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Erstwhile

Theorem (Fundamental Theorem of Galois Theory)

Let K/F be a Galois extension and let G = Gal(K/F ).
0. There is an inclusion-reversing bijection between intermediate fields

E of K/F and subgroups H of G , given by associating a subgroup
H to its fixed field E .

1. Subgroup indices correspond to extension degrees, so that
[K : E ] = |H| and [E : F ] = |G : H|.

2. The extension K/E is always Galois, with Galois group H.

3. If F is a fixed algebraic closure of F , then the embeddings of E into
F are in bijection with the left cosets of H in G.

4. E/F is Galois if and only if H is a normal subgroup of G , and in
that case, Gal(E/F ) is isomorphic to G/H.

5. Intersections of subgroups correspond to joins of fields, and joins of
subgroups correspond to intersections of fields.

6. The lattice of subgroups of G is the same as the lattice of
intermediate fields of K/F turned upside-down.



Roadmap

We will now discuss a number of applications of the fundamental
theorem of Galois theory (and its various related ideas) to the
study of field extensions:

1. Finite fields and irreducible polynomials in Fp[x ]

2. Simple extensions and the primitive element theorem

3. Properties of composite extensions

4. Cyclotomic and abelian extensions

Then we will finish off the semester back where we started: by
studying polynomials and their roots.



Finite Fields and Irreducible Polynomials in Fp[x ], I

We will start by analyzing the structure of finite fields, so let p be
a prime and n be a positive integer.

As we have discussed, there is a unique (up to isomorphism)
finite field Fpn with pn elements, and it is the splitting field of
the separable polynomial xpn − x over Fp.

We have also shown that the Galois group G = Gal(Fpn/Fp)
is cyclic of order n and is generated by the Frobenius
automorphism ϕ(n) : Fpn → Fpn with ϕ(n)(x) = xp.



Finite Fields and Irreducible Polynomials in Fp[x ], II

Since G = Gal(Fpn/Fp) is cyclic of order n, its subgroups are of
the form

〈
ϕd
〉

for the divisors d of n.

Because G is abelian, all of these subgroups are normal, so
the corresponding fixed fields are all Galois.

Since ϕd
(n)(x) = xpd , the fixed field of ϕd is the set of

solutions to the equation xpd − x = 0 inside Fpn , so the fixed

field is the splitting field of xpd − x , which is Fpd .

Thus, by the fundamental theorem of Galois theory, the
subfields of Fpn are the fields Fpd for d dividing n.

Furthermore, the Galois group Gal(Fpd/Fp) is generated by

the image of ϕ(n) inside the quotient group G/
〈
ϕd
〉
. This

map is simply the pth power map on elements, which is
ϕ(d) : Fpd → Fpd . (In other words, the restriction of the
Frobenius map from Fpn to Fpd is the Frobenius map on Fpd .)



Finite Fields and Irreducible Polynomials in Fp[x ], III

We can also use these observations to prove a useful result on
irreducible polynomials over Fp:

Theorem (Factorization of xpn − x in Fp[x ] )

For any prime p and any positive integer n, the polynomial xpn − x
factors in Fp[x ] as the product of all monic irreducible polynomials
over Fp of degree dividing n.

Examples:

1. Over F2, x8 − x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1).

2. Over F2, x16 − x =
x(x +1)(x2+x +1)(x4+x3+1)(x4+x +1)(x4+x3+x2+x +1).

3. Over F3, x9 − x = x(x + 1)(x + 2)(x3 + 2x + 1)(x3 + 2x + 2).



Finite Fields and Irreducible Polynomials in Fp[x ], IV

Proof:

Let q(x) = xpn − x . As we have noted previously, q(x) is
separable and its roots are the elements of Fpn .

If f (x) is any monic irreducible factor of xpn − x , then
Fp[x ]/f (x) is a subfield of Fpn , hence must be Fpd for some d
dividing n. Since deg(f ) = d this means deg(f ) divides n.

Conversely, if f (x) ∈ Fp[x ] is monic irreducible of degree d
dividing n, then Fp[x ]/(f (x)) is a finite field with pd

elements, and is therefore (isomorphic to) Fpd .

Then any root α of f (x) is contained in Fpd hence lies in Fpn

and is thus a root of q(x). Since f (x) is separable (since it is
irreducible over a finite field) this means f (x) divides q(x).

Thus, the irreducible factors of xpn − x are precisely the monic
irreducible polynomials of degree dividing n, and since no
factor can be repeated, xpn − x must simply be their product.



Finite Fields and Irreducible Polynomials in Fp[x ], V

We can use the factorization of xpn − x to give an exact count of
the monic irreducible polynomials in Fp[x ]:

Let fp(n) be the number of monic irreducible polynomials of
exact degree n in Fp[x ].

The theorem says that pn =
∑

d |n dfp(d), since both sides
count the total degree of the product of all irreducible
polynomials of degree dividing n.

Using this recursion, we can compute the first few values:

n 1 2 3 4 5 6 7

fp(n) p
p2 − p

2

p3 − p

3

p4 − p2

4

p5 − p

5

p6 − p3 − p2 + p

6

p7 − p

7

For example, we see that there are (27 − 2)/2 = 63 monic
irreducible polynomials of degree 7 over F2.



Finite Fields and Irreducible Polynomials in Fp[x ], VI

In fact, using a tool from elementary number theory, we can use
the recursion to write down a general formula:

Definition

The Möbius function is defined as

µ(n) =

{
0 if n is divisible by the square of any prime

(−1)k if n is the product of k distinct primes
.

In particular, µ(1) = 1.

For example, µ(5) = −1, µ(6) = 1, µ(30) = −1, and µ(12) = 0.

Proposition (Möbius Inversion)

If f (n) is any sequence satisfying a recursive relation of the form
g(n) =

∑
d |n f (d), for some function g(n), then

f (n) =
∑

d |n µ(d)g(n/d).



Finite Fields and Irreducible Polynomials in Fp[x ], VII

Proof:

First, we claim
∑

d |n µ(d) is 1 if n = 1 and 0 if n 6= 0.

To see this, if n = pa1
1 · · · p

ak
k , the only terms that will

contribute to the sum
∑

d |n µ(d) are those values of

d = pb1
1 · · · p

bk
k where each bi is 0 or 1. If k > 0, then half of

these 2k terms will have µ(d) = 1 and the other half will have
µ(d) = −1, so the sum is zero. Otherwise, k = 0 means that
n = 1, in which case the sum is clearly 1.

Now we prove the desired result by induction. It clearly holds
for n = 1, so now suppose the result holds for all k < n.

Then
∑

d |n µ(d)g(n/d) =
∑

d |n µ(d)
∑

d ′|(n/d) f (d ′) =∑
dd ′|n µ(d)f (d ′) =

∑
d ′|n f (d ′)

∑
d |(n/d ′) µ(d) by induction

and reordering the sum.

But the last sum is simply f (n), because
∑

d |(n/d ′) µ(d) is

zero unless n/d ′ is equal to 1.



Finite Fields and Irreducible Polynomials in Fp[x ], VIII

By applying Möbius inversion to fp(n), we immediately obtain the
following:

Corollary (Number of Monic Irreducible Polynomials in Fp[x ])

The number of monic irreducible polynomials of degree n in Fp[x ]

is fp(n) =
1

n

∑
d |n pn/dµ(d).

Examples:

The number of monic irreducibles of degree 18 in F2[x ] is
1
18(218 − 29 − 26 + 23) = 14532.

The number of monic irreducibles of degree 30 in F2[x ] is
1
30(230 − 215 − 210 − 26 + 25 + 23 + 22 − 21) = 35790267.



Finite Fields and Irreducible Polynomials in Fp[x ], IX

From this corollary, we see that fp(n) = 1
npn + O(pn/2), where the

“big-O” notation means that the error is of size bounded above by
a constant times pn/2 as n→∞.

This has the following interesting reinterpretation: let X be
the number of polynomials in Fp[x ] of degree less than n.
Clearly, X = pn.

Now we ask: of all these X polynomials, how many of them
are “prime” (i.e., irreducible)?

This is simply fp(n) =
1

n
pn + O(pn/2) =

X

logp(X )
+ O(

√
X ).

In other words: the number of “primes less than X ” is equal

to
X

logp(X )
, up to a bounded error term.
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Compare the result fp(n) =
X

logp(X )
+O(

√
X ) to the Prime

Number Theorem in Z:

Theorem (Prime Number Theorem)

If π(n) is the number of primes in the interval [1, n], then

π(n) ∼ n

log(n)
, in the sense that lim

n→∞

π(n)

n/ log(n)
= 1.

So in fact, we have just proven the analogue of the Prime Number
Theorem for the ring Fp[x ].



Finite Fields and Irreducible Polynomials in Fp[x ], XI

Any of the irreducible polynomials f (x) of degree n yields gives a
model for Fpn , namely as Fp[x ]/(f (x)).

Thus, if f1 and f2 are both irreducible of degree n, then
F1 = Fp[x ]/(f1(x)) and F2 = Fp[y ]/(f2(y)) are both
isomorphic to Fpn .

To compute an isomorphism between them, we simply observe
that f1(x) splits completely over F2, and if α(y) represents
any root, then the map sending x in F1 to α(y) in F2 extends
to an isomorphism of F1 with F2. (In other words, we map a
root x of f1 in F1 to a root α(y) of f1 in F2.)

In practice, it can be rather cumbersome to compute the
roots by hand, although there do exist efficient factorization
algorithms over finite fields, one of which is known as
Berlekamp’s algorithm.



Finite Fields and Irreducible Polynomials in Fp[x ], XII

Example: Compute an explicit isomorphism of the field
F3[x ]/(x3 + 2x + 1) with the field F3[y ]/(y3 + y2 + 2).

Note that both x3 + 2x + 1 and y3 + y2 + 2 are irreducible
over F3 because they are degree-3 and have no roots in F3.

To compute an isomorphism, we search for a root of
x3 + 2x + 1 in F3[y ]/(y3 + y2 + 2).

Checking the various possibilities eventually reveals that
2y2 + 2y is a root of x3 + 2x + 1, and therefore the map
ϕ : F3[x ]/(x3 + 2x + 1)→ F3[y ]/(y3 + y2 + 2) with
ϕ(x) = 2y2 + 2y is such an isomorphism.



Finite Fields and Irreducible Polynomials in Fp[x ], XIII

As a final remark, we will observe that the simple structure of
finite field extensions also yields a nice description of the algebraic
closure Fp.

Explicitly, if α ∈ Fp then α (being algebraic over Fp) is
contained in a finite-degree extension of Fp, namely, one of
the fields Fpn .

But notice that the fields Fpn for n ≥ 1 are partially ordered
under inclusion, and that any two of them are contained in
another (namely, Fpn and Fpm are both contained in Fpmn).

Thus, the union of these fields (technically, the colimit) is well
defined, and by the above, it contains every element α
algebraic over Fp, meaning that it is the algebraic closure.



Finite Fields and Irreducible Polynomials in Fp[x ], XIV

Symbolically, Fp =
∞⋃
n=1

Fpn .

Furthermore, since the Frobenius maps on the various Fpn are
all consistent under restriction, we see that they extend to a
Frobenius map ϕ : Fp → Fp on the algebraic closure, defined
explicitly via ϕ(x) = xp.

Note that ϕ has infinite order as an element of Aut(Fp/Fp),
but one may show in fact that Aut(Fp/Fp) is uncountably
infinite (and thus ϕ is not a generator, since the cyclic
subgroup it generates is only countably infinite).



The Primitive Element Theorem, I

We can use the fundamental theorem of Galois theory to determine
(in a large number of cases) when an arbitrary finite-degree
extension K/F is simple, which is to say, when K = F (α) for some
α ∈ K . The easiest case is when F is finite:

Proposition (Finite Fields are Simple)

Suppose K/F is a finite-degree extension and F is finite. Then K
is a simple extension of F .

Proof:

If K/F has finite degree and F is finite, then K is also finite.

As we have shown, the multiplicative group K× of any finite
field is cyclic.

If α is any generator, then every nonzero element of K is a
power of α, and thus F (α) = F [α] = K .



The Primitive Element Theorem, II

Next we prove a characterization of simple extensions in terms of
their subfields:

Proposition (Simple Extensions and Subfields)

Suppose K/F is a finite-degree extension. Then K = F (α) for
some α ∈ K if and only if K/F has finitely many intermediate
fields.

If F is finite then the result follows immediately from the previous
proposition, so for the proof we can assume that F is infinite.



The Primitive Element Theorem, III

Proof:

First suppose K = F (α) is a simple extension and suppose E
is an intermediate field of K/F .

Let m(x) ∈ F [x ] be the minimal polynomial for α over F and
p(x) ∈ E [x ] be the minimal polynomial for α over E , and
note that p(x) divides m(x) in E [x ].

If we let E ′ be the field generated over F by the coefficients of
p(x), then clearly E ′ ⊆ E , and the minimal polynomial for α
over E ′ is also p(x). But since [K : E ] = deg p = [K : E ′],
this means E ′ = E .

We conclude that E is generated over F by the coefficients of
some monic polynomial dividing m(x) in F [x ]. Since there are
only finitely many such factors (explicitly, there are at most 2n

such factors where n is the number of roots of m(x)), there
are finitely many such subfields.



The Primitive Element Theorem, IV

Proof (continued):

For the converse, suppose K/F has finite degree and finitely
many intermediate fields. Then K = F (α1, . . . , αn) for some
algebraic αi ∈ K , so it suffices to show that F (β, γ) is a
simple extension for any algebraic β, γ, since then the result
for K follows immediately by induction.

To show this, consider the subfields F (β + xγ) for x ∈ F :
since F is infinite by hypothesis and there are only finitely
many intermediate fields of K/F , there must exist distinct
x , y ∈ F such that F (β + xγ) = F (β + yγ). Call this field E .

Then E ⊆ F (β, γ), and since E contains β + xγ and β + yγ it
also contains (x − y)γ, hence γ, since x − y is a nonzero
element of F . Then E clearly also contains
β = (β + xγ)− xγ, and so E = F (β, γ).

Thus, E = F (β + xγ) is a simple extension of F , so we win.



The Primitive Element Theorem, V

Using the Galois correspondence, we can then see immediately that
a finite-degree Galois extension has finitely many intermediate
subfields, since these are in bijection with subgroups of the Galois
group (which is a finite group), and is therefore simple. We may
extend this result to any separable extension:

Theorem (Primitive Element Theorem)

If K/F is a finite-degree separable extension, then K = F (α) for
some α ∈ K . In particular, any finite-degree extension of
characteristic-0 fields is a simple extension.

In general, an element α generating the extension K/F is called a
primitive element for K/F , whence the name “primitive element
theorem”.



The Primitive Element Theorem, VI

Proof:

If K/F is a finite-degree separable extension, then
K = F (α1, . . . , αn) for some algebraic α1, . . . , αn.

Let the minimal polynomial of αi over F be mi (x), and define
m(x) to be the least common multiple of the polynomials
mi (x).

Then m(x) cannot have any repeated roots, since by
definition of the least common multiple this would require one
of the mi to have a repeated root, so m(x) is separable.

Let L be the splitting field of m(x) over F : then L contains
each of α1, . . . , αn, hence contains K , and L/F is a Galois
extension.



The Primitive Element Theorem, VII

Proof (continued):

Let L be the splitting field of m(x) over F : then L contains
each of α1, . . . , αn, hence contains K , and L/F is a Galois
extension.

By the fundamental theorem of Galois theory, the
intermediate fields of L/F are in bijection with the subgroups
of Gal(L/F ). Since Gal(L/F ) is a finite group, it has finitely
many subgroups, and so there are finitely many intermediate
fields of L/F .

Since K is a subfield of L/F , this means there are finitely
many intermediate fields of K/F also. By the previous result,
this means K/F is a simple extension, as claimed.

The second statement follows immediately, since every
extension of characteristic-0 fields is separable.



The Primitive Element Theorem, VIII

Per the proof of the primitive element theorem, if K/F is separable
and has finite degree with K = F (α1, . . . , αn) and F is infinite,
then we may always construct a primitive element as an F -linear
combination of the generators α1, . . . , αn.

If in addition K/F is Galois, then to verify that β ∈ K is a
primitive element, we need only check that it is not fixed by
any element of the Galois group Gal(K/F ), since then it
cannot be an element of any proper subfield of K/F .

More generally, to determine whether an element β of a
non-Galois separable extension K/F is a generator, we may
compute all of its Galois conjugates (inside a Galois extension
L/K/F ): if the number of distinct Galois conjugates is equal
to the degree [K : F ], then β will generate K/F .



The Primitive Element Theorem, IX

Example: If p is a prime, find the degree of the extension
Q(31/p, ζp)/Q, show it is Galois, and identify its automorphisms.

Note that Q(31/p, ζp) is the splitting field of the
Eisenstein-irreducible polynomial xp − 3 over Q, and is also
the composite of the fields Q(31/p) and Q(ζp), which have
degrees p and p − 1 over Q. Thus, [K : Q] = p(p − 1).

Any element of the Galois group must map 31/p to one of its
p Galois conjugates 31/p, 31/pζp, . . . , 3

1/pζp−1p over Q, and
must also map ζp to one of its p − 1 Galois conjugates

ζp, ζ
2
p , . . . , ζ

p−1
p over Q.

Since this yields at most p(p − 1) choices, each must actually
extend to an automorphism of K/Q.

Thus, the automorphisms are obtained by extending the maps
31/p 7→ {31/p, 31/pζp, . . . , 31/pζp−1p } and

ζp 7→ {ζp, ζ2p , . . . , ζ
p−1
p } to the full field K .



The Primitive Element Theorem, X

Example: If p is a prime, find a primitive element for the Galois
extension Q(31/p, ζp)/Q.

To compute a primitive element, let us try the easiest
nontrivial linear combination of the generators, namely
α = 31/p + ζp.

We can see that applying all of the automorphisms in the
Galois group to α yield the p(p − 1) elements 31/pζap + ζbp for
a ∈ {0, 1, . . . , p − 1} and b ∈ {1, 2, . . . , p − 1}.
Since no automorphism fixes α, we conclude that
α = 31/p + ζp is a primitive element for K/Q.

There are, of course, many other possible choices.



The Primitive Element Theorem, XI

We will also remark that there do exist non-separable finite-degree
extensions that are not simple.

For example, consider the fields K = Fp(xp, yp) and
L = Fp(x , y), where x and y are indeterminates. Then
[L : K ] = [L : F (xp, y)] · [F (xp, y) : F (xp, yp)] = p · p = p2.

On the other hand, there is no primitive element for L/K ,
because the pth power of every element of L lies in K : taking
pth powers does not affect elements in Fp and respects
addition and multiplication, so the result of taking the pth
power of a rational function in L is simply to replace x with
xp and y with yp.

Therefore, every element of L satisfies a polynomial of degree
p with coefficients in K . In particular, there does not exist
any element α in L with [K (α) : K ] = p2, and so L/K is not a
simple extension.
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We can explicitly compute an infinite family of intermediate
subfields for L/K = Fp(x , y)/Fp(xp, yp).

Specifically, we have the intermediate fields
En = K (x + y1+np) for positive integers n.

Each of these fields is a degree-p extension of K , since
x + y1+ap 6∈ K but as noted earlier its pth power is in K .

Also, Ea 6= Eb for a 6= b, because the composite of
K (x + y1+ap) and K (x + y1+bp) contains the difference
y(yap − ybp) and hence y (since the second term is in K ),
and hence also x .

This means the composite field of Ea and Eb is K (x , y) = L,
but since [L : K ] = p2 this means the original fields could not
have been equal.

The existence of infinitely many intermediate fields again
implies that L/K cannot be a simple extension.



The Primitive Element Theorem, XIII

In fact, the example we gave is essentially the simplest possible
non-simple field extension.

Explicitly, a non-simple extension must be inseparable, so its
degree can be reduced to a power of p by taking its purely
inseparable part.

Furthermore, every extension of degree p is simple, as you
showed on the midterm exam (it is generated by any element
of K not in F ).

Thus, a non-simple field extension of minimal degree must be
a purely inseparable extension of degree p2 over a field of
characteristic p.

This means it has to be of the form F (α1/p, β1/p) for some
α, β ∈ F , since if it were generated by taking a p2 root, it
would be simple.



Composite Extensions, I

Next we consider the question of computing Galois groups of
composite extensions. The main result is as follows:

Proposition (“Sliding-Up” Galois Extensions)

Suppose K/F is a Galois extension and L/F is any extension.
Then the extension KL/L is Galois, and its Galois group is
isomorphic to the subgroup Gal(K/K ∩ L) of Gal(K/F ).



Composite Extensions, II

Proof:

By our characterization of Galois extensions, K is the splitting
field of a separable polynomial p(x) over F : explicitly,
K = F (r1, r2, . . . , rn) where the ri are the roots of p(x) in K .

Then KL is the splitting field of p(x) over L, since
KL = L(r1, r2, . . . , rn), and so KL/L is Galois.

Now suppose σ is any automorphism of KL/L: observe that
the restriction σ|K of σ to K is an automorphism of K , since
σ|K (K ) is a Galois conjugate field of K , hence must equal K
since K/F is Galois.

We obtain a well-defined map ϕ : Gal(KL/L)→ Gal(K/F )
given by restricting an automorphism of KL/L to K/F .

Trivially, ϕ is a homomorphism. Also, kerϕ consists of
automorphisms of KL fixing both L and K , but the only such
map is the identity.



Composite Extensions, III

Proof (continued):

We have a homomorphism ϕ : Gal(KL/L)→ Gal(K/F ) given
by restricting an automorphism of KL/L to K/F .

For imϕ, observe that every element in im(ϕ) must fix the
elements of L inside K , hence im(ϕ) ≤ Gal(K/K ∩ L).

Now let E be the fixed field of im(ϕ): then the observation
above shows that E contains K ∩ L.

Also, EL is fixed by Gal(KL/L), since any σ ∈ Gal(KL/L)
fixes L and its restriction to K fixes E (by definition).

Thus, by the fundamental theorem of Galois theory, we see
that EL = L, and hence E ⊆ L. Since E ⊆ K this means
E ⊆ K ∩ L, and so we must have E = K ∩ L.

Hence again by the fundamental theorem of Galois theory, we
conclude that im(ϕ) = Gal(K/E ) = Gal(K/K ∩ L).



Composite Extensions, IV

As a corollary, we obtain a useful formula for the degree of a
composite extension where at least one of the fields is Galois:

Corollary (Degree of Composite)

Suppose K/F is a Galois extension and L/F is any finite-degree

extension. Then [KL : F ] =
[K : F ] · [L : F ]

[K ∩ L : F ]
.

Proof:

From the previous result, we know that
Gal(KL/L) ∼= Gal(K/K ∩ L), and therefore by the
fundamental theorem of Galois theory, [KL : L] = [K : K ∩ L].

Then [KL : F ] = [KL : L] · [L : F ] = [K : K ∩ L] · [L : F ] =
[K : F ] · [L : F ]

[K ∩ L : F ]
, as claimed.



Composite Extensions, V

We may also say more about the Galois group of the composite of
two Galois extensions:

Proposition (Galois Groups of Composites)

If K1/F and K2/F are Galois, then K1K2/F is also Galois and its
Galois group is isomorphic to the subgroup of
Gal(K1/F )×Gal(K2/F ) consisting of elements whose restrictions
to K1 ∩ K2 are equal.

In particular, if K1 ∩ K2 = F , then
Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ).



Composite Extensions, VI

Proof:

If K1 and K2 are Galois over F then they are splitting fields of
some separable polynomials p1(x) and p2(x).

Then the composite field K1K2 is the splitting field of the
least common multiple of p1(x) and p2(x), which as we have
previously noted is also separable.

Therefore, K1K2/F is also Galois.

To compute the Galois group, observe that the action of any
automorphism on K1K2/F is completely determined by its
actions on K1/F and K2/F (since the elements of K1 and K2

generate K1K2), and so we have a homomorphism
ϕ : Gal(K1K2)/F → Gal(K1/F )×Gal(K2/F ) given by
ϕ(σ) = (σK1 , σK2).

This map ϕ is clearly injective, since any automorphism fixing
both K1 and K2 fixes K1K2.
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Proof (continued):

We have ϕ : Gal(K1K2)/F → Gal(K1/F )×Gal(K2/F ) given
by ϕ(σ) = (σK1 , σK2).

To compute im(ϕ), first observe that im(ϕ) is certainly
contained in the subgroup H of Gal(K1/F )×Gal(K2/F )
consisting of elements whose restrictions to K1 ∩K2 are equal.

Furthermore, notice that for any fixed τ ∈ Gal(K2/F ), there
are |Gal(K1/K1 ∩ K2)| automorphisms σ ∈ Gal(K1/F ) such
that σ|K1∩K2 = τ |K1∩K2 , and so |H| =
|Gal(K2/F )| · |Gal(K1/K1 ∩ K2)| = [K2 : F ] · [K1 : K1 ∩ K2].

By the sliding-up result, Gal(K1K2/K2) ∼= Gal(K1/K1 ∩ K2)
and thus [K1K2 : K2] = [K1 : K1 ∩ K2].

Hence |im(ϕ)| = |Gal(K1K2)/F | = [K1K2 : F ]
= [K1K2 : K2] · [K2 : F ] = [K1 : K1 ∩ K2] · [K2 : F ].

Thus we see that |H| = |im(ϕ)|.



Composite Extensions, VIII

Proof (continued more):

We have ϕ : Gal(K1K2)/F → Gal(K1/F )×Gal(K2/F ) given
by ϕ(σ) = (σK1 , σK2).

Since |H| = |im(ϕ)|, that means H = imϕ.

Therefore, since kerϕ is trivial, we see that Gal(K1K2/F ) is
isomorphic to the subgroup of Gal(K1/F )×Gal(K2/F )
consisting of elements whose restrictions to K1 ∩K2 are equal,
as claimed.

In particular, if K1 ∩ K2 = F , then every element (σ, τ) in the
direct product has σ|K1∩K2 = τ |K1∩K2 .

Then Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ).



Composite Extensions, IX

In cases where we can compute K1 ∩ K2, this allows us to
determine Galois groups for composite fields explicitly.

For general fields K1 and K2, of course, computing the field
intersection can be difficult, since it is not always obvious what
kinds of algebraic relations may exist between the generators.

Our main basic tools are to use properties of extension
degrees and to exploit the fact that some elements are real
and others are not.



Composite Extensions, X

Example: Find the degree of Q(21/3, 31/2, ζ3)/Q and describe its
Galois group.

Observe that L = Q(21/3, 31/2, ζ3) is the composite of the
Galois extensions K1 = Q(21/3, ζ3) and K2 = Q(31/2).

Now observe that K1 has a unique quadratic subfield, namely
Q(ζ3) = Q(

√
−3), which is not equal to K2. Hence we have

K1 ∩ K2 = Q.

Then by the degree formula we have

[K1K2 : Q] =
[K1 : Q] · [K2 : Q]

[K1 ∩ K2 : Q]
= 12.

The Galois group is simply the direct product
Gal(K1/Q)×Gal(K2/Q) ∼= S3 × (Z/2Z).



Composite Extensions, X

Example: Find the degree of Q(21/3, 31/2, ζ3)/Q and describe its
Galois group.

Observe that L = Q(21/3, 31/2, ζ3) is the composite of the
Galois extensions K1 = Q(21/3, ζ3) and K2 = Q(31/2).

Now observe that K1 has a unique quadratic subfield, namely
Q(ζ3) = Q(

√
−3), which is not equal to K2. Hence we have

K1 ∩ K2 = Q.

Then by the degree formula we have

[K1K2 : Q] =
[K1 : Q] · [K2 : Q]

[K1 ∩ K2 : Q]
= 12.

The Galois group is simply the direct product
Gal(K1/Q)×Gal(K2/Q) ∼= S3 × (Z/2Z).



Composite Extensions, XI

Example: Find the degree of Q(21/3, 31/3, ζ3)/Q and describe its
Galois group.

Observe that L = Q(21/3, 31/3, ζ3) is the composite of the
Galois extensions K1 = Q(21/3, ζ3) and K2 = Q(31/3, ζ3).

Then K1 ∩K2 certainly contains Q(ζ3) and is contained in K1,
so since [K1 : Q(ζ3)] = 3 we must have either K1 ∩ K2 = K1

or K1 ∩ K2 = Q(ζ3).

If K1 ∩ K2 = K1 then we would also have K1 ∩ K2 = K2 by
degree considerations, and then K1 would equal K2.

But this is not possible, because it would imply that
31/3 ∈ Q(21/3), which is not true.



Composite Extensions, XI

Example: Find the degree of Q(21/3, 31/3, ζ3)/Q and describe its
Galois group.

It is intuitively obvious that 31/3 6∈ Q(21/3).

But for completeness, here is a rigorous argument.

First observe that any element σ of the Galois group has the
property that σ(31/3)/31/3 is a 3rd root of unity.

Now note that the only elements z ∈ Q(21/3) with σ(z)/z
equal to a third root of unity for all σ ∈ Gal(K1/Q) are
rational multiples of {1, 21/3, 41/3}.
Finally, 31/3 is not equal to any of these, since none of 31/3,
61/3, 121/3 are rational (and this follows by the rational root
test or Eisenstein’s criterion).



Composite Extensions, XII

Example: Find the degree of Q(21/3, 31/3, ζ3)/Q and describe its
Galois group.

Hence K1 ∩ K2 = Q(ζ3), and so by the degree formula we see

that [K1K2 : Q] =
[K1 : Q] · [K2 : Q]

[K1 ∩ K2 : Q]
=

6 · 6
2

= 18.

The Galois group is the subgroup of Gal(K1/Q)×Gal(K2/Q)
∼= S3 × S3 of pairs (σ, τ) where σ|Q(ζ3) = τ |Q(ζ3).

These are the maps ϕ(21/3, 31/3, ζ3) = (21/3ζa3 , 31/3ζb3 , ζ
c
3 )

where a ∈ {0, 1, 2}, b ∈ {0, 1, 2}, and c ∈ {1, 2}.
It is easy to see that every element in the Galois group must
be of this form, and conversely since |Gal(K1K2/Q)| = 18,
each of these 18 choices does extend to an automorphism.

This group is also a semidirect product (C3 × C3) o C2 (the
C3 factors are the maps on the cube roots of 2 and 3, while
the C2 is complex conjugation).



Composite Extensions, XIII

One may extend the arguments we gave here to analyze general
“radical extensions” obtained by adjoining various roots of
elements.

The study of such extensions is generally referred to as
Kummer theory.

In general, the structures of these extensions have a similar
form to the ones we described in the last two examples, and
the Galois groups will be obtained as (iterated) semidirect
products.

In order to study these general radical extensions, the first
step is to look at cyclotomic extensions, which are obtained by
adjoining roots of unity.



Cyclotomic Extensions, I

Our first goal is to compute the degree and the Galois group of the
cyclotomic extension Q(ζn) for an arbitrary positive integer n.

To do this, we require some facts about the nth roots of unity.

As we have observed previously, the group
µn = {1, ζn, ζ2n , . . . , ζn−1n } of nth roots of unity is cyclic of
order n and generated by ζn. We have an explicit isomorphism
of µn with Z/nZ given by associating ζkn with k .

From properties of order, we see that the order of ζkn is
n/ gcd(n, k), so in particular ζkn has order n precisely when k is
relatively prime to n (equivalently, when k is a unit modulo n).

If ζ is an nth root of unity of order n, we call it a primitive
nth root of unity: by the above remarks, the number of
primitive nth roots of unity is #(Z/nZ)×.



Cyclotomic Extensions, II

The number of units modulo n is an important quantity that often
shows up in number theory:

Definition

If n is a positive integer, the Euler ϕ-function ϕ(n), also sometimes
called the Euler totient function, is the number of units in Z/nZ.
Equivalently, ϕ(n) is the number of positive integers k with
1 ≤ k ≤ n that are relatively prime to n.

Examples:

1. ϕ(6) = 2 since there are 2 units modulo 6, namely 1 and 5.

2. ϕ(p) = p − 1 if p is prime since Z/pZ has p − 1 units.

3. ϕ(20) = 8 as the units mod 20 are 1, 3, 7, 9, 11, 13, 17, 19.



Cyclotomic Extensions, III

We can give an explicit formula for the value of ϕ(n):

Proposition (Value of ϕ(n))

If p is a prime, then ϕ(pk) = pk − pk−1, and for any relatively
prime integers a and b we also have ϕ(ab) = ϕ(a)ϕ(b). Thus, if n
has prime factorization n =

∏
i pai

i , we have

ϕ(n) =
∏

i pai−1
i (pi − 1) = n ·

∏
i (1− 1/pi ).

Examples:

1. ϕ(60) = ϕ(22 · 3 · 5) = ϕ(22)ϕ(3)ϕ(5) = 2 · 2 · 4 = 16.

2. ϕ(2000) = ϕ(2453) = ϕ(24)ϕ(53) = (24− 23)(53− 52) = 800.



Cyclotomic Extensions, IV

Proof:

If p is a prime, then ϕ(pk) = pk − pk−1, since the integers
with 1 ≤ k ≤ pk not relatively prime to pk are simply the
multiples of p, of which there are pk−1.

For the second statement, by the Chinese remainder theorem
we know (Z/abZ)× and (Z/aZ)× × (Z/bZ)× are isomorphic.

Comparing cardinalities shows that ϕ(ab) = ϕ(a)ϕ(b) for any
relatively prime integers a and b.

For the last statement, we simply write n as a product of
prime powers and then apply the two results we have just
established to conclude that ϕ(n) =

∏
i pai−1

i (pi − 1).

The second formula ϕ(n) = n ·
∏

i (1− 1/pi ). follows by
pulling out a factor of pai

i from each term.



Cyclotomic Extensions, V

Definition

The nth cyclotomic polynomial Φn(x) is the monic polynomial of
degree ϕ(n) whose roots are the primitive nth roots of unity:
Φn(x) =

∏
k∈(Z/nZ)×(x − ζkn ).

Observe that the roots of xn − 1 are all of the nth roots of unity.

So, if we group together all of the primitive dth roots of unity
for each d |n, we see that xn − 1 =

∏
d |n Φd(x). (Computing

the degree of both sides also establishes the identity
n =

∑
d |n ϕ(d) for the Euler ϕ-function.)

This yields a recursion that we can use to compute Φn(x): for
example, x6 − 1 = Φ6(x)Φ3(x)Φ2(x)Φ1(x), so

Φ6(x) =
x6 − 1

(x2 + x + 1)(x + 1)(x − 1)
= x2 − x + 1.



Cyclotomic Extensions, VI

In fact, we can use a multiplicative version of Möbius inversion to
solve xn − 1 =

∏
d |n Φd(x) for the cyclotomic polynomials.

Recall that if f (n) is any sequence satisfying a recursive
relation of the form g(n) =

∑
d |n f (d), for some function

g(n), then f (n) =
∑

d |n µ(d)g(n/d).

Exponentiating both sides and replacing f and g with their
exponentials yields the multiplicative version: if
g(n) =

∏
d |n f (d), then f (n) =

∏
d |n[g(n/d)]µ(d).

Thus, we see Φn(x) =
∏

d |n[xn/d − 1]µ(d).

Example:

Φ20(x) =
(x20 − 1)(x2 − 1)

(x10 − 1)(x4 − 1)
= x8 − x6 + x4 − x2 + 1.

From this recursion we can see by induction on n and Gauss’s
lemma that Φn(x) will always have integer coefficients.



Cyclotomic Extensions, VII

We have previously shown that if p is prime, then
Φp(x) = xp−1 + xp−2 + · · ·+ x + 1 is irreducible over Q. We now
extend this result to all of the polynomials Φn(x):

Theorem (Irreducibility of Cyclotomic Polynomials)

For any positive integer n, the cyclotomic polynomial Φn(x) is
irreducible over Q, and therefore [Q(ζn) : Q] = ϕ(n).



Cyclotomic Extensions, VIII

Proof:

Suppose we have an irreducible monic factor of Φn(x) in Q[x ].

By Gauss’s lemma, this yields a factorization
Φn(x) = f (x)g(x) where f (x), g(x) ∈ Z[x ] are monic and
f (x) is irreducible.

Let ω be a primitive nth root of unity that is a root of f , and
let p be any prime not dividing n. Since f is irreducible, this
means f is the minimal polynomial of ω.

By properties of order, we see that ωp is also a primitive nth
root of unity, hence is a root of either f or of g .

We will show it is in fact a root of f .



Cyclotomic Extensions, IX

Proof (continued):

So suppose ωp is a root of g : then g(ωp) = 0.

This means ω is a root of g(xp), and so since f is the minimal
polynomial of ω, it must divide g(xp): say f (x)h(x) = g(xp)
for some h(x) ∈ Z[x ].

Modulo p, this says f (x)h(x) = g(xp) = g(x)p.

By unique factorization in Fp[x ], we see that f (x) and g(x)
have a nontrivial common factor in Fp[x ].

Then since Φn(x) = f (x)g(x), reducing modulo p yields
Φn(x) = f (x)g(x) and so Φn(x) would have a repeated
factor, hence so would xn − 1.

But this is a contradiction because since xn − 1 is separable in
Fp[x ] (its derivative is nxn−1, which is relatively prime to
xn − 1 because p does not divide n).

Thus, ωp is not a root of g , so it must be a root of f .



Cyclotomic Extensions, X

Proof (continued more):

So: for any primitive nth root of unity ω, and any prime p not
dividing n, we see that ωp is a root of f .

Therefore, we see that for any a = p1p2 · · · pk that is relatively
prime to n, then ωa = ((ωp1)p2)···pn is a root of f .

But this means every primitive nth root of unity is a root of f ,
and so Φn = f is irreducible as claimed.

Then the fact that [Q(ζn) : Q] = ϕ(n) follows immediately,
because Φn(x) is then the minimal polynomial of ζn, so
[Q(ζn) : Q] = deg(Φn) = ϕ(n).



Cyclotomic Extensions, XI

We can now easily compute the Galois group of Q(ζn)/Q:

Theorem (Galois Group of Q(ζn))

The extension Q(ζn)/Q is Galois with Galois group isomorphic to
(Z/nZ)×. Explicitly, the elements of the Galois group are the
automorphisms σa for a ∈ (Z/nZ)× acting via σa(ζn) = ζan .

The argument is essentially the same one we used to compute the
Galois group of Q(ζp)/Q. The only missing piece of information
here was that the degree of Q(ζn) is equal to ϕ(n) = #(Z/nZ)×.

The only remaining computational aspect to writing down the
Galois group structure is to find the structure of the abelian group
(Z/nZ)×, which you will do on Homework 11.



Cyclotomic Extensions, XII

Proof:

Since K = Q(ζn) is the splitting field of xn − 1 (or Φn(x))
over Q it is Galois, and |Gal(K/Q)| = [K : Q] = ϕ(n).

Any automorphism σ must map ζn to one of its Galois
conjugates over Q, which are the roots of Φn(x): explicitly,
these are the ϕ(n) values ζan for a relatively prime to n.

Since there are in fact ϕ(n) possible automorphisms, each of
these choices must extend to an automorphism of K/Q.

Hence the elements of the Galois group are the maps σa as
claimed. Since σa(σb(ζn)) = σa(ζbn ) = ζabn , the composition of
automorphisms is the same as multiplication of the indices in
(Z/nZ)×, and since this association is a bijection, the Galois
group is isomorphic to (Z/nZ)×.



Summary

We discussed finite fields and irreducible polynomials mod p.

We proved the primitive element theorem.

We discussed some properties of composite extensions.

Next lecture: Cyclotomic extensions, symmetric functions,
discriminants, cubic polynomials.


