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Computing Galois Groups of Polynomials

Quartic Polynomials

Computing Galois Groups Over Q
This material represents §4.4.4-4.4.5 from the course notes.



Quartic Polynomials, I

Last time, we analyzed the possible Galois groups of cubic
polynomials and gave formulas for their roots.

We may use similar techniques to analyze degree-4
polynomials, although because S4 has many more subgroups
than S3, there are numerous possible Galois groups.

As before, if the polynomial is reducible then we may reduce
to lower-degree cases, so assume that the polynomial
f (t) = t4 − a1t

3 + a2t
2 − a3t + a4 is an irreducible quartic

polynomial in F [t] with splitting field K .

By making a substitution y = t − a1/4, as with the cubic, we
may equivalently analyze the polynomial
g(y) = y4 + py2 + qy + r , which will have the same Galois
group and discriminant as f .



Quartic Polynomials, II

A brief search will reveal that there are five possible isomorphism
classes for the Galois group of g(y) = y4 + py2 + qy + r as
transitive subgroups of S4:

1. S4. 2. A4. 3. D2·4. 4. C4. 5. V4.

Note C4 is cyclic of order 4 while V4 is the Klein 4-group.

As explicit permutation groups, one can write
D2·4 = 〈(1 2 3 4), (1 3)〉, C4 = 〈(1 2 3 4)〉, and
V4 = 〈(1 2)(3 4), (1 3)(2 4)〉, up to conjugacy.

By using the discriminant we can distinguish some possibilities.

If the discriminant is a square, the Galois group is a subgroup
of A4, and there are two such subgroups: A4 and V4.

If the discriminant is not a square, then the Galois group is
one of the others: S4, D2·4, and C4.



Quartic Polynomials, III

Here, unlike in the cubic case, the discriminant does not give
enough information to determine the Galois group.

To differentiate further between these possibilities, we may
study other functions of the roots that are not fixed by all the
elements in S4.

As first described by Lagrange, one method is to consider the
elements θ1 = (β1 + β2)(β3 + β4), θ2 = (β1 + β3)(β2 + β4),
and θ3 = (β1 + β4)(β2 + β3).

These elements are permuted by S4, and the stabilizer of each
individual element is a dihedral subgroup of S4: for example,
θ2 is stabilized by the dihedral subgroup 〈(1 2 3 4), (1 3)〉 we
wrote earlier, while the others are stabilized by appropriate
conjugate subgroups. The stabilizer of all three elements is
the Klein-four group V4.



Quartic Polynomials, IV

We have θ1 = (β1 + β2)(β3 + β4), θ2 = (β1 + β3)(β2 + β4), and
θ3 = (β1 + β4)(β2 + β3).

Since θ1, θ2, θ3 are permuted by S4, their elementary
symmetric functions are fixed by S4, and so the cubic
polynomial whose roots are θ1, θ2, θ3 is fixed by the entire
Galois group, so its coefficients lie in F .

We may then compute θ1 + θ2 + θ3 = 2s2,
θ1θ2 + θ1θ3 + θ2θ3 = s1s3 + s22 − 4s4, and
θ1θ2θ3 = s21 s2s3 − s21 s4 − s23 .

Since s1 = 0, this means that θ1, θ2, θ3 are the three roots of
the polynomial h(z) = z3 − 2pz2 + (p2 − 4r)z + q2.



Quartic Polynomials, V

The cubic h(z) = z3 − 2pz2 + (p2 − 4r)z + q2, is called the
resolvent cubic of g(y).

As we just noted, the roots of h(z) are
θ1 = (β1 + β2)(β3 + β4), θ2 = (β1 + β3)(β2 + β4), and
θ3 = (β1 + β4)(β2 + β3).

Very conveniently, the discriminant of this cubic is the same
as the discriminant of the quartic, since
(θ1 − θ2)2 = (β1 − β4)2(β2 − β3)2 and likewise for the other
two squared differences. (In particular, we see that the
elements θi are distinct as long as the βi are.)

If we can find the factorization of the resolvent cubic over F ,
then this will yield information about whether the elements θi
are in F , which in turn gives information about the possible
elements in the Galois group.



Quartic Polynomials, VI

Theorem (Galois Groups of Quartics)

Suppose F has characteristic not 2 or 3, and let f (y) = y4 + py2 + qy + r
be an irreducible separable quartic over F with associated resolvent cubic
g(z) = z3 − 2pz2 + (p2 − 4r)z + q2 and discriminant ∆ = ∆(f ) = ∆(g).
Then the Galois group of f is one of S4, A4, D2·4, C4, and V4:
1. The Galois group is V4 if and only if ∆ is a square in F and the

resolvent cubic splits completely over F .

2. The Galois group is A4 if and only if ∆ is a square in F and the
resolvent cubic has no roots in F .

3. The Galois group is S4 if and only if ∆ is not a square in F and the
resolvent cubic has no roots in F .

4. The Galois group is C4 if and only if ∆ is not a square in F , the
resolvent cubic has exactly one root r ′ in F , and the polynomials
x2 + r ′ and x2 + (r ′ − p)x + r both split over F (

√
∆).

5. The Galois group is D2·4 if and only if ∆ is not a square in F , the
resolvent cubic has exactly one root in F , and at least one of the
polynomials x2 + r ′ and x2 + (r ′ − p)x + r is irreducible in F (

√
∆).



Quartic Polynomials, VII

Some remarks:

The condition differentiating C4 and D2·4 is a result due to
Kappe and Warren from 1989. There is a more classical
condition (specifically, whether the quartic f (y) splits over
F (
√

∆)) that is harder to check that can also tell these
groups apart.

Implicit in our characterization is the fact that no other
scenarios (e.g., ∆ being a square and the resolvent cubic
having exactly one root in F ) can occur.

The most efficient way to compute the discriminant ∆ is to
use the formula for the discriminant of the cubic g(z).



Quartic Polynomials, VIII

Proof:

As we have shown above, if β1, β2, β3, β4 are the roots of
f (y), then the roots of the resolvent cubic g(z) are
θ1 = (β1 + β2)(β3 + β4), θ2 = (β1 + β3)(β2 + β4), and
θ3 = (β1 + β4)(β2 + β3), and that ∆(p) = ∆(g).

As we have also noted, up to conjugacy the only transitive
subgroups of S4 are S4, A4, D2·4, C4, and V4, so the Galois
group G must be one of these.

We will analyze the two cases where ∆ is a square first (these
are the cases of A4 and V4), and then treat the remaining
three cases where ∆ is not a square (these are the cases of S4,
D2·4 and C4).



Quartic Polynomials, IX

Proof (∆ square):

First suppose that ∆ is a square: then the Galois group is one
of A4 and V4.

If the resolvent cubic has all its roots in F , then all three of
the θi are in F , meaning that they are fixed by G . Since the
only elements of S4 fixing each of θ1, θ2, θ3 are the elements
of the Klein 4-group V4, this means G ⊆ V4, hence G = V4.

If the resolvent cubic does not have all its roots in F , then the
only possibility is to have G = A4. In this case, none of the θi
is fixed by all of G (since the stabilizer of any given θi is a
dihedral group of order 8), and so none of them lies in F .



Quartic Polynomials, X

Proof (∆ nonsquare):

Now suppose ∆ is not a square: then the Galois group is one
of S4, D2·4, and C4.

If the resolvent cubic has no roots in F and ∆(g) is not a
square, the Galois group of the resolvent cubic is S3: thus, the
degree [K : F ] is divisible by 6, meaning that |G | is divisible
by 6. The only possibility here is that G = S4.

It is not possible for the resolvent cubic to split completely
over F , since then the Galois group would stabilize each of the
θi hence be contained in V4.



Quartic Polynomials, XI

Proof (∆ nonsquare, more):

Thus, the only remaining case is that the resolvent cubic
factors over F as the product of a degree-1 and an irreducible
degree-2 polynomial (i.e., it has exactly one root in F ), and in
this case the Galois group is either D2·4 or C4.

To distinguish between D2·4 and C4, note F (
√

∆) is the fixed
field of G ∩ A4 by the fundamental theorem of Galois theory.

Now let r ′ be the root of g in F and assume that G contains
the 4-cycle (1 2 3 4), so that it is either C4 = 〈(1 2 3 4)〉 or
D2·4 = 〈(1 3), (1 2 3 4)〉: then r ′ = (β1 + β3)(β2 + β4) since
this is the only θi fixed by (1 2 3 4).



Quartic Polynomials, XII

Proof (∆ nonsquare, more more):

If the Galois group is C4 then the unique quadratic subfield of
K/F is F (

√
∆), and is also the fixed field of the subgroup

〈(1 3)(2 4)〉. Then the roots of the two polynomials
(x − (β1 + β3))(x − (β2 + β4)) = x2 + r ′ and
(x − β1β3)(x − β2β4) = x2 + (r ′ − p) + r are both fixed by
this subgroup, and hence lie in F (

√
∆). In other words, these

polynomials both split over F (
√

∆).

If the Galois group is D2·4 then F (β1) = F (β3) is the fixed
field of 〈(2 4)〉 and F (

√
∆) is the fixed field of

〈(1 2)(3 4), (1 3)(2 4)〉, since the given elements are fixed by
the indicated subgroups (the latter because it lies inside A4)
and the fields have the correct degrees.



Quartic Polynomials, XIII

Proof (∆ nonsquare, more more more):

Now consider the two polynomials
(x − (β1 + β3))(x − (β2 + β4)) and (x − β1β3)(x − β2β4): we
claim that at least one is irreducible over F (

√
∆).

Otherwise, both β1 + β3 and β1β3 would be elements of
F (
√

∆), and then F (
√

∆) would be a subfield of
F (β1) = F (β3). But this cannot occur because the fixing
subgroup of F (

√
∆), namely 〈(1 2)(3 4), (1 3)(2 4)〉, does not

contain the fixing subgroup of F (β1) = F (β3), namely 〈(2 4)〉.
Thus, if the Galois group is D2·4, at least one of the
polynomials x2 + r ′ and x2 + (r ′ − p) + r is irreducible in
F (
√

∆).

The converse conditions are immediate since all our cases are
disjoint. We have analyzed all of the cases, we are done.



Quartic Polynomials, XIV

So, to summarize, here is the algorithm for finding the Galois
group of a quartic polynomial p(t):

0. Check p is irreducible. Substitute y = t − a1/4 to convert
p(t) = t4 − a1t

3 + a2t
2 − a3t + a4 into

f (y) = y4 + py2 + qy + r .

1. Find the resolvent cubic g(z) = z3 − 2pz2 + (p2 − 4r)z + q2.

2. Factor g and compute discriminant ∆ = ∆(f ) = ∆(g).

3. If ∆ is a square and g splits completely, group is V4. If ∆ is a
square otherwise, group is A4. If g is irreducible, group is S4.

4. If g has a single root r ′, consider x2 + r ′ and
x2 + (r ′ − p)x + r . If both split over F (

√
∆), group is C4.

Otherwise, group is D2·4.



Quartic Polynomials, XV

Example: Find the Galois groups of each of the following quartic
polynomials:

1. f (y) = y4 − 2 over Q. [∆ = −2048.]

2. f (y) = y4 + 8y + 12 over Q. [∆ = 212 · 34.]

3. f (y) = y4 + 2y − 2 over Q. [∆ = −24 · 5 · 31.]

4. f (y) = y4 − 14y2 + 9 over Q. [∆ = 214 · 32 · 52.]

5. f (y) = y4 + 5y + 5 over Q. [∆ = 53 · 112.]

And also for your convenience: the resolvent cubic of
f (y) = y4 + py2 + qy + r is
g(z) = z3 − 2pz2 + (p2 − 4r)z + q2.

If g has a single root r ′, consider x2 + r ′ and
x2 + (r ′ − p)x + r over F (

√
∆).



Quartic Polynomials, XVI

Example: Find the Galois groups of each of the following quartic
polynomials:

1. f (y) = y4 − 2 over Q. [∆ = −2048.]

This polynomial is irreducible by Eisenstein.

Resolvent cubic is g(z) = z3 + 8z with ∆ = −4 · 83 = −2048.

Since the discriminant is not a square and the resolvent cubic
factors as g(z) = z(z2 + 8) we see that the Galois group is
either C4 or D2·4.

To determine which of these it is, we see that the root of g(z)
is r ′ = 0, so we must test the reducibility of x2 + r ′ = x2 and
x2 + (r ′ − p)x + r = x2 − 2 over Q(

√
−2048) = Q(

√
−2).

Although the first polynomial is reducible, the second is
irreducible over Q(

√
−2). Hence the Galois group is D2·4 (as

we have shown previously by computing the action explicitly
on the splitting field).



Quartic Polynomials, XVII

Example: Find the Galois groups of each of the following quartic
polynomials:

2. f (y) = y4 + 8y + 12 over Q. [∆ = 212 · 34.]

One may verify by direct calculation that f is irreducible (it
has no roots by the rational root test, and also does not factor
as the product of two integral quadratics).

Resolvent cubic is g(z) = z3 − 48z + 64, with
∆ = −4(−48)3 − 27(64)2 = 214 · 33 − 33 · 212 = 212 · 34.

The discriminant is a square, and the resolvent cubic has no
rational roots via the rational root test.

So we conclude that the Galois group is A4 .



Quartic Polynomials, XVIII

Example: Find the Galois groups of each of the following quartic
polynomials:

3. f (y) = y4 + 2y − 2 over Q. [∆ = −24 · 5 · 31.]

This polynomial is irreducible by Eisenstein, and its resolvent
cubic is g(z) = z3 + 8z + 4 with discriminant
∆ = −4 · 83 − 27 · 42 = −24 · 5 · 31.

Since the discriminant is not a square, and the resolvent cubic
has no rational roots (via the rational root test), by our

criterion we conclude that the Galois group is S4 .



Quartic Polynomials, XIX

Example: Find the Galois groups of each of the following quartic
polynomials:

4. f (y) = y4 − 14y2 + 9 over Q. [∆ = 214 · 32 · 52.]

One may verify by direct calculation that f is irreducible (it
has no roots by the rational root test, and also does not factor
as the product of two integral quadratics).

Resolvent cubic is g(z) = z3 + 28z2 + 160z = z(z + 8)(z + 2),
with discriminant ∆ = 214 · 32 · 52.

Since the discriminant is a square, and the resolvent cubic
splits completely over Q, by our criterion we conclude that the
Galois group is V4 .

In this case, we may compute the roots explicitly using the
quadratic formula to solve for y2 and then simplify the square
root: the roots are ±

√
2±
√

5.



Quartic Polynomials, XX

Example: Find the Galois groups of each of the following quartic
polynomials:

5. f (y) = y4 + 5y + 5 over Q. [∆ = 53 · 112.]

This polynomial is irreducible by Eisenstein. Resolvent cubic is
g(z) = z3 − 20z + 25 = (z + 5)(z2 − 20z + 25) with
discriminant ∆ = −4 · (−20)3 − 27 · 252 = 53 · 112.

Since the discriminant is not a square, and the resolvent cubic
has a root, the Galois group is either C4 or D2·4.

To determine which of these it is, we see that the root of g(z)
is r ′ = −5, so we must test the reducibility of
x2 + r ′ = x2 − 5 and x2 + (r ′ − p)x + r = x2 − 10x + 5 over
Q(
√

53 · 112) = Q(
√

5).

These quadratics both factor over Q(
√

5) since their roots are

±
√

5 and 5± 2
√

5. Hence the Galois group is C4 .



Quartic Polynomials, XXI

By exploiting the resolvent cubic, we can extend Cardano’s
formulas to solve the general quartic as well.

Explicitly, by Cardano’s formulas, we may compute the
solutions θ1, θ2, θ3 of the resolvent cubic.

To find the roots β1, β2, β3, β4 of the original quartic, we must
then solve the system θ1 = (β1 + β2)(β3 + β4),
θ2 = (β1 + β3)(β2 + β4), and θ3 = (β1 + β4)(β2 + β3).

However, since β1 + β2 + β3 + β4 = 0, we see that
θ1 = −(β1 + β2)2, θ2 = −(β1 + β3)2, and θ3 = −(β2 + β3)2.

Taking the square roots then yields β1 + β2 = ±
√
−θ1,

β1 + β3 = ±
√
−θ2, and β2 + β3 = ±

√
−θ3.

The square roots are not independent, however, since we also
have (β1 + β2)(β1 + β3)(β2 + β3) = −q, so the choice of any
two determines the third. We can compute β1, β2, β3 from the
equations above, and then β4 = −β1 − β2 − β3.



Quartic Polynomials, XXII

In practice, the solutions obtained by this technique are sufficiently
complicated that they are not especially useful (other than as a
demonstration of the existence of a general formula for the roots).

For example, for the quartic g(y) = y4 + 2y − 2 with
resolvent cubic h(z) = z3 + 8z + 4, Cardano’s formulas yield

A = 3

√
−2 +

√
620
27 and B = 3

√
−2−

√
620
27 , with both cube

roots real for concreteness.

Then the three roots of g are A + B, ζ3A + ζ23B, and
ζ23A + ζ3B, so we obtain an explicit root of f as

1
2

√
3

√
−2 +

√
620
27

+ 3

√
−2−

√
620
27

+ 1
2

√
ζ3

3

√
−2 +

√
620
27

+ ζ23
3

√
−2−

√
620
27

− 1
2

√
ζ23

3

√
−2 +

√
620
27

+ ζ3
3

√
−2−

√
620
27
≈ 0.34845− 1.24753i ,

which one may confirm with a numerical root-finder.



Computing Galois Groups over Q, I

We would like to extend our work on the Galois groups of cubic
and quartic polynomials to higher degree.

Unfortunately, there is a substantial computational
obstruction to doing this, namely that we require a description
of the transitive subgroups of Sn in order to analyze the
possible Galois groups of an irreducible polynomial.

When n is large or has many prime factors, there are very
many transitive subgroups of Sn (since, for example, any
subgroup containing an n-cycle is automatically transitive)
and there is no obvious method for cataloguing them.



Computing Galois Groups over Q, II

Let’s assume we do have a list of the transitive subgroups of Sn.

Then, assuming we have verified that a polynomial
f (t) ∈ F [t] is irreducible, the Galois group of f must be one
of the groups on our list.

If we can somehow glean enough information about the
permutations in this subgroup, in principle we should be able
to determine the Galois group exactly.

If F is a subfield of R, one simple way we can obtain information is
by looking at the action of complex conjugation on the roots of f .

Since the roots of f necessarily come in complex conjugate
pairs, complex conjugation will act as a product of k 2-cycles,
where k is the number of conjugate pairs of roots.

In some cases this is enough to show that the Galois group
must actually be Sn.



Computing Galois Groups over Q, III

But let’s assume that we do have a list of all of the transitive
subgroups of Sn. Generating such a list is a finite calculation for
any fixed n and it only has to be done once.

Then, assuming we have verified that a polynomial
f (t) ∈ F [t] is irreducible, the Galois group of f must be one
of the groups on our list.

If we can somehow glean enough information about the
permutations in this subgroup, in principle we should be able
to determine the Galois group exactly.



Computing Galois Groups over Q, IV

Example: Show f (t) = t5 − 4t + 2 has three real roots and two
complex-conjugate roots over Q.

Since f (−2) = −14, f (0) = 2, f (1) = −1, and f (2) = 18, f
has at least 3 real roots by the intermediate value theorem.

On the other hand, since f ′(t) = 5t4 − 4, we see that there
are two values at which f ′(t) = 0 (namely t = ± 4

√
4/5) and

therefore by Rolle’s theorem f can have at most 3 real roots.

Alternatively, we could use Descartes’ rule of signs to see that
f has at most 3 real roots.

Hence f has exactly 3 real roots, and thus also has 2
complex-conjugate roots.



Computing Galois Groups over Q, V

Example: Show f (t) = t5 − 4t + 2 has Galois group S5 over Q.

Since f has two complex-conjugate roots, complex conjugation
is an element of the Galois group that acts as a transposition.

Furthermore, since f is irreducible by Eisenstein’s criterion,
any root generates an extension of degree 5 over Q.

Thus by the fundamental theorem of Galois theory, the Galois
group must have order divisible by 5, so by Cauchy’s theorem,
it must contain an element of order 5. But the only elements
of order 5 in S5 are 5-cycles, so G contains a 5-cycle.

By relabeling we may assume the transposition is (1 2), and
then by taking an appropriate power of the 5-cycle we may
assume that 2 follows 1 in its cycle decomposition, and then
by relabeling we may assume it is (1 2 3 4 5).

As you showed on the midterm, (1 2) and (1 2 3 4 5) generate
S5, and so we must have G = S5.



Computing Galois Groups over Q, VI

We may obtain additional information about the cycle structures of
elements in the Galois group by appealing to the following theorem
from algebraic number theory:

Theorem (Dedekind-Frobenius)

If f (t) ∈ Z[t] is irreducible with Galois group G over Q, then for
any prime p not dividing the discriminant ∆(f ), if the mod-p
reduction of f (t) factors over Fp as a product of terms having
degrees k1, k2, . . . , kd , then G contains a permutation having a
cycle decomposition of lengths k1, k2, . . . , kd .

There is a more general result about factorizations of ideals in
Dedekind domains (which was, in fact, Dedekind’s primary
motivation for defining the general notion of an ideal of a ring)
that contains this fact as a special case.



Computing Galois Groups over Q, VII

Using the Dedekind-Frobenius theorem, we may therefore
determine cycle types for elements of the Galois group by factoring
f (t) modulo p for many primes p.

Furthermore, it follows from another theorem of algebraic
number theory (the Chebotarev density theorem) that the
asymptotic proportion of primes for which f (t) factors into
terms of degrees k1, k2, . . . , kd is proportional to the number
of permutations in G with cycle type k1, k2, . . . , kd .

By computing the factorization of f (t) modulo p for a
reasonably large number of primes p and tallying the results,
one may therefore identify an optimal candidate for the Galois
group by comparing the proportions of cycle types observed to
the proportion of cycle types in the possible transitive
subgroups of Sn.



Computing Galois Groups over Q, VIII

We will now list the transitive subgroups of Sn for some smaller
values of n (along with the distribution of cycle types):

There is a standard labeling of the transitive subgroups of Sn
due to Conway, Hulpke, and McKay, which we include with
the tables.

We also remark that many subgroups have (isomorphic)
conjugates inside Sn, and the list of generators is only one
possibility among many.



Computing Galois Groups over Q, IX

In degree 5, there are 5 transitive subgroups of S5, with generators
and cycle types as follows:

# Name Generators 1 2 2,2 3 2,3 4 5

5T1 5 C5 (1 2 3 4 5) 1 4

5T2 10 D2·5 (1 2 3 4 5), (1 5)(2 4) 1 5 4

5T3 20 F20 (1 2 3 4 5), (1 2 4 3) 1 5 10 4

5T4 60 A5 (1 2 3), (3 4 5) 1 15 20 24

5T5 120 S5 (1 2 3 4 5), (1 2) 1 10 15 20 20 30 24



Computing Galois Groups over Q, X

In degree 6, there are 16 transitive subgroups of S6:
# Name 1 2 2,2 2,3 2,4 2,2,2 3 3,3 4 5 6

6T1 6 C6 1 1 2 2
6T2 6 S3 1 3 2
6T3 12 S3 × C2 1 3 4 2 2
6T4 12 A4 1 3 8
6T5 18 F18 1 3 4 4 6
6T6 24 A4 × C2 1 3 3 1 8 8
6T7 24 S4 (a) 1 9 6 8
6T8 24 S4 (b) 1 3 6 8 6
6T9 36 S3 × S3 1 9 6 4 4 12
6T10 36 F36 1 9 18 4 4
6T11 48 S4 × C2 1 3 9 6 7 8 6 8
6T12 60 A5 1 15 20 24
6T13 72 F36 o C2 1 6 9 12 18 6 4 4 12
6T14 120 S5 1 15 10 20 30 24 20
6T15 360 A6 1 45 90 40 40 144
6T16 720 S6 1 15 45 120 90 15 40 40 90 144 120



Computing Galois Groups over Q, XI

For degree 7, there are 7 transitive subgroups of S7 (for any cycle
type not listed, S7 is the only transitive subgroup containing it):

# Name 1 2,2 2,4 2,2,2 2,2,3 3 3,3 5 6 7
7T1 7 C7 1 6
7T2 14 D2·7 1 7 6
7T3 21 F21 1 14 6
7T4 42 F42 1 7 14 14 6
7T5 168 PSL2(F7) 1 21 42 56 48
7T6 2520 A7 1 105 630 210 70 280 504 720
7T7 5040 S7 1 105 630 105 210 70 280 504 840 720

You have encountered the group F42 on one of your homework
assignments.



Computing Galois Groups over Q, XII

For degree 8, there are 50 transitive subgroups of S8.

We will not list these, although we will mention that there are
two subgroups of order 96 (specifically, groups 8T32 and
8T33) that have the same collection of cycle types appearing
with the same frequencies.

Here are the numbers of transitive subgroups of Sn for the
values of n up through 21 (taken from John Jones’ database
of transitive groups at https://hobbes.la.asu.edu/Groups/ ):

n 9 10 11 12 13 14 15 16 17 18 19 20 21

# Groups 34 45 8 301 9 63 104 1954 10 983 8 1117 164



Computing Galois Groups over Q, XIII

We can use these tables to compute probable Galois groups for
irreducible polynomials of degree ≤ 7.

What we do is compute the factorization of the polynomial
modulo primes not dividing its discriminant and listing the
corresponding cycles that must appear in its Galois group.

We can also check whether the discriminant is a square, which
will tell us whether G is a subgroup of An.

In most cases, the result will not provably establish the Galois
group (except generally for An and Sn).

But, once we have identified a candidate for the Galois group,
we can construct resolvent polynomials (similar to the
resolvent cubic we used for the quartic) and then use
information about their roots and factorizations to eliminate
all of the other possible Galois groups.



Computing Galois Groups over Q, XIV

For example, to establish that a particular polynomial of degree 5
has Galois group D2·5 = 〈(1 2 3 4 5), (1 5)(2 4)〉 requires eliminating
the possibility that the Galois group is A5 = 〈(1 2 3), (3 4 5)〉.

One way to do this is to compute the resolvent polynomial
whose roots are the S5-permutations of
β1β2 + β2β3 + β3β4 + β4β5 + β5β1, which in this case has
degree 12 (there are 11 other possible results of permuting the
indices, like β1β3 + β2β4 + β3β5 + β4β1 + β5β2). This will
differentiate between D2·5 and A5 since D2·5 fixes several of
these elements (so the resolvent polynomial will have a
rational root) but A5 does not.

Notice that, unlike the case of the resolvent cubic for the
quartic, the resolvent polynomial for D2·5 has degree 12,
which much larger than the degree of the original quintic
polynomial. (This is a typical phenomenon when n ≥ 5.)



Computing Galois Groups over Q, XV

Example: Determine the probable Galois group of
f (t) = t5 − t2 − 2t − 3, with discriminant ∆ = 172 · 292.

Computing the factorization of f (t) modulo p for the 100
smallest primes excluding 17 and 29 yields the following cycles:

Factorization Type 1 2 2,2 3 2,3 4 5

# Appearances 1 20 30 49

The only transitive subgroup contained in A5 having these
cycle types is A5 itself, so in fact we have proven that the
Galois group of this polynomial is A5.

Note that the distribution of the factorization types matches
fairly closely with the distribution of cycle types in A5, as
should be expected.



Computing Galois Groups over Q, XVI

Example: Determine the probable Galois group of
f (t) = t5 − 5t2 − 3 of discriminant ∆ = 32 · 56.

The Galois group is a subgroup of A5.
Computing the factorization of f (t) modulo p for the 100
smallest primes excluding 3 and 5 yields the following cycles:

Factorization Type 1 2 2,2 3 2,3 4 5

# Appearances 8 54 38

The only transitive subgroups contained in A5 having these
cycle types are D2·5 and A5.
Since D2·5 has no 3-cycles (in contrast to A5, 1/3 of whose
elements are 3-cycles) we would expect no factorizations to
have a 3-cycle if the Galois group were D2·5, but about 1/3 of
them if the Galois group were A5.
Since no 3-cycles appear in the computed factorizations, it
seems overwhelmingly likely that the Galois group is D2·5.



Computing Galois Groups over Q, XVII

Example: Determine the probable Galois group of
f (t) = t6 − t5 − t2 + t + 1, of discriminant ∆ = −33 · 433.

The Galois group is not a subgroup of A6.

Computing the factorization of f (t) modulo p for the 100
smallest primes excluding 3 and 433 yields the following cycles:

Type 1 2 2,2 2,3 2,4 2,2,2 3 3,3 4 5 6

# 1 4 14 17 29 6 8 3 18

There are only two transitive subgroups that contain cycles of
each of these types: the subgroup 6T13 of order 72 and the
subgroup 6T16 (which is S6).

Since 6T16 has no 4-cycles or 5-cycles (in contrast to S6,
roughly 1/3 of whose elements are 4-cycles or 5-cycles), and
no 4-cycles or 5-cycles appear in the computed factorizations,
it seems overwhelmingly likely that the Galois group is 6T13.



Computing Galois Groups over Q, XVIII

Example: Determine the probable Galois group of
f (t) = t7 − 7t + 3, of discriminant ∆ = 38 · 78.

The Galois group is a subgroup of A7.

Computing the factorization of f (t) modulo p for the 100
smallest primes excluding 3 and 7 yields the following cycles:

Type 1 2,2 2,4 2,2,2 2,2,3 3 3,3 5 6 7

# 15 32 32 21

There are only two transitive subgroups contained in A7 that
contain cycles of each of these types: PSL2(F7) and A7.

As above, since the observed factorization types match the
cycles of PSL2(F7) very closely (in contrast to A7, which also
has 3-cycles, 2,2,3-cycles, and 5-cycles), the probable Galois
group is PSL2(F7).



Summary

We analyzed the Galois groups of quartic polynomials and
described how to find their roots.

We discussed some methods for computing Galois groups of
polynomials of degrees 5 through 7 over Q.

Next lecture: Solvability in radicals, Abel’s theorem on the
insolvability of the quintic.


