) = hP for all g ∈ Q, which is to say, ghP = hP .
Equivalently, gh ∈ hP for all g ∈ Q, which is to say, Q ⊆ hPh−1. Thus, Q is contained in a conjugate
of P as claimed.

◦ For the second part, if Q is now any other Sylow p-subgroup, we see Q ⊆ hPh−1 as above, but since Q
and hPh−1 have the same cardinality, they must be equal: thus, P and Q are conjugate.

• Finally, we establish the last part of Sylow's theorems:

◦ Proof (Sylow 3): Let P be a Sylow p-subgroup of G and take A to be the set of all Sylow p-subgroups
of G.

◦ Observe that P acts on A by conjugation: explicitly, the action is g ·Q = gQg−1 for any g ∈ P and any
Sylow p-subgroup Q of G.

◦ Therefore, since P is a p-group, by the lemma above, we see that the number of �xed points of this
action is congruent modulo p to the number of Sylow p-subgroups of G. We will show that this action
has a single �xed point: namely, P .

◦ So suppose that Q is a �xed point: then gQg−1 = Q for all g ∈ P , meaning that P ≤ N(Q). Since Q is
a subgroup, Q ≤ N(Q) as well.

◦ Notice that P and Q are then both Sylow p-subgroups of N(Q), and so (2) applied to N(Q) shows that
P and Q are conjugate inside N(Q). However, by de�nition Q is a normal subgroup of N(Q), since all
elements of N(Q) normalize Q, and so the only possibility is to have P = Q.

◦ Thus, P is the only �xed point of the conjugation action on A, and so the number np of Sylow p-subgroups
is congruent to 1 modulo p as claimed.

◦ For the last statement, consider the conjugation action of G on the set of its Sylow p-subgroups. The
stabilizer of P under this action is the set of g ∈ G such that gPg−1 = P , which is the normalizer NG(P )
of P in G.
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◦ Therefore, since all Sylow p-subgroups are conjugate by (2), the size of the orbit of P is np, which by
the orbit-stabilizer theorem is also equal to [G : NG(P )]. This is a divisor of #G by Lagrange's theorem,
and since it is relatively prime to p, it must in fact divide #G/pd.

• Sylow's theorems are very useful for obtaining additional structural information about groups of a given order.

◦ The �rst step is to make a list of all of the possible Sylow numbers (i.e., candidates for the numbers np
of Sylow p-subgroups for each prime p dividing the order of G).

◦ We can then try to exploit this information to pin down more of the group structure.

◦ In particular, if we can show that a particular Sylow number np must be equal to 1, then we know the
resulting Sylow p-subgroup must be normal.

◦ This follows from Sylow (3): if P is the Sylow p-subgroup, then np = [G : NG(P )], so nP = 1 if and only
if NG(P ) = G, which is to say, when P is a normal subgroup of G.

◦ Even when np is not necessarily equal to 1, it is often still useful to consider NG(P ), since it is another
subgroup of G whose order we know if we know np.

• Example: If G is a group of order 45, �nd the possible Sylow numbers of G and identify the possible structures
of the Sylow subgroups of G.

◦ Since 45 = 32 · 5 we see that n3 is a divisor of 5 that is congruent to 1 modulo 3. The only such divisor
is 1, so n3 = 1 and there is a unique Sylow 3-subgroup of G, which has order 32 = 9.

◦ From our characterization of groups of order p2, the Sylow 3-subgroup is isomorphic either to Z/9Z or
to (Z/3Z)× (Z/3Z).

◦ Likewise, n5 is a divisor of 9 that is congruent to 1 modulo 5, but the only such divisor is 1. Thus, n5 = 1
also. This means that there is a unique Sylow 5-subgroup, which has order 5 and is thus isomorphic to
Z/5Z.

• Example: If G is a group of order 60, �nd the possible Sylow numbers of G and identify the possible structures
of the Sylow subgroups of G.

◦ Since 60 = 22 · 3 · 5 we see that n2 is a divisor of 15 that is odd. Thus, we have n2 ∈ {1, 3, 5, 15}, and
since a Sylow 2-subgroup has order 4, it is isomorphic to Z/4Z or to (Z/2Z)× (Z/2Z).

◦ Likewise, n3 is a divisor of 22 · 5 = 20 that is congruent to 1 modulo 3. This means n3 ∈ {1, 10} and
since a Sylow 3-subgroup has order 3, it is isomorphic to Z/3Z.
◦ Finally, n5 is a divisor of 22 · 3 = 10 that is congruent to 1 modulo 5. This means n5 ∈ {1, 6} and since
a Sylow 5-subgroup has order 5, it is isomorphic to Z/5Z.

• By identifying the possible Sylow numbers for a given group order, we can sometimes prove that a group of
that order cannot be simple:

• Example: Show that a group G of order 1375 cannot be simple.

◦ Notice that 1375 = 53 · 11. Then n5 is a divisor of 11 congruent to 1 modulo 5, so n5 ∈ {1, 11}.
◦ Also, n11 is a divisor of 53 congruent to 1 modulo 11. But the only such divisor is 1, meaning n11 = 1.

◦ But then because n11 = 1, by our results above this means that the unique Sylow 11-subgroup is normal,
and thus G cannot be simple.

• Frequently, the congruence conditions do not immediately force the existence of a normal Sylow subgroup.
But sometimes we can count elements in these various Sylow subgroups and show that having all of the Sylow
numbers be large would force the group to have too many elements.

• Example: Show that a group G of order 105 cannot be simple.

◦ Notice that 105 = 3 · 5 · 7. Thus, n3 ≡ 1 mod 3 and divides 5 · 7, so must be among {1, 5, 7, 35}. The
only possibilities are n3 ∈ {1, 7}.
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◦ Likewise, n5 ≡ 1 mod 5 and divides 3 · 7, so must be among {1, 3, 7, 21}. The only possibilities are
n5 ∈ {1, 21}.
◦ Finally, n7 ≡ 1 mod 7 and divides 3 · 5, so must be among {1, 3, 5, 15}. The only possibilities are
n7 ∈ {1, 15}.
◦ If any of n3, n5, and n7 equals 1, then the corresponding Sylow subgroup is normal and then G is not
simple.

◦ A priori it may seem that we could have n3 = 7, n5 = 21, and n7 = 15. However, this is not actually
possible: each Sylow 3-subgroup is cyclic and thus has 3− 1 = 2 elements of order 3.

◦ Each of these elements of order 3 generates the group, so all 7 · (3 − 1) = 14 of these elements must be
distinct from each other.

◦ Likewise, there would have to be 21 · (5 − 1) = 84 elements of order 5, and 15 · (7 − 1) = 90 elements
of order 7. But in total, we have identi�ed 14 + 84 + 90 = 189 di�erent elements of G, and G cannot
actually have this many elements.

◦ Therefore, we cannot have n3 = 7, n5 = 21, and n7 = 15, so one of them must equal 1: thus G is not
simple.

• Example: Show that a group G of order 132 cannot be simple.

◦ Notice that 132 = 22 · 3 · 11. Then n2 is odd and divides 3 · 11, so n2 ∈ {1, 3, 11, 33}. Likewise, n3 ≡ 1
(mod 3) and divides 22 · 11, so n3 ∈ {1, 4, 22}, and n11 ≡ 1 (mod 11) and divides 22 · 3, so n11 ∈ {1, 12}.
◦ As above, if n3 or n11 equals 1, then the corresponding Sylow subgroup is normal.

◦ Otherwise, we would have n11 = 12 and n3 ≥ 4: in this case we would obtain 12 · (11−1) = 120 elements
of order 11 along with an additional 4 · (3− 1) = 8 elements of order 3.

◦ There are only 132− 120− 8 = 4 elements remaining in the group, so since there is a Sylow 2-subgroup
and it has order 4, all of the remaining elements must lie in this Sylow 2-subgroup, and there can be
only one of them.

◦ Thus, n2, n3, or n11 must equal 1, and so G cannot be simple.

3.4.3 Products of Subgroups

• We proved earlier that every �nitely generated abelian group decomposes as a direct product of cyclic groups.

◦ This result tells us that �nitely generated abelian groups can be built up from subgroups by taking
products.

◦ We can often piece other groups together from subgroups in a similar way.

◦ If H and K are subgroups of G, then we can certainly consider the subgroup 〈H,K〉 generated by H
and K.

◦ However, the elements in this subgroup are hard to write down in general, since they are words of
arbitrary length in the elements of H and K.

◦ If elements from H and K commute with one another, then by rearranging the elements in the word and
using the fact that H and K are closed under multiplication, we can reduce any word to a product of
the form hk for h ∈ H and k ∈ K.

◦ We will now look at the same set of elements for arbitrary subgroups.

• De�nition: If H and K are subgroups of G, then the product HK is the set HK = {hk : h ∈ H, k ∈ K}.

◦ The product of two subgroups is not necessarily a subgroup of G.

◦ For example, for H = {1, (1 2)}, K = {1, (1 3)} in G = S3, the product HK = {1, (1 2), (1 3), (1 3 2)},
which is not a subgroup of G.

◦ However, in some cases HK will be a subgroup: for example, with H = {1, (1 2)} and K = {1, (3 4)} in
G = S4, then HK = {1, (1 2), (3 4), (1 2)(3 4)} is indeed a subgroup of G.
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• Here are some properties of products of subgroups:

• Proposition (Products of Subgroups): Let G be a group and H and K be subgroups of G.

1. If H and K are �nite, then #(HK) =
#H ·#K
#(H ∩K)

.

◦ We remark that if H or K is in�nite, then trivially HK is also in�nite. We also emphasize that HK
is not assumed to be a subgroup here.

◦ Proof: Observe that HK is a union of left cosets of K: speci�cally: HK = ∪h∈HhK.

◦ We therefore need only count how many distinct left cosets are obtained, since each left coset has
cardinality #K.

◦ Consider the action of H by left multiplication on the left cosets of K in HK: by de�nition, there
is a single orbit for this action.

◦ Notice that the stabilizer of the left coset eK is the set of h ∈ H with h·eK = eK, which is equivalent
to saying h ∈ K. Thus, the stabilizer is simply the set of h ∈ H such that h ∈ K, which is to say, it
is the intersection H ∩K.

◦ Thus, by the orbit-stabilizer theorem, the size of the orbit is equal to the index [H : H ∩K]. This

means #(HK) = #K · [H : H ∩K] =
#H ·#K
#(H ∩K)

, as claimed.

2. The product HK is a subgroup of G if and only if HK = KH.

◦ Proof: First suppose HK = KH and let g = hk and g′ = h′k′ be elements of HK, with h, h′ ∈ H
and k, k′ ∈ K.

◦ Then since HK = KH, the element kh′ ∈ KH is of the form h′′k′′ for some h′′ ∈ H and k′′ ∈ K.

◦ Then gg′ = hkh′k′ = h(kh′)k′ = h(h′′k′′)k′ = (hh′′)(k′′k′) ∈ HK.

◦ Likewise, g−1 = k−1h−1 ∈ KH = HK. Since the identity e = ee is clearly in HK, this means HK
is a subgroup of G.

◦ Conversely, supposeHK is a subgroup. Then sinceH andK are both inHK, we have 〈H,K〉 = HK
and so KH ⊆ 〈H,K〉 = HK.

◦ For the other containment, suppose k ∈ K and h ∈ H. Then we have h−1k−1 ∈ HK, so since HK
is closed under inverses, we see (h−1k−1)−1 = kh must be in HK for any k, h. Thus, HK ⊆ KH,
and so in fact HK = KH.

3. If H ≤ NG(K) or K ≤ NG(H), then HK is a subgroup of G.

◦ Proof: Suppose H ≤ NG(K), and let h ∈ H and k ∈ K.

◦ By hypothesis, hkh−1 ∈ K, and therefore we can write hk = (hkh−1)h ∈ KH.

◦ Thus, hk ∈ KH, and so HK ⊆ KH.

◦ Likewise, kh = h(hkh−1) ∈ HK, and so KH ⊆ HK.

◦ We therefore have KH = HK, and so HK is a subgroup of G by (2).

◦ The other case is essentially identical.

4. If H or K is a normal subgroup of G, then HK is a subgroup of G.

◦ Proof: If H is normal in G, then NG(H) = G, in which case K ≤ NG(H), so by (3), HK is a
subgroup of G.

◦ Likewise, if K is normal in G, then H ≤ G = NG(K), so again by (3), HK is a subgroup of G.

5. If both H and K are normal subgroups of G, and H ∩K = {e}, then HK is isomorphic to the direct
product H ×K.

◦ Remark: Under these hypotheses, we call the subgroup HK the internal direct product of H and
K, and call the group H ×K the external direct product of H and K. The di�erence is irrelevant
as a practical matter, but the distinction is that the internal direct product is de�ned inside a group
that already contains H and K as subgroups, whereas the external direct product is an explicit
construction of a new group using the Cartesian product.

◦ Proof: Since H is a normal subgroup of G, by (4) that means HK is a subgroup of G.

◦ We �rst show that the elements of H commute with the elements of K.

43



◦ To see this, observe that if h ∈ H and k ∈ K, then hkh−1k−1 = (hkh−1)k−1 is an element of K,
since hkh−1 ∈ K since K is normal in G.

◦ But hkh−1k−1 = h(kh−1k−1) is also an element of H, since kh−1k−1 ∈ H since H is normal in G.

◦ This means hkh−1k−1 ∈ H ∩ K, and so hkh−1k−1 = e, meaning that hk = kh: thus, h and k
commute.

◦ Next, we claim that every element of HK can be written uniquely in the form hk with h ∈ H and
k ∈ K.

◦ To see this suppose hk = h′k′ for h, h′ ∈ H and k, k′ ∈ K. Then (h′)−1h = k′k−1. But the left-
hand side is an element of H while the right-hand side is an element of K, so by the assumption
H ∩K = {e}, this common element must be the identity e.

◦ Thus (h′)−1h = e = k′k−1 and so h′ = h and k′ = k, meaning h and k are unique.

◦ Therefore, we have a well-de�ned map ϕ : HK → H ×K mapping hk to the ordered pair (h, k). It
is a group homomorphism because if g = hk and g′ = h′k′ then ϕ(gg′) = ϕ(hkh′k′) = ϕ(hh′kk′) =
(hh′, kk′) = ϕ(hk)ϕ(h′k′) = ϕ(g)ϕ(g′), where we used the fact that h′ and k commute.

◦ Finally, ϕ is trivially injective (since (h, k) = (e, e) implies hk = e) and surjective (by de�nition of
HK) and so it is an isomorphism.

6. If np = 1 for every prime p dividing #G, then G is the (internal) direct product of its Sylow subgroups.
Such groups are called nilpotent groups.

◦ Proof: Note that the intersection of two Sylow subgroups with di�erent primes is trivial, by La-
grange's theorem, since the order of their intersection divides the order of each group.

◦ Therefore, since they are all normal since np = 1 for every prime p dividing #G, by applying (5)
repeatedly we see that the product of any number of the Sylow subgroups is isomorphic to their
direct product.

◦ In particular, since the product of all the Sylow subgroups has the same order as G, it is equal to
G, and so G is isomorphic to the direct product of its Sylow subgroups.

◦ Remark: Since abelian groups are trivially nilpotent, we could have classi�ed �nite abelian groups
by using this result to reduce to the situation of classifying abelian p-groups.

• One common technique for analyzing the structure of �nite groups is to start with the various Sylow subgroups,
and then take various products or normalizers to construct larger subgroups in terms of these.

• Example: Show that every group of order 7007 is abelian, and classify them up to isomorphism.

◦ We start by �nding the possible Sylow numbers.

◦ For a group of order 7007 = 72 · 11 · 13, the number n7 is congruent to 1 modulo 7 and divides 11 · 13.
The only such number is 1, so n7 = 1.

◦ Likewise, n11 ≡ 1 (mod 11) and divides 72 ·13, but the only such divisor is 1. Similarly, the only possible
value for n13 is 1.

◦ This means all of the Sylow subgroups of G are normal, and so G is nilpotent. This means it is the direct
product of its Sylow subgroups. All of these Sylow subgroups are abelian since their orders are either a
prime or a square of a prime, so G is abelian.

◦ Furthermore, by our classi�cation of abelian groups, we see there are two isomorphism types for G:
either G ∼= (Z/49Z)× (Z/11Z)× (Z/13Z) ∼= Z/7007Z or G ∼= (Z/7Z)× (Z/7Z)× (Z/11Z)× (Z/13Z) ∼=
(Z/7Z)× (Z/1001Z).

• For certain classes of group orders with a small number of prime divisors, we can essentially classify groups
of that order using Sylow's theorems. We can illustrate by classifying the groups of order pq, where p and q
are distinct primes:

• Example (Groups of Order pq): If p and q are primes with p < q such that p does not divide q− 1, show that
any group of order n = pq is abelian and cyclic.

◦ By Sylow's theorems, the number np divides q and is congruent to 1 modulo p. Since p does not divide
q − 1, the only possibility is np = 1.
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◦ Likewise, nq divides p and is congruent to 1 modulo q, so since p < q we must have nq = 1.

◦ Therefore, both the Sylow p-subgroup and the Sylow q-subgroup are normal in G, and so G is isomorphic
to their direct product.

◦ Since both groups are cyclic, we see G ∼= (Z/pZ)× (Z/qZ) ∼= Z/pqZ by the Chinese remainder theorem.
Thus, G is cyclic as claimed.

• In the above example, if q ≡ 1 mod p, then in addition to the case np = nq = 1 (in which case G is cyclic by
the above argument) there is also another possibility, namely, np = q.

◦ In this case, there are q total Sylow p-subgroups, each of which has p− 1 elements of order p for a total
of q(p− 1) = pq − q elements. Together with the q elements in the Sylow q-subgroup, this accounts for
all of the elements in the group.

◦ We have not yet shown that there actually exists such a group. However, in this hypothetical group, let
P be a Sylow p-subgroup, generated by g, and Q be the Sylow q-subgroup, generated by h. We can see
here that PQ = G in this case by order considerations, even though G is not isomorphic to the direct
product P ×Q.
◦ Observe that g acts on the set of elements of Q by conjugation, since Q is normal in G. Thus, ghg−1 = hd

for some positive integer d. Moreover, since g has order p, we see h = gphg−p = hd
p

, and so dp ≡ 1 (mod
q). This means d must be an element of order p in (Z/qZ)×, since d cannot equal 1 by the assumption
that g and h do not commute. Note that such an element exists in (Z/qZ)×, since (Z/qZ)× is cyclic (as
we proved) and p divides its order q − 1.

◦ This indicates that we could take a presentation of this group as
〈
g, h | gp = hq = e, ghg−1 = hd

〉
where

d is an element of order p in (Z/qZ)×.

◦ It may seem that we would obtain several di�erent groups, one for each of the p − 1 elements of order
p in (Z/qZ)×, but in fact they are all isomorphic to one another, as can be seen by changing variables
from g to ga for an appropriate value of a ∈ (Z/pZ)×.

◦ To show that the presentation
〈
g, h | gp = hq = e, ghg−1 = hd

〉
actually does describe a group of order

pq, observe that by using the given relations, each element of the group is of the form gahb for some
a ∈ {0, 1, . . . , p− 1} and b ∈ {0, 1, . . . , q − 1}, so the order of the group is at most pq.

◦ To show equality, we can give a construction of such a group, motivated by the left-multiplication
action of G on the elements of Q. This action is transitive and faithful, and if we label the elements
{e, h, h2, . . . , hq−1} of Q as {1, 2, . . . , q}, then the permutation associated to h is (1 2 3 . . . q), while the
permutation associated to g is the product of (q − 1)/p p-cycles that conjugates h to hd.

◦ For example, for p = 2 and q = 5, we take h = (1 2 3 4 5) and note that 2 generates (Z/5Z)×, so we
require ghg−1 = h2 = (1 5 4 3 2): thus we can take g = (2 5)(3 4).

◦ As another example, for p = 3 and p = 7, we take h = (1 2 3 4 5 6 7) and note that 2 has order 3 in
(Z/7Z)×, so we require ghg−1 = h2 = (1 3 5 7 2 4 6), and so we can take g = (2 3 5)(4 7 6).

◦ For a more direct construction, we can take the subgroup H =

{[
x y
0 1

]
: x, y ∈ Fq with xp = 1

}
of

upper-triangular matrices in GL2(Fq) whose diagonal entries are {x, 1} where xp = 1.

◦ Since F×q is cyclic of order q − 1 as we showed, and p divides q − 1, the kernel of the pth power map
has order p, so there are p possible values of x. Since there are q possible values of y, we see #H = pq.

This group H is generated by the elements g̃ =

[
a 0
0 1

]
where a is a primitive pth root of unity, and

h̃ =

[
1 1
0 1

]
. It is not hard to see that g̃p = h̃q = I2 and g̃h̃g̃

−1 = h̃a, so H has the desired presentation

and is the unique non-abelian group of order pq up to isomorphism.

• Using similar arguments we can classify groups of order p2q for certain values of p and q:

• Example (Groups of Order p2q): If p and q are distinct primes, show that any group G of order p2q must
have a normal Sylow p-subgroup or a normal Sylow q-subgroup. Furthermore, if p does not divide q − 1 and
(p, q) 6= (2, 3), show that G must be abelian and isomorphic to Z/p2qZ or to (Z/pZ)× (Z/pqZ).
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◦ If p > q then np ∈ {1, q} but it cannot equal q because q 6≡ 1 (mod p). Thus in this case, np = 1.

◦ Otherwise, suppose p < q. Then np ∈ {1, q} and nq ∈ {1, p2} since nq 6= p because p < q and so p cannot
be congruent to 1 modulo q.

◦ If nq = p2 then there would be p2(q − 1) elements of order q in these Sylow q-subgroups, leaving only
n− p2(q − 1) = p2 elements left for the Sylow p-subgroup, and so np would equal 1.

◦ Therefore, G also must have a normal Sylow subgroup in this case.

◦ If p does not divide q − 1 then we cannot have np = q so np = 1.

◦ Furthermore, if we had nq = p2, then p < q and q divides p2 − 1. But since q is prime, either q divides
p− 1 (impossible since p < q) or q divides p+ 1. But since p < q, the only possibility is that q = p+ 1.
Since the only even prime is 2, this forces p = 2 and q = 3, which we speci�cally excluded.

◦ Therefore, we have np = nq = 1, and so, as above, G is isomorphic to the direct product of its Sylow
p-subgroup and its Sylow q-subgroup. Since both of these are abelian since their orders are either a
prime or a square of a prime, we see that G is abelian.

◦ Then by the classi�cation of �nitely generated abelian groups, G is a direct product of cyclic groups, and
based on its prime factorization we get the two possibilities Z/p2qZ and (Z/pZ)× (Z/pqZ) given above.

3.4.4 Semidirect Products

• We can extend the kind of analysis we made for groups of order pq, in which only one of the Sylow subgroups
was normal to more general situations. Speci�cally, suppose we have subgroups H and K such that G = HK
where H ∩K = {e}, but now we only assume H is normal, not necessarily K.

◦ Then since G = HK and H ∩K = {e}, every element of G must be uniquely written in the form hk for
h ∈ H and k ∈ K, since the number of such products is #H ·#K = #G.

◦ It is no longer true, however, that elements of H will commute with elements of K, so in order to describe
the multiplication in this group, we need to be able to convert a product (h1k1) · (h2k2) into a product
of an element of H with an element of K.

◦ Since HK = G is a subgroup of G, we know that HK = KH, so the element k1h2 ∈ KH must be of the
form h3k3 ∈ HK. Then we can write (h1k1) · (h2k2) = h1(k1h2)k2 = h1(h3k3)k2 = (h1h3)(k3k2) ∈ HK.

◦ It is not so clear what precisely we can do to simplify this procedure.

◦ However, notice that because H is normal, the elements of K act on H by conjugation: for each k ∈ K,
it is true that kHk−1 = H, so for each k ∈ K, we have an associated isomorphism ϕk : H → H with
ϕk(h) = khk−1.

◦ Therefore, using the notation above, we can evaluate the product (h1k1) · (h2k2) by noting that k1h2 =
ϕk1(h2)k1, and therefore (h1k1) · (h2k2) = [h1ϕk1(h2)] · [k1k2].

◦ What we see is that if we work with ordered pairs (h, k) ∈ H ×K, then the composition operation we
have is (h1, k1) ? (h2, k2) = (h1ϕk1(h2), k1k2): it behaves as normal multiplication in the K-component,
but it is �twisted� by the isomorphism ϕk1 in the H-component.

◦ For example, in the dihedral group G = D2·5, if we take H = 〈r〉 = {e, r, r2, r3, r4} and K = 〈s〉 = {e, s},
then H is normal in G but K is not. The isomorphism ϕe has ϕe(h) = ehe−1 = h, so it is just the
identity. The isomorphism ϕs has ϕs(h) = shs−1 = h−1ss−1 = h−1 for each h ∈ H, and so ϕs is the
map taking each element of H to its inverse.

◦ Indeed, using the ordered pair notation, we can then compute, for example, that (r, s) ? (r2, e) =
(rϕs(r

2), se) = (r · r−2, se) = (r4, s), which, in regular notation inside G, reads as the statement
(rs)(r2) = r4s, which is indeed true.

◦ As we have noted previously, the isomorphisms of H with itself are called automorphisms, and the
automorphisms of H will form a group under function composition, denoted Aut(H).

◦ Furthermore, we must have ϕkk′ = ϕk◦ϕk′ for any k, k′ ∈ K, since ϕkk′(h) = (kk′)h(kk′)−1 = ϕk(ϕk′(h))
for all h ∈ H. This means that the association of k to the map ϕk is actually a group homomorphism of
K into Aut(H).
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• The idea now is that we can reverse this process.

◦ Explicitly, if H and K are any groups, then given a homomorphism σ of K into Aut(H), so that for
each k ∈ K we obtain an automorphism σk of H, we can use the calculation above to de�ne a group
operation ? on ordered pairs (h, k) by taking (h1, k1) ?σ (h2, k2) = (h1σk1(h2), k1k2).

◦ The resulting group is called the semidirect product of H and K:

• Theorem (Semidirect Products): Let H and K be any groups, let σ : K → Aut(H) be a group homomorphism
with σk being the automorphism σ(k) on H, and let G be the set of ordered pairs (h, k) for h ∈ H and
k ∈ K. Then G is a group with order #H ·#K under the operation (h1, k1) ?σ (h2, k2) = (h1σk1(h2), k1k2).
Furthermore, the subset {(h, e) : h ∈ H} is isomorphic to H and is a normal subgroup of G, while the subset
{(e, k) : k ∈ K} is isomorphic to K. This group is called the semidirect product of H and K with respect to
σ, and is denoted H oσ K.

◦ Proof: Each of the assertions is a direct calculation.

◦ For [G1], we have [(h1, k1)?σ(h2, k2)]?σ(h3, k3) = (h1σk1(h2), k1k2)?σ(h3, k3) = (h1σk1(h2)σk1k2(h3), k1k2k3),
while (h1, k1) ?σ [(h2, k2) ?σ (h3, k3)] = (h1, k1) ?σ (h2σk2(h3), k2k3) = (h1σk1(h2σk2(h3)), k1k2k3) =
(h1σk1(h2)σk1(σk2(h3)), k1k2k3), and these are the same because σk1k2(h3) = σk1(σk2(h3)).

◦ For [G2], we observe that (e, e) is the identity of G, since (e, e) ?σ (h, k) = (eσe(h), ek) = (h, k) and
likewise (h, k) ?σ (e, e) = (h, k).

◦ For [G3], the inverse of (h, k) is (σk−1(h−1), k−1), since (h, k)?σ(σk−1(h−1), k−1) = (hσk(σk−1(h−1)), kk−1) =
(e, e) and likewise (σk−1(h−1), k−1) ?σ (h, k) = (e, e).

◦ It is likewise straightforward to check that {(h, e) : h ∈ H} is a normal subgroup isomorphic to H and
that {(e, k) : k ∈ K} is a subgroup isomorphic to K.

• The idea here is that semidirect products are somewhat like direct products (whose underlying set is also
ordered pairs of elements of H and K) but have a di�erent group operation.

◦ In fact, if we take σ to be the identity map, then the semidirect product with respect to σ is simply the
direct product.

◦ Furthermore, we can view H and K as being embedded inside of the semidirect product H oσ K as the
subgroups {(h, e) : h ∈ H} and {(e, k) : k ∈ K} respectively.

◦ When we make this identi�cation, we see that H ∩K = {e}, G = HK, and H is a normal subgroup of
G: this is precisely the setup we started with.

◦ Thus, from our discussion above, whenever we can decompose G as a product HK for two subgroups H
and K with H normal in G and H ∩K = {e}, this means G must be isomorphic to a semidirect product
H oσ K for some σ : K → Aut(H).

◦ The notation H oσ K is intended to evoke the direct product but also to point out the asymmetry
between H (which is normal) and K (which need not be): the side of the symbol o with the vertical bar
identi�es the subgroup that is not normal. When the map σ is clear from context, it is often omitted.

• We can use semidirect products to construct new groups of various orders.

• Example: Let H = 〈a〉 be cyclic of order 5 and K = 〈b〉 be cyclic of order 4.

◦ Let σ : K → Aut(H) be the homomorphism such that σb(a) = a2. Note that there is such a homomor-
phism, because the squaring map has order 4 inside Aut(H) ∼= (Z/5Z)×, which is cyclic of order 4 and
generated by the element 2.

◦ The resulting semidirect product H oσ K is a group of order 20 generated by a and b, and a, b satisfy
the relations bab−1 = a2, so this group has a presentation

〈
a, b | a5 = b4 = e, bab−1 = a2

〉
.

◦ We can construct a di�erent semidirect product if instead we use the homomorphism τ : K → Aut(H)
such that σb(a) = a4. Then H oσK is a group of order 20 generated by a and b, but now a, b satisfy the
relations bab−1 = a4 = a−1, so this group has a presentation

〈
a, b | a5 = b4 = e, bab−1 = a−1

〉
.
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◦ Both of these groups are di�erent from the other groups of order 20 we have encountered: it is not
abelian like Z/20Z and (Z/2Z)× (Z/10Z), nor are they isomorphic to the dihedral group D2·10 since the
dihedral group has no elements of order 4.

• Example: Let H = 〈a〉 be cyclic of order n and K = 〈b〉 be cyclic of order 2.

◦ Also let σ : K → Aut(H) be the map sending the nonidentity element b ∈ K to the inversion automor-
phism with σb(a) = a−1. Then the resulting semidirect product is a group of order 2n generated by a
and b, and a, b satisfy the relations bab−1 = a−1.

◦ Here, we can see that the semidirect product is isomorphic to the dihedral group D2·n, with a playing
the role of r and b playing the role of s.

• Example: Let p be a prime and let H = 〈a〉 × 〈b〉 be the direct product of two cyclic groups of order p, and
let K = 〈c〉 be cyclic of order p.

◦ Then H has the structure of an Fp-vector space, and its group automorphisms will also be vector space
isomorphisms. This means that Aut(H) ∼= GL2(Fp), with the action of a matrix being componentwise
on the elements a and b.

◦ Because GL2(Fp) has order (p2 − 1)(p2 − p), it has a Sylow p-subgroup of order p. We can realize this

subgroup explicitly as the matrices of the form

[
1 d
0 1

]
for d ∈ Fp.

◦ Now let σ : K → Aut(H) be the map with σ(c) =

[
1 1
0 1

]
, which is well-de�ned since this matrix

has order p in GL2(Fp). As an explicit automorphism of H, it acts as σc(a
x, by) = (ax+y, by). Thus,

σc(a) = a and σc(b) = ab.

◦ The resulting semidirect product H oσ K is a non-abelian group of order p3, and it has a presentation〈
a, b, c : ap = bp = cp = e, ab = ba, cac−1 = a, cbc−1 = ab

〉
.

• We can also use semidirect products to classify groups of a given order, if we can establish the existence of an
appropriate normal subgroup and �complement� subgroup.

◦ In many cases, we will obtain several di�erent possible choices for maps σ : K → Aut(H).

◦ It can be shown that if K is cyclic and the images σ1(K) and σ2(K) inside Aut(H) are conjugate
subgroups, then in fact the resulting semidirect products are isomorphic.

◦ Speci�cally, if K = 〈a〉 and gσ1(K)g−1 = σ2(K), so that gσ1(a)g−1 = σ2(a)d for an integer d, then the
map ψ : H oσ1

K → H oσ2
K given by ψ(h, k) = ([σ2]g(h), ad) is an isomorphism.

• Example: Classify the groups of order 30.

◦ Since 30 = 2 · 3 · 5, we must have n2 ∈ {1, 3, 5, 15}, n3 ∈ {1, 10}, and n5 ∈ {1, 6}.
◦ However, we cannot have both n3 = 10 and n5 = 6, since then there would be 20 elements of order 3
and 24 elements of order 5, which is more than the number of elements in the group. Thus, n3 = 1 or
n5 = 1.

◦ Therefore, the product of the Sylow 3-subgroup and Sylow 5-subgroup is also a subgroup of G (by our
properties of subgroup products, since one of them is normal), and so G has a subgroup H of order 15.

◦ Since 3 does not divide 5− 1, from our classi�cation of groups of order pq, H is cyclic.

◦ In fact, H is a normal subgroup of G: G acts on the two left cosets of H by left multiplication, so we
have a homomorphism ϕ : G → S2. The image of this homomorphism has size 2 (since the action is
transitive on cosets) and so the kernel, which contains H, must have size 15. This forces H = kerϕ and
so H is normal.

◦ Now, there exists a Sylow 2-subgroup K of G. We then see H ∩K = {e} since their orders are relatively
prime, and since #H · #K = 30, we have HK = G. Therefore, since H is normal, by our results on
semidirect products, G must be isomorphic to a semidirect product H oσ K for some σ : K → Aut(H).

◦ Since H ∼= Z/15Z, one may verify that Aut(H) ∼= (Z/15Z)× ∼= (Z/3Z)× × (Z/5Z)×, which is a product
of a cyclic group of order 2 with a cyclic group of order 4.
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◦ The map σ must send the nonidentity element k ∈ K to an element of Aut(H) of order dividing 2. If σ
is the trivial map, then G is abelian and isomorphic to Z/30Z.
◦ If σ(k) = (−1, 1), then the resulting automorphism maps (a, b) ∈ (Z/3Z) × (Z/5Z) to (a−1, b). Then
Z/5Z is in the center of G, and G is isomorphic to (Z/5Z)× S3.

◦ If σ(k) = (1,−1), then the resulting automorphism maps (a, b) ∈ (Z/3Z) × (Z/5Z) to (a, b−1). Then
Z/3Z is in the center of G, and G is isomorphic to (Z/3Z)×D2·5.

◦ If σ(k) = (−1,−1), then the resulting automorphism maps g ∈ (Z/15Z) to g−1. It is not hard to see
that G is then isomorphic to D2·15.

◦ Since these are all of the possible automorphisms, we see that up to isomorphism, there are four non-
isomorphic groups of order 30: Z/30Z, (Z/5Z)× S3, (Z/3Z)×D2·5, and D2·15.

• Example: Classify the groups of order 12.

◦ Since 12 = 22 · 3, we must have n2 ∈ {1, 3} and n3 ∈ {1, 4}.
◦ First suppose that n3 = 4. Then there are 8 elements of order 3, leaving only 12 − 8 = 4 remaining
elements, which must therefore form a unique Sylow 2-subgroup.

◦ Therefore, n2 = 1, so the Sylow 2-subgroup H is normal in G. If K is any Sylow 3-subgroup, then
H ∩K = {e} since their orders are relatively prime, and since #H ·#K = 12, we have HK = G. Also,
H is normal in G while K is not (since n3 = 4).

◦ Therefore, G is a semidirect product H oσ K for some nontrivial σ : K → Aut(H).

◦ If H = 〈a〉 is cyclic of order 4, then Aut(H) ∼= (Z/4Z)× is cyclic of order 2. But then if K = 〈c〉, there
is no nontrivial map σ : K → Aut(H), since σc(a) would have order dividing both 2 and 3.

◦ Otherwise, H = 〈a〉 × 〈b〉 where a and b both have order 2. Then Aut(H) ∼= GL2(F2), which has order
(22 − 1)(22 − 2) = 6. Thus, if σ : K → Aut(H) is nontrivial, the image is a Sylow 3-subgroup of
GL2(F3). Since all of these Sylow 3-subgroups are conjugate, we obtain a unique semidirect product up
to isomorphism.

◦ Explicitly, if we take σ : K → Aut(H) to be the map with σ(c) =

[
0 1
1 1

]
, which is well-de�ned since

this matrix has order 3, then as an explicit automorphism we have σc(a) = b and σc(b) = ab.

◦ The resulting semidirect product H oσ K is a non-abelian group of order 12, and it has a presentation〈
a, b, c : a2 = b2 = c3 = e, ab = ba, cac−1 = b, cbc−1 = ab

〉
. In fact, this group is isomorphic to A4, with

an isomorphism given explicitly by mapping a 7→ (1 2)(3 4), b 7→ (1 4)(2 3), and c 7→ (1 2 3).

◦ Now suppose n3 = 1. If n2 = 1 as well, then G is the direct product of its Sylow 2-subgroup with
its Sylow 3-subgroup, and is isomorphic either to (Z/2Z) × (Z/2Z) × (Z/3Z) ∼= (Z/2Z) × (Z/6Z) or to
(Z/4Z)× (Z/3Z) ∼= Z/12Z.

◦ Otherwise, n2 = 3. Then, if H = 〈a〉 is the unique Sylow 3-subgroup and K is any Sylow 2-subgroup,
we see that H ∩K = {e}, HK = G, and H is normal in G, so G is a semidirect product H oσ K for
some nontrivial σ : K → Aut(H).

◦ Note here that Aut(H) ∼= (Z/3Z)× is cyclic of order 2, and generated by the inversion map a 7→ a−1.

◦ If K = 〈b〉 is cyclic of order 4, then there is one nontrivial homomorphism σ : K → Aut(H), which
has σb(a) = a−1. The resulting semidirect product is a non-abelian group of order 12, and it has a
presentation

〈
a, b, c : a3 = b4 = e, bab−1 = a−1

〉
.

◦ If K = 〈b〉 × 〈c〉 is Klein-4, then there are three nontrivial homomorphisms σ : K → Aut(H). However,
since their images are all the same, the resulting semidirect products are isomorphic. If we take σb(a) = a
and σc(a) = a−1, then we obtain a presentation

〈
a, b, c : a3 = b2 = c2 = e, bc = cb, bab−1 = a, cac−1 = a−1

〉
.

In fact, this group is generated by c and d = ab, with presentation
〈
c, d : c2 = d6 = e, cdc−1 = d−1

〉
,

which shows that it is isomorphic to the dihedral group D2·6.

◦ Therefore, since we have examined all of the possible cases, there are �ve non-isomorphic groups of order
12: A4, (Z/2Z)× (Z/6Z), Z/12Z, the nontrivial semidirect product (Z/3Z) o (Z/4Z), and D2·6.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2010-2020. You may not reproduce or distribute this
material without my express permission.
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