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Radical Extensions, I

We have described ways to compute Galois groups for polynomials
of moderate degree, and a natural followup is to try to find
“formulas in radicals”, similar to the cubic and quartic formulas,
for the roots of these polynomials.

Explicitly, we consider a formula in radicals to be one that is
constructed via some combination of field operations
(addition, subtraction, multiplication, division) and extraction
of nth roots.

So, we need to study field extensions obtained by adjoining nth
roots of elements.

Definition

If F is a field, the extension field K/F is a simple radical extension
of K if K = F (β) for some β with βn ∈ F for some n.



Radical Extensions, II

For any a ∈ F we will write a1/n to denote an arbitrary choice of a
root β of the polynomial xn − a in an algebraic closure of F .

For an arbitrary F , the extension F (a1/n) will not be Galois in
general: its normal closure will be the splitting field of xn − a
over F , which is only equal to F (a1/n) when F (a1/n) contains
the nth roots of unity.

In particular, if F itself contains the nth roots of unity, then
F (a1/n) will automatically be Galois over F for any a ∈ F , as
long as xn − a is separable (which occurs precisely when n is
not divisible by the characteristic of F and a 6= 0).

In this case, any automorphism σ ∈ Gal(F (a1/n)/F ) is
uniquely determined by the value of σ(a1/n) = a1/nζ for some
nth root of unity ζ.

We may then essentially compute the Galois group
Gal(F (a1/n)/F ), which turns out always to be cyclic.



Radical Extensions, III

More precisely, we have the following:

Theorem (Simple Radical Extensions)

Let F be a field of characteristic not dividing n that contains the
nth roots of unity. Then for any a ∈ F×, the field F (a1/n)/F is
Galois and its Galois group is cyclic of order dividing n. Conversely,
any cyclic Galois extension K/F of order dividing n has the form
K = F (a1/n) for some a ∈ F .

The main idea for the forward direction is to write down an
injective map from the Galois group to the cyclic group of nth
roots of unity.



Radical Extensions, IV

Proof (forward):

First let a ∈ F×. Since F contains the nth roots of unity,
F (a1/n) is the splitting field of xn − a over F .

Since char(F ) does not divide n and a 6= 0, xn − a is
separable, and so F (a1/n)/F is Galois.

If G = Gal(F (a1/n)/F ), then for any σ ∈ G we have
σ(a1/n) = a1/nζ(σ) for some nth root of unity ζ(σ).

We therefore have a map ϕ : G → µn from G to the cyclic
group µn of nth roots of unity by setting
ϕ(σ) = ζ(σ) = σ(a1/n)/a1/n.



Radical Extensions, IV

Proof (forward, more):

We have a map ϕ : G → µn from G to the cyclic group µn of
nth roots of unity by setting ϕ(σ) = ζ(σ) = σ(a1/n)/a1/n.

Then ϕ(στ) = σ(τ(a1/n))/a1/n = σ(a1/nζ(τ))/a1/n =

σ(a1/n)ζ(τ)/a1/n = ζ(σ)ζ(τ) = ϕ(σ)ϕ(τ) for any σ, τ ∈ G , so
ϕ is a group homomorphism.

Furthermore, kerϕ consists of the automorphisms fixing a1/n,
hence is trivial.

Thus, by the first isomorphism theorem, we see that ϕ yields
an isomorphism of G with its image inside µn.

Since imϕ is a subgroup of µn, it is cyclic of order dividing n
as claimed.



Radical Extensions, V

Proof (reverse):

For the converse, suppose K/F is cyclic Galois of order
dividing n, where F contains the nth roots of unity and
char(F ) does not divide n.

Let σ be a generator of G = Gal(K/F ) and ζ be a primitive
nth root of unity.

Then because the automorphisms 1, σ, σ2, . . . , σn−1 are
linearly independent, there exists an α ∈ K such that
β = α + ζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α) is nonzero.



Radical Extensions, V

Proof (reverse, more):

With β = α+ ζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α), we have
ζσ(β) = ζσ(α)+ζ2σ2(α)+ · · ·+ζn−1σn−1(α)+ζnσn(α) = β,
since both ζ and σ have order dividing n.

This implies σ(β) = ζ−1β, and so iterating this yields
σk(β) = ζ−kβ. In particular, since β 6= 0 we see that β is not
fixed by any nonidentity element of G , and so K = F (β).

Finally, we have σ(βn) = ζ−nβn = βn so βn is fixed by σ
hence by all of G , and thus βn = a is an element of F .

This means K = F (a1/n) for some a ∈ F , as claimed.

Remark: The element β is called a Lagrange resolvent. We can
find it by looking for an element of K with the property that
σ(β) = ζ−1β: if we write β = α + c1σ(α) + · · ·+ cnσ

n−1(α), we
can then compute the coefficients ci using the action of σ.



Radical Extensions, VI

Now that we have characterized the extensions obtained by
adjoining nth roots of individual elements, we can give a precise
definition for solving an equation in radicals:

Definition

If α ∈ F , we say α can be expressed in radicals of α is an element
of some tower of simple radical extensions, namely, if there exist
extensions F = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kd = K such that α ∈ K
and Ki+1/Ki is a simple radical extension for each i , and we say
K/F is a root extension. We also say a polynomial f (x) ∈ F [x ] is
solvable in radicals if each of its roots can be expressed in radicals.



Radical Extensions, VII

Examples:

1. The algebraic number
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17 can be
expressed in radicals over Q.

2. Any element of a cubic or quartic polynomial can be expressed
in radicals, since we gave explicit constructions for the roots
of these polynomials.

3. Any root of unity can be expressed in radicals, since by
definition any nth root of unity is an nth root of 1.

4. Any constructible number can be expressed in radicals, since
(as we proved) the constructible numbers are those which are
contained in some tower of quadratic extensions.



Radical Extensions, VIII

We make a few basic observations about root extensions:

The composite of two root extensions of F is also a root
extension of F . Explicitly, if F = K0 ⊆ K1 ⊆ · · · ⊆ Kd = K
and F = L0 ⊆ L1 ⊆ · · · ⊆ Lk = L are two towers of simple
radical extensions, then so is F = K0L0 ⊆ K1L0 ⊆ K2L0 ⊆
· · · ⊆ KdL0 ⊆ KdL1 ⊆ · · · ⊆ KdLk = KL.

In particular, the set of all elements in the algebraic closure F
that can be expressed in radicals is a subfield of F .

Also, if α can be expressed in radicals and σ(α) is any Galois
conjugate, then σ(α) can also be expressed in radicals,
because F = K0 ⊆ σ(K1) ⊆ · · · ⊆ σ(Kd) = σ(K ) is also a
tower of simple radical extensions.



Radical Extensions, IX

We would like to characterize the elements α ∈ F that can be
expressed in radicals, which (by our observation about Galois
conjugates) is equivalent to characterizing the polynomials in F [x ]
that are solvable in radicals.

We would like to be able to give a statement requiring
information only about the minimal polynomial of α, but in
order to do this we first need to see that α is contained in a
Galois root extension.

Proposition (Elements Expressible in Radicals)

If α can be expressed in radicals over F , then α is contained in a
root extension L having a tower F = L0 ⊆ L1 ⊆ · · · ⊆ Lk = L
where L is Galois over F and each intermediate extension Li+1/Li

is Galois with cyclic Galois group.



Radical Extensions, X

Proof:

Suppose α can be expressed in radicals over F .

Then by our observation earlier, all Galois conjugates σ(α) can
also be expressed in radicals over F , and so the splitting field
K of the minimal polynomial of α is a root extension of F .

This means that there is a tower of simple radical extensions
F = K0 ⊆ K1 ⊆ · · · ⊆ Kd = K , where Ki+1/Ki is obtained by
extracting an ni th root.

If we let E be the field obtained by adjoining all ni th roots of
unity to F , then E/F is a simple radical extension of F , since
it is obtained by adjoining a root of the polynomial
xn1n2···nd−1 − 1.



Radical Extensions, XI

Proof (continued):

We have a tower F = K0 ⊆ K1 ⊆ · · · ⊆ Kd = K of simple
radical extensions, and also, E is the field obtained by
adjoining all ni th roots of unity to F . Now consider the tower
F ⊆ E = EK0 ⊆ EK1 ⊆ · · · ⊆ EKd = EK .

Each extension EKi+1/EKi is a simple radical extension
obtained by extracting an ni th root of unity, and since all of
these roots of unity are in E (hence in EKi ), by our
characterization of simple radical extensions, these extensions
are all Galois with cyclic Galois group.

Now just set L1 = E and Li+1 = EKi for i ≥ 1, with L = EK .
Then L is Galois over F (since it is the composite of two
Galois extensions E/F and K/F ) and each extension Li+1/Li

is Galois with cyclic Galois group, as required.



Radical Extensions, XII

By applying the fundamental theorem of Galois theory to the tower
constructed in the last proof, we obtain a necessary condition on
the Galois group of L/F in order for L/F to be a Galois root
extension.

Explicitly, let Gi be the subgroup of G = Gal(L/F ) associated
to the intermediate extension Li .

Then the Galois correspondence yields a chain of subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in
Gi and the quotient group Gi/Gi+1 is cyclic for each i .

We now switch perspective from fields to groups, and study
groups that have a chain of subgroups of this form.



Solvable Groups, I

Here is the requisite property of groups that we want to study:

Definition

A finite group G is solvable if there exists a chain of subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in Gi

and the quotient group Gi/Gi+1 is cyclic for each 0 ≤ i ≤ k − 1.

We emphasize in the definition that Gi+1 is only required to be a
normal subgroup of the previous subgroup Gi , and does not have
to be a normal subgroup of G itself.



Solvable Groups, II

Examples:

1. Any finite abelian group is solvable, since every finite abelian
group is a direct product of cyclic groups.

2. The dihedral group D2·n is solvable, since the subgroup
G1 = 〈r〉 is cyclic and the quotient group D2·n/G1 is also
cyclic (it has order 2 and is generated by s).

3. The symmetric group S4 is solvable, via the chain
S4 ≥ A4 ≥ V4 ≥ 〈(1 2)(3 4)〉 ≥ {e}, where
V4 = 〈(1 2)(3 4), (1 3)(2 4)〉. Note that V4 is normal in A4

since it is in fact normal in S4, and each successive quotient is
cyclic because it has prime order (either 2 or 3).

4. Any non-cyclic simple group is not solvable, because it has no
nontrivial normal subgroups (and thus there is no way to start
the chain).



Solvable Groups, III

Here are some of the fundamental properties of solvable groups:

Proposition (Properties of Solvable Groups)

Let G be a group.

1. If G is solvable, then any subgroup H is solvable and any
quotient group G/N is solvable.

2. If N is a normal subgroup of G such that N and G/N are
solvable, then G is solvable.

3. G is solvable if and only if G has a chain of subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in
Gi and the quotient group Gi/Gi+1 is abelian.

4. Finite p-groups are solvable, as are finite nilpotent groups,
and direct and semidirect products of solvable groups.



Solvable Groups, IV

1. If G is solvable, then any subgroup H is solvable and any
quotient group G/N is solvable.

Proof (subgroups):

Suppose G is solvable with a chain
G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in
Gi and Gi/Gi+1 is cyclic.

If H is a subgroup of G , let Hi = Gi ∩ H for each i .

Then Hi+1 = Hi ∩ Gi+1, so by the second isomorphism
theorem, we see that Hi+1 is normal in Hi and
Hi/Hi+1 = Hi/(Hi ∩ Gi+1) ∼= HiGi+1/Gi+1.

But since HiGi+1 is a subgroup of Gi , the latter is a subgroup
of Gi/Gi+1 and hence cyclic. Hence we obtain a chain
H = H0 ≥ H1 ≥ · · · ≥ Hk = {e} such that Hi+1 is normal in
Hi and Hi/Hi+1 is cyclic, so H is solvable.



Solvable Groups, V

1. If G is solvable, then any subgroup H is solvable and any
quotient group G/N is solvable.

Proof (quotients):

Suppose G is solvable with a chain
G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in
Gi and Gi/Gi+1 is cyclic.

If N is a normal subgroup of G , let
Gi = Gi/(Gi ∩ N) ∼= GiN/N be the image of Gi in G/N.

Then by the second and third isomorphism theorems,
(GiN/N)/(Gi+1N/N) ∼= GiN/Gi+1N, and the latter is
isomorphic to a quotient of Gi/Gi+1 by the second
isomorphism theorem, hence is cyclic.

Hence the chain G/N = G0 ≥ G1 ≥ · · · ≥ Gk = {e} has the
property that Gi+1 is normal in Gi and Gi/Gi+1 is cyclic, so
G/N is solvable.



Solvable Groups, VI

2. If N is a normal subgroup of G such that N and G/N are
solvable, then G is solvable.

Proof:

Suppose that N has a chain N = N0 ≥ N1 ≥ · · · ≥ Nd = {e}
and G/N has a chain G/N = G0 ≥ G1 ≥ · · · ≥ Gk = {e}.
Then by the fourth isomorphism theorem we may lift each of
the Gi to a subgroup Gi of G containing N with
Gi/Gi+1

∼= Gi/Gi+1.

Then the chain
G = G0 ≥ G1 ≥ · · · ≥ Gk = N = N0 ≥ N1 ≥ · · · ≥ Nd = {e}
shows G is solvable.



Solvable Groups, VII

3. G is solvable if and only if G has a chain of subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in
Gi and the quotient group Gi/Gi+1 is abelian.

Proof:

If G is solvable then it clearly has such a chain (since cyclic
groups are abelian).

For the converse, we induct on k . The base case k = 1 is
trivial since abelian groups are solvable as noted above.

For the inductive step, suppose we have a chain
G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in
Gi and the quotient group Gi/Gi+1 is abelian.

Then G1 is solvable by the inductive hypothesis, and G/G1 is
also solvable (since it is abelian). Hence by (2), G is solvable.

Remark: This property is often taken as the definition of a solvable
group, rather than ours (where successive quotients are cyclic).



Solvable Groups, VIII

4. Finite p-groups are solvable, as are finite nilpotent groups,
and direct and semidirect products of solvable groups.

Proof:

For p-groups of order pn, we induct on n. The base case
n = 1 is trivial. For the inductive step, we note that any
p-group has a nontrivial center.

If G = Z (G ) then the result is trivial since G is abelian.

Otherwise, both Z (G ) and G/Z (G ) are p-groups of order less
than pn, so by the inductive hypothesis they are both solvable.
Then G is solvable by (2).

Direct and semidirect products of solvable groups are also
solvable by (2), since the two components in the semidirect
product are solvable by assumption.

Finally, nilpotent groups are direct products of p-groups, so
they are also solvable.



Solvability in Radicals, I

From our properties of solvable groups, we see that if f (x) is
solvable in radicals, then each of its roots is contained in a Galois
extension L/F whose Galois group Gal(L/F ) is solvable.

The Galois group of f (x) is Gal(K/F ) where K is the
splitting field for f .

Since this is a quotient group of Gal(L/F ) and quotient
groups of solvable groups are solvable, Gal(K/F ) is solvable.



Solvability in Radicals, II

Our central result is that the converse is true also.

Theorem (Solvability in Radicals)

Let F be a field and f (x) ∈ F [x ] be a polynomial of degree n,
where the characteristic of F does not divide n! (in particular, if F
has characteristic 0). Then f (x) is solvable in radicals if and only if
the Galois group of f is a solvable group.

This result (at least for F = Q) is essentially due to Galois, and
was the historical motivation for his development of Galois theory.

Galois’s use of groups here, viewed as permutations of the
roots of a polynomial, was actually one of the fundamental
motivations for the development of abstract group theory by
Jordan and Cayley in the late 1800s.



Solvability in Radicals, III

Proof (forward):

Note that any irreducible factor of f has degree at most n,
hence dividing n!, so all irreducible factors of f are separable.

By replacing f with the least common multiple of its
irreducible factors (which does not change the roots), we may
therefore assume f is separable.

Now suppose f is solvable in radicals, and let K be the
splitting field of f , with G = Gal(K/F ).

If α is any root of f , then α is expressible in radicals, and so
by our proposition, there exists a Galois extension Lα/F
containing α such that Gal(Lα/F ) is solvable.



Solvability in Radicals, IV

Proof (forward more):

Then the composite L of all the Lα over all roots α of f is
also Galois over F , and its Galois group is a subgroup of the
direct product of the Gal(Lα/F ) by our results on Galois
groups of composite extensions.

Since the direct product of solvable groups is solvable, and
subgroups of solvable groups are solvable, this means the
Galois group of L/F is solvable.

Since L contains all roots of f , it contains K , and so by the
fundamental theorem of Galois theory G = Gal(K/F ) is a
quotient of Gal(L/F ).

Thus G is a quotient of a solvable group, hence is solvable as
claimed.



Solvability in Radicals, V

Proof (converse):

For the converse, suppose G is solvable and has a chain
G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} such that Gi+1 is normal in
Gi and Gi/Gi+1 is cyclic of order ni .

By the fundamental theorem of Galois theory, the
corresponding fixed fields F = K0 ⊆ K1 ⊆ · · · ⊆ Kk = K such
that Ki+1/Ki is Galois with cyclic Galois group of order ni .

Now let E be the extension of F containing all of the ni th
roots of unity for each i , then E/F is Galois and a simple
radical extension (as we have noted).



Solvability in Radicals, VI

Proof (converse more):

We have a tower F = K0 ⊆ K1 ⊆ · · · ⊆ Kk = K such that
Ki+1/Ki is Galois with cyclic Galois group of order ni , and E is
the extension of F containing all the necessary roots of unity.

Then EKi+1/EKi is also Galois with cyclic Galois group of
order dividing ni by the “sliding-up” property of the Galois
extension Ki+1/Ki .

Then since E contains the ni th roots of unity, we conclude
that EKi+1/EKi is a simple radical extension.

This means F ⊆ E ⊆ EK1 ⊆ EK2 ⊆ · · · ⊆ EKk = EK is a
tower of simple radical extensions containing all the roots of
f , and so f is solvable in radicals as claimed.



The Simple Simplicity of An, I

Since we will need it imminently and I didn’t actually prove the
simplicity of An at any point, let me just do that right now:

Proposition (Simplicity of A5)

The group A5 is simple.

We show that the only nontrivial normal subgroup of A5 is A5

itself. We do this using a counting argument.

The idea is that any normal subgroup of a group G consists of
a union of conjugacy classes: normality requires that if one
element of a conjugacy class is taken, then they all are.

So we just have to find the conjugacy classes in A5, and then
show we cannot construct a proper subgroup using a union of
some of them.



The Simple Simplicity of An, II

Proof:

The conjugacy classes in An consist of elements having the
same cycle type, since those are the conjugacy classes in Sn.

By an orbit-stabilizer calculation, conjugacy classes in Sn

either remain the same or split into two in An: more
specifically, the number of classes in An equals [Sn : AnCG (x)]
for any x in the Sn-conjugacy class. This equals 1 if and only
if x commutes with an odd permutation if and only if the
cycle type of x consists of distinct odd integers.

The only such elements in A5 are the 5-cycles. Thus, the
conjugacy classes in A5 have sizes 1 (identity), 20 (3-cycles),
12 and 12 (5-cycles), and 15 (2,2-cycles).

No sum of these numbers including 1 yields a divisor of 60
except the sum of all of them, so by Lagrange’s theorem the
only nontrivial normal subgroup of A5 is A5 itself.



The Simple Simplicity of An, III

Now we can establish the simplicity of An for larger n:

Theorem (Simplicity of An)

The group An is simple for all n ≥ 5.

We first observe that the 3-cycles generate An.

This follows by writing any element of An as a product of an
even number of transpositions, and then observing that any
pair of unequal transpositions has product equal to a 3-cycle
or a 2,2-cycle.

But any 2,2-cycle is the product of two 3-cycles:
(a b)(c d) = (a c d)(a b d). Thus the 3-cycles generate An.

We now give our main argument, which will reduce to showing
that a nontrivial normal subgroup of An must contain a 3-cycle
(hence all of them).



The Simple Simplicity of An, IV

Proof:

We induct on n. We just established the base case n = 5, so
now assume n ≥ 6.

Suppose H is a nontrivial normal subgroup of G = An and let
Gi be the stabilizer of i under the permutation action of An

on {1, 2, . . . , n}.
Then Gi

∼= An−1 is simple by the induction hypothesis.

By properties of normality, the intersection H ∩ Gi is a normal
subgroup of Gi for each i . But since Gi is simple, the only
possibilities are H ∩ Gi = e or H ∩ Gi = Gi .

If H ∩ Gi = Gi for any i , then since all of the Gi are
conjugate, we see that H contains all of the Gi , hence
(1 2)(3 4) ∈ G5 along with all of its conjugates.

Then all of the 3-cycles are in H, and so H = G by our
observation that the 3-cycles generate An.



The Simple Simplicity of An, V

Proof (continued):

We are left with the case where H ∩ Gi = e for all i .

This means that no nonidentity element of H can stabilize any
element of {1, 2, . . . , n}.
Now pick a nonidentity element σ ∈ H.

If σ has a cycle (a1a2a3 . . . ) of length ≥ 3, conjugate by the
permutation (a3a4a5) ∈ An with a4, a5 6= a1, a2, a3 to obtain
the permutation τ ∈ H having a cycle (a1a2a4 . . . ). Then
στ−1 ∈ H fixes a1 but not a2, contradiction.

Otherwise, every σ ∈ H is a product only of 2-cycles.

Then conjugating a permutation
σ = (a1a2)(a3a4)(a5a6) · · · ∈ H by (a1a2)(a3a5) ∈ An yields
τ = (a1a2)(a4a5)(a3a6) · · · ∈ H, but then στ ∈ H fixes a1 but
not a3, contradiction. (Note we need n ≥ 6 here!)



The Simple Simplicity of An, VI

While we’re here, I figured I might also show you a beautiful
argument of Bender, communicated to me by R. Foote via D.
Dummit, to show that A5 is the unique simple group of order 60:

Let G be a simple group of order 60.

Then the number n5 of Sylow 5-subgroups of G is congruent
to 1 modulo 5 and divides 12. It cannot be 1 since G has no
nontrivial normal subgroups, so it must be 6.

Now, G acts on these six Sylow 5-subgroups by conjugation.
This yields a homomorphism from G into S6, which must be
faithful because the kernel is a normal subgroup of G .

If H is the image of this homomorphism, then H ∩ A6 is either
H or a subgroup of H of index 2. But if the latter case held,
then the inverse image of H ∩A6 in G would be a subgroup of
G of index 2, which would be normal by one of your
homework problems.



The Simple Simplicity of An, VII

Therefore, the image H ⊆ S6 of the conjugation action of G on its
six Sylow 5-subgroups actually lies inside A6.

Since H is isomorphic to G (the kernel is trivial), it has order
60 inside of A6, which has order 6!/2 = 360.

Equivalently, H has index 6 inside A6.

Now, A6 acts on the six left cosets of H by permutation.

This yields a homomorphism from A6 into S6.

Since A6 is simple, by the same argument as on the previous
slide, the kernel is trivial and the image must lie inside A6, so
it is an isomorphism of A6 with itself.

But now H is the stabilizer of the left coset eH, meaning that
H is a point stabilizer inside of A6.

If we label eH as 6, then H is the set of even permutations
inside S6 fixing 6, which is simply a description of A5.

Thus, H hence G is isomorphic to A5, as claimed.



The Insolvability of The Quintic, I

We can now put these last results together to obtain the famed
Abel-Ruffini theorem on the insolvability of the general quintic:

Corollary (Abel-Ruffini Theorem)

If n≥5, the general equation of degree n is not solvable in radicals.

Proof:

By our results on solvability, an equation is solvable in radicals
if and only if its Galois group is solvable.

As we showed, the Galois group of the general equation of
degree n is Sn.

But Sn is not solvable for any n ≥ 5: if it were, then its
subgroup An would be solvable, and that is not the case
because An is a non-cyclic simple group for n ≥ 5.

Thus, the general equation of degree n is not solvable in
radicals for any n ≥ 5.



The Insolvability of The Quintic, II

We can also give specific examples of polynomials that are not
solvable in radicals using the methods we have described previously
for computing Galois groups.

For example, as we noted earlier, the polynomial
f (t) = t5 − 4t + 2 has Galois group S5 over Q, and is
therefore not solvable in radicals.

Likewise, we also showed (by analyzing factorizations over Fp)
that the polynomial f (t) = t5 − t2 − 2t − 3 has Galois group
A5 over Q, hence also is not solvable in radicals.

As a third example, the polynomial f (t) = t7 − 7t + 3 can be
shown to have Galois group PSL2(F7) ∼= SL3(F2), which is a
simple group of order 168. This polynomial is therefore also
not solvable in radicals.



The Non-Insolvability of Some Quintics, I

For polynomials whose Galois group is solvable, there do exist
formulas in radicals for the roots, although of course these may be
challenging to compute explicitly.

We briefly outline the situation for n = 5.

The possible Galois groups here are C5 (order 5), D2·5 (order
10), F20 (order 20), A5 (order 60), and S5 (order 120).

It is not hard to see that the first three are solvable while the
last two are not.

Indeed, since each of C5, D2·5, and F20 is contained in F20, an
irreducible quintic is solvable in radicals precisely when its
Galois group is a subgroup of F20.



The Non-Insolvability of Some Quintics, II

As detailed in a 1991 paper of D. Dummit1, this may in turn be
determined by determining whether an associated resolvent
polynomial for F20 (of degree 6) has a rational root, and if so, one
may give explicit formulas in radicals for the roots of the quintic.

For the quintic f (x) = x5 + px + q in particular, the resolvent
sextic is f20(x) = x6 + 8px5 + 40p2x4 + 160p3x3 + 400p4x2 +
(512p5 − 3125q4)x + (256p6 − 9375pq4), and the quintic
f (x) is solvable in radicals if and only if the resolvent sextic
has a rational root.

Example: For f (x) = x5 + 120x − 1344 of discriminant
∆ = 211 · 34 · 56, the resolvent sextic has a rational root
x = 1440, and therefore f is solvable. Since the discriminant
is not a square, its Galois group is not contained in A5, and
must therefore be F20.

1Solving Solvable Quintics, Math. Comp., 57(195), 1991



Putting Algebra Into The Fundamental Theorem of Algebra, I

As one more fun application of Galois theory, I thought I’d show
you how to prove the fundamental theorem of algebra using
algebra, rather than complex analysis.

An initial observation: C has no field extension of degree 2,
because if z = re iθ then

√
z = r1/2e iθ/2 ∈ C.

A second observation: any odd-degree polynomial with real
coefficients has a real root. This is an immediate consequence
of the intermediate value theorem.

Thus, by the second observation, R has no nontrivial field
extensions of odd degree: since any odd-degree irreducible
polynomial must have a root, it must be linear.



Putting Algebra Into The Fundamental Theorem of Algebra, II

Now suppose that p(x) ∈ C[x ] has positive degree: we claim that
the Galois group of p(x) over C is trivial, which will mean all its
roots must lie in C.

Consider the polynomial q(x) = p(x)p(x). Complex
conjugation fixes this polynomial since it interchanges p with
p, and so q(x) ∈ R[x ].

If K is the splitting field of q(x), then K/R is Galois by
definition: suppose the Galois group is G .

By Sylow’s theorems, G has a Sylow 2-subgroup H.

Consider the fixed field E of H: by hypothesis, since the index
of H in G is odd, by the fundamental theorem of Galois
theory, the degree [E : R] is odd.

But there are no nontrivial extensions of R of odd degree, so
in fact E = R, and thus H = G .



Putting Algebra Into The Fundamental Theorem of Algebra, III

This means the Galois group of q(x) = p(x)p(x) over R is a
2-group, so its splitting field K/R has degree equal to a power of 2.

Then K (i)/C is also Galois by the sliding-up property, and its
degree is also a power of 2.

However, as we showed, any p-group G has a filtration of
subgroups {e} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gk = G where each
subgroup has index p in the next.

Applying this observation to G shows that it has a chain of
subgroups {e} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gk = G each of
index 2 in the previous.

But unless G is trivial, the Galois correspondence yields a
chain of subfields C ≤ E ≤ · · · ≤ K (i), and in particular we
have a field E with [E : C] = 2.

But there is no such field E . Therefore, G must be the trivial
group, and so p(x) splits completely over C.



Some Heavier-Duty Group Theory, I

I thought it might also be useful to summarize some of the more
heavy-duty group theory results related to simplicity and solvability.

Theorem (Burnside’s paqb Theorem)

If p and q are primes, then any group of order paqb is solvable.

The “easiest” approach to Burnside’s paqb theorem is to use
representation theory, which (in its simplest description) concerns
groups acting on vector spaces, or, equivalently, homomorphisms
ϕ : G → GL(V ).



Some Heavier-Duty Group Theory, II

Groups of odd order are also solvable:

Theorem (Feit-Thompson Theorem)

Every finite group of odd order is solvable.

The proof of this theorem is 255 pages, representing an entire issue
of the Pacific Journal of Mathematics2. This result is one of the
first lengthy arguments published in group theory; before this
paper, most group theory papers were comparatively short.

2Solvability of groups of odd order, Pac. J. Math. 13:775–1029 (1962)



Some Heavier-Duty Group Theory, III

Even if a finite group G is not solvable, we can still think of
building G up from simple groups.

More specifically, G always possesses a composition series: a
chain of subgroups {e} = G0 ≤ G1 E G2 ≤ · · · ≤ Gn = G
such that each Gi is normal in Gi+1 and the successive
quotients Gi+1/Gi are simple.

The existence of a composition series is easy to establish by
induction. The individual quotients in the chain are called the
composition factors of G and are akin to irreducible factors in
a factorization. More specifically:

Theorem (Jordan-Hölder Theorem)

Any two composition series for a group have the same length and
composition factors, up to rearrangement and isomorphism.



So, What Now?

Here marks the official end of the material for this course.

Of course, there is much more algebra out there to learn. The
next course to take is Math 5112, which treats the
fundamentals of commutative algebra: rings and modules and
all of the various things you can do with them.

If you like Galois theory, the natural next thing to learn is
some algebraic number theory, which is more focused on
studying finite-degree extensions of Q, and which extends and
pulls together many of the results we have developed here.

If you like putting groups and linear algebra together (and
why wouldn’t you?), then you should consider learning some
representation theory.

There is also algebraic geometry, which is more closely tied to
Math 5112, but it does tie into a lot of the material on
function fields and transcendental extensions.



Summary

We discussed solvability of polynomials in radicals and the
associated class of radical extensions.

We established some properties of solvable groups.

We proved that An is simple for n ≥ 5.

We proved the Abel-Ruffini theorem on the insolvability of the
quintic.

We proved the fundamental theorem of algebra, using algebra.

Next lecture: Math 5112.


