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Cyclotomic and Abelian Extensions, 0

Last time, we defined the general cyclotomic polynomials and
showed they were irreducible:

Theorem (Irreducibility of Cyclotomic Polynomials)

For any positive integer n, the cyclotomic polynomial Φn(x) is
irreducible over Q, and therefore [Q(ζn) : Q] = ϕ(n).

We also computed the Galois group:

Theorem (Galois Group of Q(ζn))

The extension Q(ζn)/Q is Galois with Galois group isomorphic to
(Z/nZ)×. Explicitly, the elements of the Galois group are the
automorphisms σa for a ∈ (Z/nZ)× acting via σa(ζn) = ζan .



Cyclotomic and Abelian Extensions, I

By using the structure of the Galois group we can in principle
compute all of the subfields of Q(ζn).

In practice, however, this tends to be computationally difficult
when the subgroup structure of (Z/nZ)× is complicated.

The simplest case occurs when n = p is prime, in which case
(as we have shown already) the Galois group G ∼= (Z/pZ)× is
cyclic of order p − 1.

In this case, let σ be a generator of the Galois group, with
σ(ζp) = ζap where a is a generator of (Z/pZ)×.

Then by the Galois correspondence, the subfields of Q(ζp) are
the fixed fields of σd for the divisors d of p − 1.



Cyclotomic and Abelian Extensions, II

We may compute an explicit generator for each of these fixed fields
by exploiting the action of the Galois group on the basis
{ζp, ζ2p , . . . , ζ

p−1
p } for Q(ζp)/Q.

This set is obtained from the standard basis {1, ζp, . . . , ζp−2p }
using the relation ζp−1p + ζp−2p + · · ·+ ζp + 1 = 0 from the
minimal polynomial of ζp.

Since all of these basis elements are Galois conjugates, the
action of any element of the Galois group permutes them.
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For any subgroup H of G , define the element αH =
∑

σ∈H σ(ζp).

We claim that αH is a generator for the fixed field of H.

To see this, observe first that if τ ∈ H, then τ(αH) = αH

because τ merely permutes the elements σ(ζp) for σ ∈ H.

Conversely, because the elements σ(ζp) for σ ∈ G form a
basis, if τ ∈ G has τ(αH) = αH then τ(ζp) must equal σ(ζp)
for some σ ∈ H. But then τσ−1 acts as the identity on ζp and
hence on all of Q(ζp), so it must be the identity element:
thus, τ = σ ∈ H.

We conclude that the automorphisms fixing αH are precisely
the elements of H, and so Q(αH) is the fixed field of H.
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Example: Find generators for each of the subfields of Q(ζ7).

We know that G = Gal(Q(ζ7)/Q) is isomorphic to (Z/7Z)×.
By trial and error we can see that 3 has order 6 in (Z/7Z)×,
so it is a generator. The corresponding automorphism
generating G is the map σ with σ(ζ7) = ζ37 .

The subgroups of G are then 〈σ〉 = {e, σ, σ2, σ3, σ4, σ5},〈
σ2
〉

= {e, σ2, σ4},
〈
σ3
〉

= {e, σ3}, and
〈
σ6
〉

= {e}.
A generator of the fixed field of 〈σ〉 is given by
ζ7 + σ(ζ7) + σ2(ζ7) + σ3(ζ7) + σ4(ζ7) + σ5(ζ7) =
ζ7 + ζ37 + ζ27 + ζ67 + ζ47 + ζ57 .

Similarly, the fixed field of
〈
σ2
〉

is generated by
ζ7 + σ2(ζ7) + σ4(ζ7) = ζ7 + ζ27 + ζ47 , while the fixed field of〈
σ3
〉

is generated by ζ7 + σ3(ζ7) = ζ7 + ζ67 .
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Example: Find generators for each of the subfields of Q(ζ7).

We can also use the Galois action to compute the minimal
polynomials of each of these elements, since we may compute
all of these elements’ Galois conjugates.

For example, the element ζ7 + ζ27 + ζ47 has one other Galois
conjugate inside Q(ζ7), namely ζ37 + ζ57 + ζ67 .

Then their common minimal polynomial is
m(x) = [x − (ζ7 + ζ27 + ζ47 )] · [x − (ζ37 + ζ57 + ζ67 )] = x2 + x + 2,
as follows from multiplying out and simplifying the
coefficients.

Solving the quadratic yields an explicit formula

ζ7 + ζ27 + ζ47 = −1−
√
−7

2 , and thus the corresponding fixed
field Q(ζ7 + ζ27 + ζ47 ) = Q(

√
−7).
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Example: Find generators for each of the subfields of Q(ζ7).

Similarly, the element ζ7 + ζ67 = 2 cos(2π/7) has two other
Galois conjugates, namely ζ27 + ζ57 = 2 cos(4π/7) and
ζ37 + ζ47 = 2 cos(6π/7).

Their common minimal polynomial is
m(x) = [x − (ζ7 + ζ67 )] · [x − (ζ27 + ζ57 )][x − (ζ37 + ζ47 )] =
x3 + x2 − 2x − 1.

Our analysis indicates that the splitting field of this
polynomial is Q(ζ7 + ζ67 ) = Q(ζ27 + ζ57 ) = Q(ζ37 + ζ47 ), that it
has degree 3 over Q, and that its Galois group is cyclic of
order 3. is cyclic of order 3.
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For other n, we can perform similar computations, although there
is not usually as convenient a basis available.

In general, the primitive nth roots of unity form a basis for
Q(ζn) precisely when n is squarefree.

When n is prime, the main computational requirement is
finding a generator of (Z/pZ)×.

For other n, we can simplify some of these computations by
writing Q(ζn) as a composite of smaller cyclotomic fields.



Cyclotomic and Abelian Extensions, VIII

We can essentially reduce most computations down to working in
the individual prime-power cyclotomic fields:

Proposition (Composites of Cyclotomic Extensions)

If a and b are relatively prime integers, then the composite of
Q(ζa) and Q(ζb) is Q(ζab), the intersection is Q, and
Gal(Q(ζab)/Q) ∼= Gal(Q(ζa)/Q)×Gal(Q(ζb)/Q).

In particular, if the prime factorization of n is n = pa1
1 pa2

2 · · · p
ak
k ,

then Q(ζn) is the composite of the fields Q(ζpaii
) for 1 ≤ i ≤ k,

and Gal(Q(ζn)/Q) ∼= Gal(Q(ζpa11
)/Q)× · · · ×Gal(Q(ζpakk

)/Q).

More generally, for any a and b, the composite of Q(ζa) and Q(ζb)
is Q(ζlcm(a,b)) and the intersection is Q(ζgcd(a,b)).
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Proof:

Observe that ζbab = ζa and ζaab = ζb, so both ζa and ζb are in
Q(ζab): thus, the composite field is contained in Q(ζab).

Also, since a and b are relatively prime, there exist integers s
and t with sa + tb = 1. Then ζsb · ζta = ζas+bt

ab = ζab, and so
ζab is contained in the composite field of Q(ζa) and Q(ζb).

Hence the composite field is Q(ζab). Also since
[Q(ζab) : Q] = ϕ(ab) = ϕ(a)ϕ(b) = [Q(ζa) : Q] · [Q(ζb) : Q],
by the formula for the degree of a composite extension we
must have [Q(ζa) ∩Q(ζb) : Q] = 1 so Q(ζa) ∩Q(ζb) = Q.

The statement about the Galois group of Q(ζab)/Q follows
immediately from our result on the Galois group of a
composite of Galois extensions.

The second statement then follows by a trivial induction by
breaking n into the individual prime power factors.
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By using this decomposition of Gal(Q(ζn)/Q), we can show that
every abelian group appears as a Galois group over Q:

Theorem (Abelian Galois Groups over Q)

If G is an abelian group, then there exists an extension K/Q with
Galois group isomorphic to G .

For general finite groups G , it is still an open problem whether G is
the Galois group of some extension K/Q.

The problem of computing which groups occur as Galois
groups over Q, or more generally over an arbitrary field F , is
known as the inverse Galois problem.



Cyclotomic and Abelian Extensions, XI

Proof:

By the classification of finite abelian groups, G is isomorphic
to a direct product of cyclic groups, say as
G ∼= (Z/m1Z)× · · · × (Z/mkZ).

By a theorem of Dirichlet, for any positive integer m there
exist infinitely many primes congruent to 1 modulo m. In
particular, we may choose distinct primes pi such that pi ≡ 1
mod mi for each i .

Then since mi divides |Gal(Q(ζpi )/Q| = pi − 1 and
Gal(Q(ζpi )/Q is cyclic, there exists a subgroup of index mi .
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Proof (continued):

If Ki represents the corresponding fixed field, then Ki/Q is
Galois (since Gal(Q(ζpi )/Q is abelian, so every subgroup is
normal) and by the fundamental theorem of Galois theory we
see that its Galois group is cyclic of order mi .

By our results on cyclotomic fields, since the pi are distinct
primes, the intersection of any two of the fields Q(ζpi ) is Q,
so the same holds for the fields Ki .

Hence by our results on Galois groups of composites, we see
that the Galois group of K = K1K2 · · ·Kk over Q is
isomorphic to Gal(K1/Q)×Gal(K2/Q)× · · · ×Gal(Kk/Q) ∼=
(Z/m1Z)× · · · × (Z/mkZ) ∼= G , as desired.
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Perhaps surprisingly, the converse of this theorem is also true
(although much harder to prove):

Theorem (Kronecker-Weber)

If K/Q is a Galois extension with abelian Galois group, then K is
contained in a cyclotomic extension of Q.

This theorem was originally stated and mostly proven by
Kronecker in the 1850s (his argument contained gaps in the
case where the Galois group had order a power of 2), and
Weber gave another proof in the 1880s (which also contained
some gaps).
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In general, if Gal(K/F ) is abelian, we say that K/F is an abelian
extension.

Since abelian groups are (in a sense) the least complicated
finite groups, abelian extensions tend to be particularly
well-behaved: for example, all of their intermediate fields are
Galois.

The problem of understanding the structure of all abelian
extensions of other finite-degree extensions of Q falls under
the branch of number theory known as class field theory,
which generalizes and combines many threads from classical
number theory, and has in turn been generalized and extended
in other ways.



Cyclotomic and Abelian Extensions, XV

As a final remark, we note that it is also possible to apply most of
these results to study the roots of unity over an arbitrary field F .

Since the polynomials Φn(x) are monic and have integer
coefficients, the primitive nth roots of unity will still be the
roots of Φn(x), although Φn(x) may no longer be irreducible
or separable over F .

Indeed, xn − 1 (and, essentially equivalently, Φn(x)) is
separable over F if and only if char(F ) does not divide n.

In general, if ζn is any primitive nth root of unity, then
F (ζn)/F is the splitting field of Φn(x) and if Φn(x) is
separable, it will be Galois with cyclic Galois group.

The inseparable case is also easy: if p = char(F ) does divide
n, there is only one p-power root of unity over F (namely, 1).



Constructible Numbers, I

Using the fundamental theorem of Galois theory, we can also give
another characterization of constructible numbers, which will serve
as a prototype for our work next week on solvability in radicals:

Theorem (Constructible Numbers)

The number α ∈ C is constructible over Q if and only if the Galois
group of the splitting field of its minimal polynomial over Q has
order a power of 2.

To prove this result we will require a lemma, which I had intended
to put in the group theory chapter but forgot:

Lemma

If G is a finite p-group, then there exists a chain of subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gn = {e} such that [Gi : Gi+1] has order p
for each i .
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Proof (of lemma):

We induct on n. The base case n = 1 is trivial, since we have
the obvious chain G = G0 ≥ G1 = {e}.
For the inductive step, recall that p-groups have nontrivial
centers. By taking an appropriate power we may assume
z ∈ Z (G ) has order p: then the subgroup 〈z〉 has order p and
is normal in G (since it is contained in the center).

The quotient group G = G/ 〈z〉 therefore has order pn−1 so
by the inductive hypothesis it has a chain of subgroups
G ≥ G1 ≥ · · · ≥ Gn−1 = {e} where [Gi : Gi+1] = p for each i .

By the fourth isomorphism theorem, we may lift each of the
Gi to a subgroup Gi of G containing 〈z〉 with
Gi/Gi+1

∼= Gi/Gi+1. We then have a chain of subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gn−1 = 〈z〉 ≥ Gn = {e} with
[Gi : Gi+1] = p for each i , as required.



Constructible Numbers, III

Proof (of theorem):

Suppose the minimal polynomial α over Q is m(x). Let m(x)
have splitting field K/Q and suppose Gal(K/Q) = G .

If α is constructible, we have a tower of quadratic extensions
Q = K0 ⊆ K1 ⊆ · · · ⊆ Kd with [Ki+1 : Ki ] = 2 and α ∈ Kd .

If L is any Galois extension of Q containing Kd , then KL/Q is
also Galois. For any σ ∈ Gal(KL/Q), we have a tower of
quadratic extensions Q = σ(K0) ⊆ σ(K1) ⊆ · · · ⊆ σ(Kd) with
[σ(Ki+1) : σ(Ki )] = 2 and σ(α) ∈ Kd .

Thus, all Galois conjugates of α over Q are constructible. It is
then an easy induction to see that if α1, . . . , αn are the roots
of m(x), then [Q(α1, . . . , αk) : Q(α1, . . . , αk−1)] is a power of
2 for each k , and hence |G | = [K : Q] = [Q(α1, . . . , αn) : Q]
is also a power of 2, as claimed.



Constructible Numbers, IV

Proof (of theorem) (continued) (parentheses):

For the converse, suppose the Galois group G has |G | = 2n.

By the lemma with p = 2, we have a chain of subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gn = {e} such that [Gi : Gi+1] has
order 2 for each i .

Now apply the fundamental theorem of Galois theory to this
chain of subgroups: we obtain a chain of subfields
Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K with [Ki+1 : Ki ] = 2 for each i .
Since α ∈ K , this shows α lies in a tower of quadratic
extensions and is therefore constructible, as claimed.



Constructible Numbers, V

As an immediate application we can characterize the constructible
regular n-gons:

Corollary (Constructible n-gons)

The regular n-gon is constructible by straightedge and compass if
and only if ϕ(n) is a power of 2, if and only if n is a power of 2

times a product of distinct primes of the form 22
k

+ 1 for some
integer k.

You essentially proved one direction of this result on the midterm.

The general statement is a quite famous theorem of Gauss,
who proved the constructibility of the 17-gon (k = 2) in 1796,
when he was 19.

He then established the general result above five years later,
although he never gave an explicit proof of necessity (which
was done 35 years later by Wantzel).



Constructible Numbers, VI

Proof:

As we showed, the regular n-gon is constructible if and only if
cos(2π/n) = ζn + ζ−1n is constructible, and since
[Q(ζn) : Q(ζn + ζ−1n )] = 2, we see cos(2π/n) is constructible
if and only if ζn is constructible.

Then since Q(ζn)/Q is a Galois extension with Galois group
(Z/nZ)× of order ϕ(n), the previous result implies ζn is
constructible precisely when ϕ(n) is a power of 2.

For the rest, consider the prime factorization n = pa1
1 · · · p

ak
k :

since ϕ(n) = ϕ(pa1
1 ) · · ·ϕ(pak

k ) we see ϕ(pai
i ) = pai−1

i (pi − 1)
must be a power of 2, which requires either pi = 2 or ai = 1
and pi − 1 to be a power of 2.

If p = 2k + 1, then if k has an odd prime factor d then 2k + 1
is divisible by 2d + 1 and is therefore not prime. So the only
primes of this form are 22

k
+ 1 for some integer k , as claimed.



Constructible Numbers, VII

The primes of the form pn = 22
n

+ 1 are called Fermat primes.

Fermat conjectured that all of these numbers were prime
based on the fact that p0 = 3, p1 = 5, p2 = 17, p3 = 257,
and p4 = 65537 are prime.

However, p5 was shown to be composite by Euler.

Euler’s observation was that any prime divisor of 22
n

+ 1 must
be congruent to 1 modulo 2n+1, so this narrows the search for
divisors of p5 = 232 + 1 quite considerably.

The numbers p6 through p32 have subsequently been proven
composite, and it is now unknown whether there are any other
Fermat primes at all!



Galois Groups of Polynomials, I

If K/F is a Galois extension and we have an explicit description of
the action of Gal(K/F ) on the elements of K , we have described
in detail how to use the fundamental theorem of Galois theory to
compute intermediate fields and minimal polynomials of elements.

However, all of this discussion presupposes our ability to
compute the Galois group and its action on K .

If K is described only as the splitting field of a polynomial
p(x) ∈ F [x ], it is not generally obvious how to determine the
Galois group nor even how to compute the degree K/F .

Our next goal is to describe methods for computing Galois
groups of general polynomials (recall that the Galois group of
p(x) over F is simply the Galois group of the splitting field).

This can become quite difficult when the degree is large, so
we focus primarily on low-degree polynomials.
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As we have previously noted, if p(x) ∈ F [x ] is a separable
polynomial of degree n with splitting field K , any σ ∈ Gal(K/F ) is
completely determined by its permutation of the roots of p.

If we fix an ordering of the roots, we get an injective
homomorphism from Gal(K/F ) into the symmetric group Sn.

We may then view the Galois group interchangeably with its
image in Sn.

In general, if we pick a different ordering of the roots, we will
obtain a different homomorphism from Gal(K/F ) into Sn.

However, the resulting subgroups will be the same up to
relabeling the elements of the underlying set.

Per our understanding of conjugacy in Sn as acting via
relabeling, this is just saying that the image of G in Sn is
determined up to conjugacy inside Sn.
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Example: Suppose p(x) = (x2 − 2)(x2 − 3)(x2 − 6) over Q.

Then the splitting field of p is K = Q(
√

2,
√

3) with Galois
group generated by the automorphisms σ and τ with
σ(
√

2,
√

3) = (−
√

2,
√

3) and τ(
√

2,
√

3) = (
√

2,−
√

3).

If we label the six roots {
√

2,−
√

2,
√

3,−
√

3,
√

6,−
√

6} as
{1, 2, 3, 4, 5, 6}, then σ corresponds to the permutation
(1 2)(5 6), τ corresponds to the permutation (3 4)(5 6), and
στ corresponds to the permutation (1 2)(3 4).

We can compute the other elements in the Galois group in the
same way.

If we pick a different labeling, then the effect will be to give a
conjugate subgroup of this one.
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We also observe that automorphisms must act as permutations on
the roots of the irreducible factors of p(x).

Thus, we may study the action of each element of Gal(K/F )
on the roots of each irreducible factor of p(x) separately.

If q(x) is an irreducible factor of p(x) of degree m, then as we
have shown, the roots of q(x) are all Galois conjugates of one
another.

Thus, the Galois group permutes the roots of q(x)
transitively, meaning that for any roots α, β of q(x), there is
some σ ∈ Gal(K/F ) with σ(α) = β.

In particular, if p(x) is itself irreducible, then Gal(K/F ) must
be a transitive subgroup of Sn. This information reduces
(rather substantially) the number of possibilities for what
Gal(K/F ) can be inside Sn.
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What we will now do is study these possible transitive subgroups of
Sn, and identify properties of polynomials that allow us to
determine what their Galois group structure is.

We will start by analyzing the Galois group of a “generic”
polynomial (i.e., whose coefficients are elements of a function
field, rather than specific numbers).

Then we will discuss some related properties of symmetric
functions and discriminants of polynomials.

We will then treat in detail the cases of cubic and quartic
polynomials, and then give an overview of some results in
moderately larger degrees (5, 6, 7, 8) and how to compute
Galois groups over Q in those cases.

Finally, we will classify polynomials that are solvable in
radicals based on the structure of their Galois groups.
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So, consider a “generic” monic polynomial
p(t) = tn + an−1tn−1 + · · ·+ a0.

If its roots are x1, x2, . . . , xn, then we have the obvious
factorization p(t) = (t − x1)(t − x2) · · · (t − xn).

Expanding out and comparing coefficients shows that
an−1 = −(x1 + x2 + · · ·+ xn),
an−2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn,
...
and a0 = (−1)nx1x2 · · · xn.

These formulas for the coefficients of the polynomial in terms
of its roots are often called Vieta’s formulas (or if you prefer
his actual name in French, Viète’s formulas).
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The functions of the xi appearing in the coefficients are symmetric
functions in the roots:

Definition

If x1, . . . , xn are fixed indeterminates, then for 1 ≤ k ≤ n, the kth
elementary symmetric function sk in x1, . . . , xn is given by the sum
of all products of the xi taken k at a time. Explicitly, we have

s1 = x1 + x2 + x3 + · · ·+ xn

s2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn

s3 = x1x2x3 + · · ·+ xn−2xn−1xn
...

...
...

sn = x1x2x3 · · · xn
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Thus, if p(t) is monic and has roots x1, x2, . . . , xn, then p(t) =
(t − x1)(t − x2) · · · (t − xn) = tn− s1tn−1 + s2tn−2 + · · ·+ (−1)nsn.

If F is any field, this means that the field F (x1, x2, . . . , xn) is a
Galois extension of F (s1, s2, . . . , sn), since it is the splitting
field of p(t) = tn − s1tn−1 + s2tn−2 + · · ·+ (−1)nsn.

Our first goal is to determine the Galois group of this extension:

Proposition (Generic Galois Group)

Suppose x1, . . . , xn are independent indeterminates and sk is the
kth elementary symmetric function of the xi . Then the field
F (x1, x2, . . . , xn) is a Galois extension of F (s1, s2, . . . , sn) whose
degree is n! and whose Galois group is isomorphic to Sn. Explicitly,
the isomorphism is provided by the group action of Sn on
F (x1, x2, . . . , xn) via index permutation.
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Proof:

As noted already, the extension is Galois because it is the
splitting field of p(t) = tn − s1tn−1 + s2tn−2 + · · ·+ (−1)nsn.

Let G be the Galois group.

As we have discussed previously, Sn acts on F [x1, . . . , xn] via
index permutation, with the action given by
σ · p(x1, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)). It is easy to see
that this action is also well-defined on rational functions.

Each of the elementary symmetric functions s1, s2, . . . , sn is
invariant under any permutation of the variable indices, so
F (s1, s2, . . . , sn) is fixed under this action, and therefore is an
automorphism of F (x1, x2, . . . , xn)/F (s1, s2, . . . , sn).

This means Sn is (isomorphic to) a subgroup of G , since the
only permutation map fixing F (x1, x2, . . . , xn) is the identity
permutation.
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Proof (continued):

In particular, since Sn is isomorphic to a subgroup of G , that
means |G | ≥ |Sn| = n!, and therefore
[F (x1, x2, . . . , xn) : F (s1, s2, . . . , sn)] = |G | ≥ n!.

On the other hand, because F (x1, x2, . . . , xn) is the splitting
field of the degree-n polynomial p(t) over F (s1, s2, . . . , sn), we
see that [F (x1, x2, . . . , xn) : F (s1, s2, . . . , sn)] ≤ n! by our
bounds on the degree of a splitting field.

Therefore, we must have equality, so
[F (x1, x2, . . . , xn) : F (s1, s2, . . . , sn)] = n!.

Then |G | = n! = |Sn|, and thus we see that the elements of G
are precisely the automorphisms induced by index
permutations and that G ∼= Sn.
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As a corollary, we obtain the following classical result about
symmetric functions:

Corollary (Symmetric Functions)

If p(x1, x2, . . . , xn) is a rational function over a field F that is
symmetric in the variables x1, x2, . . . , xn, then it is a rational
function in the symmetric functions s1, s2, . . . , sn.

As an example, the function p(x1, x2, x3) = x3
1 + x3

2 + x3
3 is

symmetric in x1, x2, and x3, and indeed one can verify that
p(x1, x2, x3) = s31 − 3s1s2 + 3s3.
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Proof:

Let L = F (x1, x2, . . . , xn) and K = F (s1, s2, . . . , sn). If
p(x1, x2, . . . , xn) is a rational function that is symmetric in
x1, x2, . . . , xn, then it lies in the fixed field of G = Gal(L/K ).

But by our characterization of Galois extensions, the fixed
field of G is simply the base field: thus, p is an element of K ,
meaning that it is a rational function in s1, s2, . . . , sn.

Remark: If p(x1, x2, . . . , xn) is a polynomial that is symmetric in
the xi , then in fact one can show that p is necessarily also a
polynomial function of the elementary symmetric functions.
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Our results above, loosely speaking, say that the Galois group of a
“generic” degree-n polynomial is Sn, in the sense that if the si are
indeterminates, then the Galois group of the polynomial
p(t) = tn − s1tn−1 + · · ·+ (−1)nsn is isomorphic to Sn.

However, by itself, this result does not actually give any
information about the Galois group for any specific values of
the parameters si .

We would like to be able to “specialize” the choices of the si
by setting them equal to specific elements of the field F .

But this is quite a bit more subtle than it may seem.
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Specifically, choosing values for the si may introduce algebraic
relations between them that shrink the size of the Galois group.

Over a finite field, for example, no matter what values we
choose for the coefficients, the Galois group will always be
cyclic, since every extension of finite fields is Galois with cyclic
Galois group.

Since Sn is not cyclic (or even abelian) for n ≥ 3, that means
for n ≥ 3 we will always obtain substantial “collapsing” of the
Galois group structure from Sn down to a cyclic group,
regardless of what selection of coefficients we make.



Galois Groups of Polynomials, XV

In some situations, we can show that such collapsing will not occur.

Over Q (or more generally finite extensions of Q), however, a
theorem of Hilbert known as Hilbert’s irreducibility theorem
gives a sufficient condition for specializations not to collapse,
in the sense that the Galois group of the specialization will be
isomorphic to the Galois group of the original “generic” family.

In particular, by applying Hilbert’s irreducibility theorem to
the extension F (x1, x2, . . . , xn)/F (s1, s2, . . . , sn), one may
deduce that “most” specializations of the si at elements of Q
will yield a polynomial with Galois group Sn.

However, this is more subtle than it may seem, because,
depending on the value of n and how one orders polynomials
for counting purposes, it may not be the case that 100% of
polynomials (probabilistically speaking) actually do have
Galois group Sn, even over Q.
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However, this is more subtle than it may seem: depending on the
value of n and how one orders polynomials for counting purposes,
it may not be the case that 100% of polynomials (probabilistically
speaking) actually do have Galois group Sn, even over Q.

In fact (up to a little bit of finagling with counting fields
versus counting polynomials) if one orders irreducible degree-4
polynomials by the absolute value of their discriminant (which
we will discuss next) rather than by the sizes of their
coefficients, then in fact a positive proportion of them will
have Galois group D2·4 rather than S4.

These, and other questions about counting fields and
polynomials by discriminant, are a quite active area of
research in number theory at the moment1.

1Counting number fields is also the subject of my PhD thesis, in case you
were wondering.



Discriminants of Polynomials, I

If F is a field of characteristic not equal to 2, then we may find the
roots of a degree-2 polynomial in F [x ] via the usual procedure of
completing the square.

Explicitly, if p(t) = at2 + bt + c, then p(t) = 0 is equivalent
to a(t + b/(2a))2 + (c − b2/(4a)) = 0, and then rearranging
and extracting the square root yields the usual quadratic

formula t = −b±
√
b2−4ac
2a .

The nature of the roots is closely tied to the value of the
discriminant D = b2 − 4ac : for example, the polynomial has a
repeated root (i.e., is inseparable) precisely when D = 0, and
the roots generate the extension F (

√
D), which has special

properties when D is a perfect square.

In terms of the roots r1 and r2 themselves, we can see that
when p(t) is monic, D = (r1 − r2)2.
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We can generalize the idea of a discriminant to an arbitrary
polynomial:

Definition

If x1, x2, . . . , xn are arbitrary, we define the discriminant as

∆(x1, . . . , xn) =
n∏

i=1

n∏
j=i+1

(xi − xj)
2 =

∏
i<j

(xi − xj)
2,

and we define the discriminant ∆(p) of the polynomial p with
roots r1, . . . , rn (including multiplicities) to be ∆(r1, . . . , rn).

When the terms are clear from context, we will often write the
discriminant merely as ∆.

Example: For p(t) = t3 + at2 + bt + c, we have
∆ = −27c2 + 18abc − 4b3 − 4a3c + a2b2.
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Note that ∆(x1, . . . , xn) =
n∏

i=1

n∏
j=i+1

(xi − xj)
2 =

∏
i<j

(xi − xj)
2 is a

symmetric polynomial in the xi , and is thus an element of
F [s1, . . . , sn].

In particular, this means that ∆(p) is a polynomial function in
the coefficients of p. However, since the total degree of ∆ in
the xi is n(n − 1), for large n the resulting expressions will be
quite complicated.

For n = 4, for example, the discriminant of
p(t) = t4 + at4 + bt2 + ct + d is
∆ = −27a4d2 + 18a3bcd − 4a3c3 − 4a2b3d + a2b2c2 +
144a2bd2 − 6a2c2d − 80ab2cd + 18abc3 − 192acd2 +
16b4d − 4b3c2 − 128b2d2 + 144bc2d − 27c4 + 256d3.
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We have already encountered the discriminant in our analysis of
the alternating group An.

Specifically, we showed that the square root of the
discriminant

√
∆ =

∏
i<j(xi − xj) has the property that

σ(
√

∆) =
√

∆ for σ ∈ An, and σ(
√

∆) = −
√

∆ for σ 6∈ An.

If the characteristic of F is not equal to 2, this means
√

∆ is
not fixed by all of Sn, but its square is: thus,

√
∆ generates a

degree-2 extension of F (s1, s2, . . . , sn).

Since [Sn : An] = 2, by the fundamental theorem of Galois
theory, we conclude that

√
∆ generates the fixed field of An.
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By applying this to specific polynomials, we obtain the following
very useful fact:

Proposition (An and Discriminants)

If F is a field of characteristic not 2, and p(x) ∈ F [x ] is any
separable polynomial, then the Galois group of p(x) is a subgroup
of An if and only if

√
∆(p) ∈ F .
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Proof:

As we noted already, ∆ = ∆(p) is symmetric in the roots of
p, hence is fixed by every element of the Galois group G of p.

If we fix an ordering of the roots r1, . . . , rn of p, then√
∆(p) =

∏
i<j(ri − rj) is an element of the splitting field K .

Then if σ is any element of the Galois group, we see that
σ(
√

∆) = ε(σ) ·
√

∆, where ε(σ) is the sign of the
permutation that σ induces on the roots.

Since the characteristic of F is not 2 (so that
√

∆ 6= −
√

∆)
we see that σ fixes

√
∆ if and only if σ ∈ An.

Thus, the Galois group is a subgroup of An if and only if every
element of the Galois group fixes

√
∆, which is in turn

equivalent to saying that
√

∆ ∈ F .
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We now study degree-3 polynomials using the tools we have
developed so far.

If f (t) ∈ F [t] is a reducible degree-3 polynomial, everything
reduces to the case of lower degree.

If f (t) factors either as a product of 3 degree-1 terms, then
the splitting field of f is F and the Galois group is trivial.

If f (t) factors as a product of a degree-1 term and an
irreducible degree-2 term, then the splitting field of p is a
quadratic extension of F (obtained by solving the quadratic
equation) and the Galois group is Z/2Z.
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The interesting case is for an irreducible polynomial, so suppose
f (t) = t3 − a1t2 + a2t − a3 is an irreducible cubic polynomial in
F [t] with splitting field K .

If f has roots β1, β2, β3, then since a1 = s1 is the sum of the
roots, we have β3 = a1 − β1 − β2. Thus,
K = F (β1, β2, β3) = F (β1, β2).

We get a tower F ⊂ F (β1) ⊆ F (β1, β2) = K , where
[F (β1) : F ] = 3 and [K : F (β1)] ≤ 2.

Since p is irreducible, the Galois group of f is a transitive
subgroup of S3.

It is easy to see that there are only two such subgroups,
namely S3 and A3, and we can tell these cases apart by
looking at the discriminant as long as the characteristic of F
is not 2.
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So we have two possible cases:

1. When the Galois group is A3, this means that if α is any root
of f in K , then K = F (α). (In particular, the other roots of f
will be polynomials in α.) Furthermore, there are no proper
nontrivial intermediate fields of K/F since A3 has no
nontrivial proper subgroups.

2. When the Galois group is S3, there are nontrivial proper
subgroups, which (by the Galois correspondence) correspond
to intermediate fields: specifically, there is the quadratic
subfield of K fixed by A3 (which by our discussion is generated
by the square root of the discriminant), and also the three
cubic subfields of K each fixed by a transposition (each of
which will be generated by one of the three roots of f ).
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We summarize these observations in the following proposition:

Proposition (Galois Groups of Cubics)

If F is a field of characteristic not equal to 2 and
f (t) = t3 − a1t2 + a2t − a3 is an irreducible cubic polynomial in
F [t], then the Galois group of f is either A3 or S3, and it is A3

precisely when the discriminant
∆(p) = −27a23 + 18a1a2a3 − 4a32 − 4a31a3 + a21a22 is a square in F .
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Proof:

If f is irreducible then the Galois group is a transitive
subgroup of S3, hence is either S3 or A3. By our results on
discriminants, it is A3 precisely when the discriminant is a
square in F .

The only thing left is to compute the formula for the
discriminant.

If the characteristic of F is not 3, we may make a change of
variables y = t − a1/3 and then analyze the polynomial
g(y) = y3 + py + q where p = a2 − a31/3 and
q = (−2/27)a31 + a1a2/3− a3 are F -rational polynomials in
the original coefficients.

Since the roots of g are translates of the roots of f , the
discriminants of f and g are the same (since the discriminant
only involves the pairwise differences of the roots).
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Proof (continued):

Since ∆(g) is a symmetric polynomial of homogeneous degree
6 (i.e., every term has degree 6) in its roots r1, r2, r3, it is a
polynomial in s1, s2, s3, and since s1 = 0 we may ignore it.

Since s2 is homogeneous of degree 2 and s3 is homogeneous
of degree 3, we must have ∆(g) = c1 · s32 + c2 · s23 since these
are the only homogeneous polynomials in s1, s2, s3 of degree 6.

We may compute c1 and c2 by picking values for r1, r2, r3 and
then comparing the value of ∆(s) to c1 · s32 + c2 · s23 .
Choosing, for example, (r1, r2, r3) = (−1, 0, 1) and (−2, 1, 1)
leads to the equations 4 = c1(−1)3 + c2(0) and
0 = c1(−3)3 + c2(−2)2, whence c1 = −4 and c2 = −27.

Hence ∆(f ) = ∆(g) = −4p3 − 27q2, and then plugging back
in for a1, a2, a3 and simplifying eventually yields the given
formula (which in fact is also correct in characteristic 3).
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There are two useful techniques employed in the proof just given.

The first idea was to make a change of variables to simplify
the form of the cubic equation.

Making a sufficiently artful change of variables of this nature
can allow us to reduce (sometimes, greatly) the amount of
computation required in examples.

The other idea was the technique for determining a formula for
a symmetric polynomial in terms of the elementary symmetric
functions by writing down the general form (based on degree)
and then plugging in specific values to find the coefficients.
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Example: Find the Galois group of f (t) = t3 − 3t + 1 over Q and
identify all subfields of its splitting field.

This cubic is irreducible over Q since it has no roots by the
rational root test.

Using the formula from the (proof of) the proposition, we see
that ∆(f ) = 4 · 33 − 27 = 81. Since this is a perfect square in
Q, the Galois group is A3.

Since the splitting field has degree 3, its only subfields are
itself and Q.

After some effort, one may show that if α is a root of f then
so is α2 − 2. Hence, if α is one root of f , then the others are
α2 − 2 and (α2 − 2)2 − 2 = −α2 − α− 2.
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Example: Find the Galois group of f (t) = t3 + t + 1 over Q and
identify all subfields of its splitting field.

This cubic is is irreducible over Q since it has no roots by the
rational root test.

Using the formula from the (proof of) the proposition, we see
that ∆(f ) = −4 · 13 − 27 = −31.

Since this is not a perfect square in Q, the Galois group is S3.

Another way of seeing that the Galois group must be S3 is
that by calculus, the polynomial has one real root and two
(necessarily) complex-conjugate roots.

Therefore, complex conjugation is an element of the Galois
group that transposes two of the roots (hence has order 2), so
the Galois group must be S3.
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Example: Find the Galois group of f (t) = t3 + t + 1 over Q and
identify all subfields of its splitting field.

In comparison to the A3 example, computing the subfields
here takes a bit more work (but not too much, since S3 does
not have many subgroups).

By the fundamental theorem of Galois theory, there is a
unique quadratic subfield of the splitting field, namely
Q(
√

D) = Q(
√
−31): this is the fixed field of the order-3

subgroup of S3.

There are also three conjugate degree-3 subfields, namely,
Q(β1), Q(β2), and Q(β3) where β1, β2, β3 are the three roots
of f . These are the fixed fields of the three order-2 subgroups
of S3.
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Although we have computed the Galois group of an arbitrary cubic,
the results do not actually give us an explicit description of the
fields of interest, since we do not have formulas for the roots.

The problem of finding a general formula for the roots of a
cubic equation was considered by the ancient Egyptians and
Greeks.

Indeed, one aspect of their work was the attempt to construct
cube roots using straightedge and compass (the fruitlessness
of which we have previously discussed!).

The search for a “cubic formula” was taken up by many
mathematicians in antiquity, but no general solution was
found until the 1500s.
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Ultimately, the story of how the cubic formula was eventually
publicized is rather convoluted. Since it is quite a fascinating story,
I will briefly summarize it.

Minimal progress was made on solving the cubic until the
early 1500s, when del Ferro discovered a method for solving
cubics of the form t3 + pt = q.

However, due to the nature of Renaissance patronage, del
Ferro did not publicize his method, but only taught it to his
student Fior.
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Pictured: Tartaglia (courtesy
Wikipedia)

In 1535, Fior in turn challenged
another scholar, Niccolo
Fontana (nicknamed Tartaglia
due to a physical deformity),
who eventually (re)discovered
the solution to the cubic.
Again, as was normal at the
time, Tartaglia kept it a secret.



Cubic Polynomials, XIII

Pictured: Cardano (courtesy
Wikipedia)

Eventually, Gerolamo Cardano
(an avid astrologer and gambler
who at one time was one of the
most well-regarded physicians in
Europe, who was eventually
jailed for heresy and then
pardoned by the Pope) was
able, after repeated entreaties
and vows never to reveal
Tartaglia’s method, to coax
Tartaglia into revealing it.
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Pictured: A Ferrari (courtesy
USA Today)

Cardano was then able to
extend Tartaglia’s method to
solve the general cubic
equation, and eventually took a
student, Ludovico Ferrari, who
was able to extend Cardano’s
techniques to solve degree-4
equations. Cardano and Ferrari
eventually discovered that del
Ferro had solved the cubic prior
to Tartaglia’s discovery of the
solution, and published his
generalization in 1545 in his
famous Ars Magna, giving credit
to del Ferro, Fior, and Tartaglia.
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However, as seems to happen with many major mathematical and
scientific discoveries, this did not sit well with all parties.

Despite receiving proper attribution, Tartaglia nonetheless felt
betrayed by Cardano, despite the fact that del Ferro had
developed the technique prior to Tartaglia.

Cardano attempted to stay out of the dispute. However,
Ferrari charged that Tartaglia had built his reputation on the
stolen work of others, and then challenged him to a public
debate on mathematics.

Eventually Tartaglia took a teaching position in Cardano’s
hometown, and (apparently) a debate eventually took place.
It, unsurprisingly, quickly devolved into a shouting match.
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Anyway.... to finish off the day, we will present a solution of the
cubic similar to Cardano’s (and presumably, also to Tartaglia’s).

Theorem (del Ferro / Fior / Tartaglia / Cardano Formulas)

If the characteristic of F is not 2 or 3, and the polynomial
g(t) = t3 + pt + q is irreducible and separable over F , then for

A =
3

√
−q

2
+

√
q2

4
+

p3

27
and B =

3

√
−q

2
−
√

q2

4
+

p3

27
with cube

roots chosen so that AB = −p/3, the three roots of g are

A + B, ζ3A + ζ23B, and ζ23A + ζ3B,

where ζ3 = −1
2 + i

√
3
2 is a primitive 3rd root of unity over F .
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Proof:

From the algebraic identity (x + y)3 − 3xy(x + y) = x3 + y3,
we can see that if we take x + y = t, 3xy = −p, and
x3 + y3 = −q, then the identity becomes t3 + pt + q = 0.

The equation 3xy = −p implies y = −p/(3x).

Then x3 + y3 = −q becomes x3 − p3/(27x3) = −q, whence

x6 + qx3 − p3

27
= 0. (Note that we need the characteristic not

to be 3, in order to divide by 27.)

This is a quadratic in x3, so solving yields

x3 = −q

2
±
√

q2

4
+

p3

27
, y3 = −q − x3 = −q

2
∓
√

q2

4
+

p3

27
.

(Note that we are using the fact the characteristic is not 2 to
invoke the quadratic formula here.)
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Proof (continued):

Since we may interchange x and y , let us assume

x3 = −q

2
+

√
q2

4
+

p3

27
and y3 = −q

2
−
√

q2

4
+

p3

27
.

Then there are three possible values for x , namely

x = ζk3
3

√
−q

2
+

√
q2

4
+

p3

27
, and since we must also have

3xy = p, any choice of x yields a unique value for y , namely

y = ζ2k3
3

√
−q

2
−
√

q2

4
+

p3

27
.

Thus, we obtain the claimed solutions

t = ζk3
3

√
−q

2
+

√
q2

4
+

p3

27
+ ζ2k3

3

√
−q

2
−
√

q2

4
+

p3

27
for

k ∈ {0, 1, 2}.



Cubic Polynomials, XIX

Example: Find the roots of the cubic f (t) = t3 + t + 1 over Q.

By Cardano’s formulas, we compute

A =
3

√
−1

2
+

√
31

108
and B =

3

√
−1

2
+

√
31

108
.

Thus, the three roots of f are
A + B, ζ3A + ζ23B, and ζ23A + ζ3B.

What, were you expecting something else? This cubic is
irreducible, so its roots aren’t going to magically look any
nicer than that!
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Example: Find the roots of the cubic f (t) = t3 + t + 1 over Q.

By Cardano’s formulas, we compute

A =
3

√
−1

2
+

√
31

108
and B =

3

√
−1

2
+

√
31

108
.

Thus, the three roots of f are
A + B, ζ3A + ζ23B, and ζ23A + ζ3B.

What, were you expecting something else? This cubic is
irreducible, so its roots aren’t going to magically look any
nicer than that!



Cubic Polynomials, XX

Example: Find the roots of the cubic f (t) = t3 − 3t + 1 over Q.

By Cardano’s formulas, we compute

A =
3

√
−1

2
+

√
−3

4
and B =

3

√
−1

2
−
√
−3

4
.

So the roots of f are A + B, ζ3A + ζ23B, and ζ23A + ζ3B.

For this polynomial we can compute more explicit descriptions
of the roots, since the term under the cube root for A is
−1

2 +
√
−3
2 = ζ3 and the term under the cube root for B is ζ23 .

Then we have A = 3
√
ζ3 = ζ9 while B = ζ89 (note that we

must choose the cube roots so that AB = 1).

Hence the roots are in fact A + B = ζ9 + ζ89 = 2 cos(2π/9),
ζ3A + ζ23B = ζ49 + ζ59 = 2 cos(8π/9), and
ζ23A + ζ3B = ζ79 + ζ29 = 2 cos(4π/9).
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Example: Find the roots of the cubic f (t) = t3 − 3t + 1 over Q.

By Cardano’s formulas, we compute

A =
3

√
−1

2
+

√
−3

4
and B =

3

√
−1

2
−
√
−3

4
.

So the roots of f are A + B, ζ3A + ζ23B, and ζ23A + ζ3B.

For this polynomial we can compute more explicit descriptions
of the roots, since the term under the cube root for A is
−1

2 +
√
−3
2 = ζ3 and the term under the cube root for B is ζ23 .

Then we have A = 3
√
ζ3 = ζ9 while B = ζ89 (note that we

must choose the cube roots so that AB = 1).

Hence the roots are in fact A + B = ζ9 + ζ89 = 2 cos(2π/9),
ζ3A + ζ23B = ζ49 + ζ59 = 2 cos(8π/9), and
ζ23A + ζ3B = ζ79 + ζ29 = 2 cos(4π/9).
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In the second example, notice that the expressions for the roots
from Cardano’s formulas involved complex numbers, even though
all of the roots are real. In fact, this will always be the case when
the polynomial has three real roots.

If all three roots are real, then
√

∆ is also clearly real (it is a
polynomial in the roots), so ∆ is a nonnegative real number.

But in Cardano’s formulas, we have

A,B =
3

√
−q

2 ±
√

q2

4 + p3

27 = 3

√
−q

2 +
√
−∆: note the

√
−∆.

On the other hand, if the polynomial has two
complex-conjugate roots, then in fact ∆ will always be
negative: to see this, suppose the roots are x + iy , x − iy , w
with x , y ,w real. Then√

∆ = (2iy)(x + iy − w)(x − iy − w) = (2iy)[(x − w)2 + y2]
is purely imaginary, and so ∆ is negative.
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As a coda to the tortuous history of the cubic, we will remark that
it is this perplexing appearance of square roots of negative
numbers in the formulas for real solutions to cubic equations that
led to the initial development of complex numbers in mathematics.

To illustrate, for the cubic p(t) = t3 − 15t − 4, Cardano’s

formulas give A = 3
√

2 +
√
−121 and B = 3

√
−2 +

√
−121,

even though one may verify that the three roots of this cubic
are the real numbers 4 and −2±

√
3.

To resolve this difficulty, Bombelli in 1572 observed that one
may formally compute (2±

√
−1)3 = ±2 +

√
−121, and so

one may take A = 2 +
√
−1 and B = 2−

√
−1 to obtain the

correct root A + B = 4.

One cannot give general formulas involving only real radicals
for the solutions of irreducible cubics with ∆ < 0, so this issue
can only be resolved by working with non-real numbers.



Summary

We discussed more about cyclotomic and abelian extensions.

We classified the constructible regular polygons.

We introduced Galois groups of polynomials, and discussed
symmetric functions and discriminants of polynomials.

We discussed the history and solution of the cubic equation, and
some related facts.

Next lecture: Quartic polynomials, computing Galois groups over
Q.


