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Recall, I

Recall our calculation about automorphisms of splitting fields:

Theorem (Automorphisms of Splitting Fields)

If K is a splitting field over F , then |Aut(K/F )| ≤ [K : F ] with
equality if and only if K/F is separable (i.e., when K is the
splitting field of a separable polynomial over F ).

Definition

If K/F is a finite-degree extension, we say that K is a
Galois extension of F if |Aut(K/F )| = [K : F ].

If K/F is a Galois extension, we will refer to Aut(K/F ) as the
Galois group of K/F , and denote it as Gal(K/F ).



Recall, II

We also defined the fixed field of a subgroup, and its inverse
notion, the subgroup of the automorphism group fixing a particular
intermediate field:

If K/F is a field extension and H is a subgroup of Aut(K/F ),
then the fixed field of H is the subfield of K fixed by all
automorphisms in H.

If E is an intermediate field of K/F , then the collection of
automorphisms in Aut(K/F ) that fix E is a subgroup of
Aut(K/F ).

These two maps are both inclusion-reversing.



Recall, III

As we saw in some examples last time, when K/F is a Galois
extension there appears to be a natural inclusion-reversing
correspondence between subgroups of the automorphism group
G = Gal(K/F ) and intermediate fields E of K/F :

{
Subfields E of K

Containing F

}
Elements of G Fixing E//

Elements of K Fixed By Hoo

{
Subgroups

H of G

}

We now prove that this “Galois correspondence” does indeed give
an inclusion-reversing bijection between the intermediate fields E
of K/F and the subgroups H of G = Gal(K/F ).



What Are We Doing Today?

Theorem (Fundamental Theorem of Galois Theory)

Let K/F be a Galois extension and let G = Gal(K/F ).
0. There is an inclusion-reversing bijection between intermediate fields

E of K/F and subgroups H of G , given by associating a subgroup
H to its fixed field E .

1. Subgroup indices correspond to extension degrees, so that
[K : E ] = |H| and [E : F ] = |G : H|.

2. The extension K/E is always Galois, with Galois group H.

3. If F is a fixed algebraic closure of F , then the embeddings of E into
F are in bijection with the left cosets of H in G.

4. E/F is Galois if and only if H is a normal subgroup of G , and in
that case, Gal(E/F ) is isomorphic to G/H.

5. Intersections of subgroups correspond to joins of fields, and joins of
subgroups correspond to intersections of fields.

6. The lattice of subgroups of G is the same as the lattice of
intermediate fields of K/F turned upside-down.



Characterizations of Galois Extensions, I

First, we give some characterizations of Galois extensions:

Theorem (Characterizations of Galois Extensions)

If K/F is a field extension, the following are equivalent:

1. K/F is Galois, which is to say, it has finite degree and
|Aut(K/F )| = [K : F ].

2. K/F is the splitting field of some separable polynomial in
F [x ].

3. F is the fixed field of Aut(K/F ).

4. K/F is a normal, finite, and separable extension.
(Equivalently: [K : F ] is finite, and if p(x) is irreducible in
F [x ] but has a root in K , then p(x) splits completely with
distinct roots over K .)

But to prove these we first need some other results....



Characterizations of Galois Extensions, II

First we show that distinct automorphisms are linearly independent
as functions:

Proposition (Independence of Automorphisms)

If σ1, σ2, . . . , σn are distinct embeddings of a field K into a field L,
then they are linearly independent as functions on K . In particular,
distinct automorphisms of K are linearly independent as functions.



Characterizations of Galois Extensions, III

Proof:

We induct on n. The base case n = 1 is trivial, since any
embedding of a field is nonzero (it is injective).

Now suppose that n > 1 and let σ1, σ2, . . . , σn be distinct
automorphisms with a dependence relation
a1σ1 + a2σ2 + · · ·+ anσn = 0 with the ai ∈ L.

Explicitly, this means that for any x ∈ K we have
a1σ1(x) + a2σ2(x) + · · ·+ anσn(x) = 0.

Since σ1 6= σ2, there exists y ∈ K such that σ1(y) 6= σ2(y),
where we note that y 6= 0.

By the dependence relation, we see
a1σ1(xy) + a2σ2(xy) + · · ·+ anσn(xy) = 0, so that
a1σ1(x)σ1(y) + a2σ2(x)σ2(y) + · · ·+ anσn(x)σn(y) = 0.

By taking a linear combination of this equation with the
original dependence, we may cancel the leading coefficient.



Characterizations of Galois Extensions, IV

Proof (continued):

So, once we cancel, we obtain the new dependence
a2σ2(x)[σ1(y)− σ2(y)] + · · ·+ anσn(x)[σ1(y)− σn(y)] = 0
for all x .

By the inductive hypothesis, all of the coefficients
ai [σ1(y)− σi (y)] must then be zero, so in particular
a2[σ1(y)− σ2(y)] = 0. Since σ1(y) 6= σ2(y) this implies
a2 = 0.

But then the original dependence relation becomes
a1σ1(x) + a3σ3(x) + · · ·+ anσn(x) = 0, so again by the
inductive hypothesis, all of the remaining ai are zero.

Thus, σ1, σ2, . . . , σn are linearly independent as functions on
K , as claimed.



Characterizations of Galois Extensions, V

We can use the independence of automorphisms to compute the
degree of the field fixed by a subgroup of Gal(K/F ):

Theorem (Degree of Fixed Fields)

Suppose K/F is a finite-degree field extension and H is a subgroup
of Aut(K/F ). If E is the fixed field of H, then [K : E ] = |H|.

As a warning, this proof is fairly long. There is nothing that is
particularly conceptually difficult, it just requires a bunch of
tedious calculations.



Characterizations of Galois Extensions, VI

Proof:

Suppose H = {σ1, σ2, . . . , σh}, and also that [K : E ] = d . Let
v1, v2, . . . , vd be a basis for K/E .

First we will show that if d < h, then the automorphisms
σ1, . . . , σh are linearly independent (which will contradict the
proposition above).

So suppose d < h. By basic linear algebra, the homogeneous
system of d equations in h variables over K

σ1(v1)x1 + σ2(v1)x2 + · · ·+ σh(v1)xh = 0

σ1(v2)x1 + σ2(v2)x2 + · · ·+ σh(v2)xh = 0
...

...
...

σ1(vd)x1 + σ2(vd)x2 + · · ·+ σh(vd)xh = 0

has a nonzero solution (x1, . . . , xh) = (c1, . . . , ch) for ci ∈ K .



Characterizations of Galois Extensions, VII

Proof (continued):

σ1(v1)x1 + σ2(v1)x2 + · · ·+ σh(v1)xh = 0
...

...
...

σ1(vd)x1 + σ2(vd)x2 + · · ·+ σh(vd)xh = 0

We have a solution (x1, . . . , xh) = (c1, . . . , ch). For any
a1, . . . , ad ∈ F , adding ai times the ith equation above gives
[a1σ1(v1) + a2σ1(v2) + · · ·+ adσ1(vd)]c1 + · · ·
+ [a1σh(v1) + a2σh(v2) + · · ·+ adσh(vd)]ch = 0.

Since the σi fix each of the constants ai , if we write
w = a1v1 + a2v2 + · · ·+ advd , this says
σ1(w)c1 + σ2(w)c2 + · · ·+ σh(w)ch = 0.

But since the ai are arbitrary elements of F and the vi are a
basis for K/E , the relation above holds for every w ∈ K ,
meaning that it is a linear dependence of the σj .

This is impossible by the proposition, so h ≤ d .



Characterizations of Galois Extensions, VIII

Proof (continued more):

Now we will show h = d , so suppose instead that h < d , and
let v1, v2, . . . , vh+1 be F -linearly independent elements of K .
Now consider the solutions (x1, x2, . . . , xh+1) = (α1, . . . , αh+1)
to the following homogeneous system:

σ1(v1)x1 + σ1(v2)x2 + · · ·+ σ1(vh+1)xh+1 = 0

σ2(v1)x1 + σ2(v2)x2 + · · ·+ σ2(vh+1)xh+1 = 0
...

...
...

σh(v1)xh + σh(v2)x2 + · · ·+ σh(vh+1)xh+1 = 0.

Since there are more variables than equations, there is at least
one nonzero solution (α1, . . . , αn+1) in K .
Now we will exploit the group action of the σi to show that
the existence of a nonzero solution in K implies the existence
of a nonzero solution with all the αi ∈ E .



Characterizations of Galois Extensions, IX

Proof (continued even more):

σ1(v1)x1 + σ1(v2)x2 + · · ·+ σ1(vh+1)xh+1 = 0
...

...
...

σh(v1)xh + σh(v2)x2 + · · ·+ σh(vh+1)xh+1 = 0.

So suppose (α1, . . . , αh+1) is a nonzero solution to the
system. We show by induction on k that there is a solution to
the system with k elements in E .

For the base case k = 1, choose any nonzero αi and rescale
the solution so that αi = 1.

For the inductive step, suppose (after relabeling and rescaling
if necessary) that α1, . . . , αk are in E with αk = 1. If all the
αi are in E we are done, so assume αk+1 6∈ E .



Characterizations of Galois Extensions, X

Proof (continued even still more):

Assume αk+1 6∈ E . Then the system is

σ1(v1α1 + · · ·+ vk−1αk−1) + σ1(vk) + σ1(vk+1)αk+1 + · · ·+ σ1(vh+1)αh+1 = 0

σ2(v1α1 + · · ·+ vk−1αk−1) + σ2(vk) + σ2(vk+1)αk+1 + · · ·+ σ2(vh+1)αh+1 = 0
...

...
...

σh(v1α1 + · · ·+ vk−1αk−1) + σh(vk) + σh(vk+1)αk+1 + · · ·+ σh(vh+1)αh+1 = 0.

Now since αk+1 6∈ E , by the assumption that E is the fixed
field of H, there is some τ ∈ H with τ(αk+1) 6= αk+1.

If we apply τ to each of the equations above, then because H
is a group, the elements {σ1, . . . , σh} are merely permuted by
left-multiplication by τ . Now permute the equations back:

σ1(v1α1 + · · ·+ vk−1αk−1) + σ1(vk) + σ1(vk+1)τ(αk+1) + · · ·+ σ1(vh+1)τ(αh+1) = 0

σ2(v1α1 + · · ·+ vk−1αk−1) + σ2(vk) + σ2(vk+1)τ(αk+1) + · · ·+ σ2(vh+1)τ(αh+1) = 0
...

...
...

σh(v1α1 + · · ·+ vk−1αk−1) + σh(vk) + σh(vk+1)τ(αk+1) + · · ·+ σh(vh+1)τ(αh+1) = 0.



Characterizations of Galois Extensions, XI

Proof (continued even yet still more):

Now subtract those two systems. This yields

σ1(vk+1)[αk+1 − τ(αk+1)] + · · ·+ σ1(vh+1)[αh+1 − τ(αh+1)] = 0

σ2(vk+1)[αk+1 − τ(αk+1)] + · · ·+ σ2(vh+1)[αh+1 − τ(αh+1)] = 0
...

...
...

σh(vk+1)[αk+1 − τ(αk+1)] + · · ·+ σh(vh+1)[αh+1 − τ(αh+1)] = 0.

Then we obtain a new solution to the system, namely
(0, 0, . . . , 0, αk+1 − τ(αk+1), . . . , αh+1 − τ(αh+1)), which is
nonzero since αk+1 − τ(αk+1) 6= 0, and which has at least k
entries in E .

Hence by induction, we obtain a solution that has all its
entries in E . But this contradicts the assumption that the vi
are linearly independent, which is impossible.

Thus we must have d = h, meaning that [K : E ] = |H| .



Characterizations of Galois Extensions, XII

Now we can establish the characterizations of Galois extensions:

Theorem (Characterizations of Galois Extensions)

If K/F is a field extension, the following are equivalent:

1. K/F is Galois, which is to say, it has finite degree and
|Aut(K/F )| = [K : F ].

2. K/F is the splitting field of some separable polynomial in
F [x ].

3. F is the fixed field of Aut(K/F ).

4. K/F is a normal, finite, and separable extension.
(Equivalently: [K : F ] is finite, and if p(x) is irreducible in
F [x ] but has a root in K , then p(x) splits completely with
distinct roots over K .)

We already showed (2) =⇒ (1) and that (2) =⇒ (4).
We now show (4) =⇒ (2), (1) ⇐⇒ (3), and (1) =⇒ (4).



Characterizations of Galois Extensions, XIII

Proof (4) =⇒ (2):

We need to show that if K/F is a normal, finite, and
separable extension, then K/F is the splitting field of some
separable polynomial in F [x ].

If K/F is a finite-degree extension then K = F (α1, . . . , αn)
for some αi algebraic over F .

If mi (x) is the minimal polynomial of αi , then since K/F is
separable, each of the mi is separable, and since K/F is
normal, each of the other roots of the mi is in K .

Now let m(x) be the least common multiple of the mi : then
m is separable and all of its roots are in K and generate K/F ,
so K/F is the splitting field of m(x).



Characterizations of Galois Extensions, XIV

Proof (1) ⇐⇒ (3):

We need to show that F is the fixed field of Aut(K/F ) if and
only if |Aut(K/F )| = [K : F ].

So let E be the fixed field of Aut(K/F ).

Then by our theorem on the degrees of fixed fields,
|Aut(K/F )| = [K : E ] = [K : F ]/[E : F ].

Thus |Aut(K/F )| = [K : F ] if and only if [E : F ] = 1, which
is to say, if and only if F is the fixed field of Aut(K/F ).



Characterizations of Galois Extensions, XIV

Proof (1) =⇒ (4):

We must show that if K/F is Galois, then K/F is a normal,
finite, and separable extension. Galois extensions are by
definition finite and separable, so we need only show normality.

Suppose that p(x) ∈ F [x ] is irreducible and has a root α ∈ K .

Let Gal(K/F ) = {σ1, σ2, . . . , σn} and consider the values
σ1(α), σ2(α), . . . , σn(α).

Reorder these values so that σ1(α), . . . , σk(α) are distinct and
that the others are duplicates.

Now consider the polynomial
q(x) = (x − σ1(α))(x − σ2(α)) · · · (x − σk(α)) ∈ K [x ]. Note
that q is separable by hypothesis, and α is a root of q.

We will show in fact that p(x) = q(x), and so since K
contains all the roots of q, it contains all the roots of p, so
since p was arbitrary, this establishes normality of K/F .



Characterizations of Galois Extensions, XV

Proof (1) =⇒ (4) (continued):

We have q(x) = (x − σ1(α))(x − σ2(α)) · · · (x − σk(α)).

For each τ ∈ Gal(K/F ), notice that τ permutes
σ1(α), . . . , σk(α). Thus, it fixes each of the coefficients of
q(x), since these are symmetric functions in σ1(α), . . . , σk(α).

Since K/F is Galois and we showed (1) implies (3), the fact
that every coefficient of q(x) is fixed by every element of
Gal(K/F ) implies that they are all in F , so q(x) ∈ F [x ].

Then q(x) is a polynomial in F [x ] having α as a root, so it is
divisible by the minimal polynomial p(x) of α.

On the other hand, since α is a root of p(x) ∈ F [x ], the
elements σ1(α), . . . , σk(α) are all roots of p(x) as well, so
q(x) divides p(x).

Hence in fact p(x) = q(x), as claimed. Thus the roots of
p(x) are all in K and K/F is normal.



Characterizations of Galois Extensions, XVI

In the last portion of the proof, the elements σ(α) for
σ ∈ Gal(K/F ) played a crucial role, and they will show up often:

Definition

If K/F is a Galois extension and α ∈ K , the elements σ(α) for
σ ∈ Gal(K/F ) are called (Galois) conjugates of α over F .

If E is an intermediate field of K/F , the field
σ(E ) = {σ(α) : α ∈ E} is called a (Galois) conjugate field of E
over F .

We will show later that if the subfield E corresponds to the
subgroup H of Gal(K/F ), then the Galois conjugate field σ(E )
corresponds to the conjugate subgroup σHσ−1 (thus justifying the
use of the same word “conjugate” in this context).



Characterizations of Galois Extensions, XVII

Example: Let K = Q(21/3, ζ3)/Q.

As we have shown, the Galois group of K is isomorphic to the
dihedral group of order 6.

Thus, to compute Galois conjugates of any element of this
field, we simply apply the 6 field automorphisms to it.

Inside K , there are three Galois conjugates of 21/3: they are
21/3, 21/3ζ3, and 21/3ζ23 .

There are six Galois conjugates of 21/3 + ζ3: they are
21/3 + ζ3, 21/3ζ3 + ζ3, 21/3ζ23 + ζ3, 21/3 + ζ23 , 21/3ζ3 + ζ23 , and
21/3ζ23 + ζ23 .



Characterizations of Galois Extensions, XVIII

The proof we gave above showed, along the way, that the Galois
conjugates of α over F are the roots of the minimal polynomial of
α over F .

Roughly speaking, Galois conjugates are “algebraically
indistinguishable” over F , the indistinguishability being
provided by the automorphism σ mapping one of them to
another.

In particular, if we have an explicit description of the Galois
group’s action on K/F , then we can easily find the minimal
polynomial of an arbitrary element of K (and its degree) by
computing its Galois conjugates.



Characterizations of Galois Extensions, XIX

Example: Calculate the Galois conjugates of
√

2 +
√

3 over Q, and
find its minimal polynomial over Q.

We work inside K = Q(
√

2,
√

3), since the element
√

2 +
√

3
lies inside this field.

We know that the Galois group of K is isomorphic to the
Klein 4-group.

Then the Galois conjugates of Q(
√

2,
√

3) over Q are√
2 +
√

3,
√

2−
√

3, −
√

2 +
√

3, and −
√

2−
√

3.

The minimal polynomial of
√

2 +
√

3 over Q thus has degree
4, and is given explicitly by
(x −

√
2−
√

3)(x −
√

2 +
√

3)(x +
√

2−
√

3)(x +
√

2 +
√

3)
= x4 − 10x2 + 1.



Characterizations of Galois Extensions, XIX
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Putting The Fun in Fundamental Theorem, I

We have now developed all of the preliminaries, so we now dive
into the proof of the fundamental theorem of Galois theory.

We will establish several of the calculation parts first before
showing that correspondence maps are actually inverses of one
another.



Putting The Fun in Fundamental Theorem, II

Theorem (Fundamental Theorem of Galois Theory)

Let K/F be a Galois extension and let G = Gal(K/F ).
0. There is an inclusion-reversing bijection between intermediate fields

E of K/F and subgroups H of G , given by associating a subgroup
H to its fixed field E .

1. Subgroup indices correspond to extension degrees, so that
[K : E ] = |H| and [E : F ] = |G : H|.

2. The extension K/E is always Galois, with Galois group H.

3. If F is a fixed algebraic closure of F , then the embeddings of E into
F are in bijection with the left cosets of H in G.

4. E/F is Galois if and only if H is a normal subgroup of G , and in
that case, Gal(E/F ) is isomorphic to G/H.

5. Intersections of subgroups correspond to joins of fields, and joins of
subgroups correspond to intersections of fields.

6. The lattice of subgroups of G is the same as the lattice of
intermediate fields of K/F turned upside-down.



Putting The Fun in Fundamental Theorem, III

2. For any intermediate field E , the extension K/E is always
Galois, with Galois group H.

Proof: Suppose that H is a subgroup of G and let E be the
fixed field of H.

As calculated in (1), we have |H| = |Aut(K/E )| = [K : E ], so
K/E is Galois.

Furthermore, since everything is finite this forces
H = Aut(K/E ) = Gal(K/E ) as claimed.



Putting The Fun in Fundamental Theorem, IV

2. Subgroup indices correspond to extension degrees, so that
[K : E ] = |H| and [E : F ] = |G : H|.

Proof: Suppose that H is a subgroup of G and let E be the
fixed field of H.

By definition, E is fixed by every element of H, so H is
contained in Aut(K/E ) so in particular |H| ≤ |Aut(K/E )|.
But we also know that |Aut(K/E )| ≤ [K : E ] = |H| from our
previous results, so in fact, |H| = |Aut(K/E )| = [K : E ].

For the other statement we have seen that F is the fixed field
of Gal(K/F ), and so [K : F ] = |G |.
Dividing this relation by the one above immediately yields
[E : F ] = |G : H|, by the definition of the index of a subgroup
and the degree tower formula.



Putting The Fun in Fundamental Theorem, V

0. There is an inclusion-reversing bijection between intermediate
fields E of K/F and subgroups H of G , given by associating a
subgroup H to its fixed field E .

Proof: For surjectivity of the fixed field map, suppose E is an
intermediate field.

From (2), K/E is Galois with Galois group Aut(K/E ).

But by our characterization of Galois extensions, this means E
is the fixed field of the subgroup Aut(K/E ) of G .



Putting The Fun in Fundamental Theorem, VI

0. There is an inclusion-reversing bijection between intermediate
fields E of K/F and subgroups H of G , given by associating a
subgroup H to its fixed field E .

Proof (continued): For injectivity, suppose that H1 and H2 are
subgroups of G with respective fixed fields E1 and E2. If
E1 = E2, then E1 is fixed by H2, so since Aut(K/E1) = H1

from (2) above, this means H2 ≤ H1.

Conversely, since E2 is fixed by H1, then by the same
argument we have H1 ≤ H2, so H1 = H2.

Finally, the correspondences are inverse to one another
because the automorphisms fixing E are precisely Aut(K/E ),
again by the above.



Putting The Fun in Fundamental Theorem, VII

3. If F is a fixed algebraic closure of F , then the embeddings of
E into F are in bijection with the left cosets of H in G .

Proof: Suppose the subgroup corresponding to σ(E ) is H ′.

For σ ∈ G observe that for any α ∈ E and h ∈ H, we have
(σhσ−1)(σ(α)) = σ(h(σ−1(σ(α)))) = σ(h(α)) = σ(α) since
h fixes α by assumption.

This means that every element of σHσ−1 fixes σ(E ), and so
σHσ−1 ≤ H ′.

Since E/F and σ(E )/F are isomorphic (via σ), we have
[E : F ] = [σ(E ) : F ], whence [K : E ] = [K : σ(E )], and then
by (1) we see that

∣∣σHσ−1
∣∣ = |H| = |H ′|.

Since both groups are finite we therefore have σHσ−1 = H ′ as
claimed.



Putting The Fun in Fundamental Theorem, VIII

4. E/F is Galois if and only if H is a normal subgroup of G , and
in that case, Gal(E/F ) is isomorphic to G/H.

Proof: First, the statement that σ(E ) = E for all σ ∈ G is
equivalent to saying that E is normal.

This follows because, for any α ∈ E , the Galois conjugates
σ(α) ∈ E are the other roots of the minimal polynomial of α:
thus E is normal precisely when all σ(α) are also in E .

Then since K/F is Galois, it is finite-degree and separable, so
E/F is also finite-degree and separable.

Since the Galois correspondence is a bijection, we see that
σ(E ) = E for all σ ∈ G if and only if σHσ−1 = H for all
σ ∈ G . Hence E is Galois over F if and only if H is normal in
G , as claimed.



Putting The Fun in Fundamental Theorem, IX

4. E/F is Galois if and only if H is a normal subgroup of G , and
in that case, Gal(E/F ) is isomorphic to G/H.

Proof (continued): Now suppose H is normal in G .

Then we may view a left coset σH as acting on E via
(σH) · E = σ(E ).

It is easy to see that this action is well-defined and faithful.

Then since |Gal(E/F )| = |G : H| from (1), the corresponding
association of σH with the automorphism σ of E yields an
isomorphism of Gal(E/F ) with the quotient group G/H.



Putting The Fun in Fundamental Theorem, X

5. Intersections of subgroups correspond to joins of fields, and
joins of subgroups correspond to intersections of fields.

Proof: Suppose that H1 and H2 are subgroups of G with
respective fixed fields E1 and E2.

Then any element in H1 ∩H2 fixes both E1 and E2 hence fixes
everything in E1E2 (since the elements of the composite field
are rational functions of elements of E1 and E2).

Conversely, any automorphism fixing E1E2 must in particular
fix both E1 and E2 hence be contained in H1 ∩ H2.

Thus, H1 ∩ H2 corresponds to E1E2.



Putting The Fun in Fundamental Theorem, XI

5. Intersections of subgroups correspond to joins of fields, and
joins of subgroups correspond to intersections of fields.

Proof (continued): Similarly, E1 ∩ E2 is fixed by any element
in H1 or H2, hence also by any word in such elements, so
〈H1,H2〉 fixes E1 ∩ E2.

Inversely, if σ is any automorphism that does not fix E1 ∩ E2,
then for any h ∈ H1 ∪ H2 we see that σh also does not fix
E1 ∩ E2.

Then by an easy induction argument on the word length, we
see that σ cannot be written as a word in 〈H1,H2〉.
Thus, 〈H1,H2〉 corresponds to E1 ∩ E2.



Putting The Fun in Fundamental Theorem, XII

6. The lattice of subgroups of G is the same as the lattice of
intermediate fields of K/F turned upside-down.

Proof: This follows immediately from (1), (5), and the fact
that the Galois correspondence is inclusion-reversing.



Fundamentally Galois Examples, I

We may use the fundamental theorem of Galois theory to extract
quite a lot of new information about field extensions.

If K/F is Galois, then subgroups of the Galois group
correspond to intermediate fields.

Thus, in particular, we can find all of the intermediate fields of
K/F by computing the fixed field for each subgroup; note that
we have previously described how to reduce the computation
of fixed fields to solving a system of linear equations.

Then we can draw the full subfield lattice for K/F using only
the subgroup lattice of Gal(K/F ).



Fundamentally Galois Examples, II

We can even use the fundamental theorem to say things about
non-Galois extensions.

Even if K/F is not Galois, if it is finite-degree and separable
then we know K = F (α1, . . . , αn) for some algebraic αi whose
minimal polynomials are separable.

Then the splitting field of the lcm of these minimal
polynomials K̂ is Galois over K .

Then, just as before, we can find all of the intermediate fields
of K̂/F , which will in particular identify all of the intermediate
fields of K/F .

Also, as we described earlier, we can use the Galois action to
compute Galois conjugates of elements, which will give us
information about minimal polynomials.



Fundamentally Galois Examples, III

Example: Identify all of the intermediate fields of Q(21/3, ζ3)/Q
and then draw the subfield lattice.

We have done all of these calculations in various pieces
already, but let us describe how to do them more
systematically using the fundamental theorem.

We know K = Q(21/3, ζ3)/Q is Galois since it is the splitting
field of x3 − 2 over Q, so we know that |Gal(K/Q)| = 6.

Any automorphism must map 21/3 to one of its Galois
conjugates 21/3, 21/3ζ3, 21/3ζ23 and likewise must map ζ3 to
one of its Galois conjugates ζ3, ζ23 .

Since there are only six possibilities we conclude that all six
yield automorphisms of K/Q.



Fundamentally Galois Examples, IV

Example: Identify all of the intermediate fields of Q(21/3, ζ3)/Q
and then draw the subfield lattice.

With σ(21/3, ζ3) = (21/3ζ3, ζ3) and τ(21/3, ζ3) = (21/3, ζ23 ),
we can verify (as previously) that Gal(K/Q) is isomorphic to
D2·3 with σ behaving as r and τ behaving as s, and also
isomorphic to S3 via the permutation action on
{21/3, 21/3ζ3, 21/3ζ23} with σ behaving as (1 2 3) and τ
behaving as (2 3).



Fundamentally Galois Examples, V

Example: Identify all of the intermediate fields of Q(21/3, ζ3)/Q
and then draw the subfield lattice.

From our knowledge of the dihedral group, we know it has
subgroups {e}, 〈τ〉, 〈τσ〉,

〈
τσ2

〉
, 〈σ〉, and 〈σ, τ〉, and can

draw the corresponding lattice:



Fundamentally Galois Examples, VI

Example: Identify all of the intermediate fields of Q(21/3, ζ3)/Q
and then draw the subfield lattice.

The fixed field of {e} is K , while the fixed field of
〈σ, τ〉 = Gal(K/Q) is Q by condition (3) of the
characterization of Galois extensions.

For the other fixed fields we can either compute the action
explicitly on a basis (which is straightforward, if tedious) or
try to identify elements of K that might generate some of
these fields, and then exploit the Galois action.

For example, observe that σ stabilizes ζ3, and since the fixed
field corresponding to σ must have degree 2 over Q, it must
be equal to Q(ζ3). Notice that 〈σ〉 is normal in the Galois
group, and indeed Q(ζ3) is Galois over Q.

Likewise, we can see that τ stabilizes 21/3, and since the fixed
field of τ must have degree 3 over Q, it must be Q(21/3).



Fundamentally Galois Examples, VII

Example: Identify all of the intermediate fields of Q(21/3, ζ3)/Q
and then draw the subfield lattice.

Since 〈τ〉 is not normal, we can compute other fixed fields by
conjugating it (via part (3) of the fundamental theorem): for
example, σ 〈τ〉σ−1 = 〈τσ〉 stabilizes σ(Q(21/3)) = Q(21/3ζ3),
and σ2 〈τ〉σ−2 =

〈
τσ2

〉
stabilizes σ2(Q(21/3)) = Q(21/3ζ23 ).

We can assemble this information into the full subfield lattice:



Fundamentally Galois Examples, VIII

Example: Identify all of the intermediate fields of Q(31/4, i) and
then draw the subfield lattice.

We know that K = Q(31/4, i)/Q is Galois since it is the
splitting field of x4 − 3 over Q, and so we know that
|Gal(K/Q)| = 8. Any automorphism must map 31/4 to one of
its Galois conjugates 31/4, 31/4i , −31/4, −31/4i , and likewise
must map i to one of its Galois conjugates i , −i .

Since there are only eight possibilities we conclude that all
eight yield automorphisms of K/Q.

With the automorphisms r(31/4, i) = (31/4i , i) and
s(31/4, i) = (31/4,−i), we can verify (as previously) that
Gal(K/Q) is isomorphic to D2·4.



Fundamentally Galois Examples, IX

Example: Identify all of the intermediate fields of Q(31/4, i) and
then draw the subfield lattice.

From our knowledge of the dihedral group, we know it has
subgroups {e}, 〈s〉, 〈sr〉,

〈
sr2
〉
,
〈
sr3
〉
,
〈
r2
〉
, 〈r〉,

〈
r2, s

〉
,〈

r2, sr
〉
, and 〈r , s〉, and can draw the corresponding lattice:



Fundamentally Galois Examples, X

Example: Identify all of the intermediate fields of Q(31/4, i) and
then draw the subfield lattice.

The fixed field of {e} is K , while the fixed field of
〈r , s〉 = Gal(K/Q) is Q by condition (3) of the
characterization of Galois extensions.

For the other fixed fields, observe that r stabilizes i , and since
the fixed field of 〈r〉 has degree 2 over Q, it must be Q(i).

Also, r2 stabilizes
√

3 and i , so the fixed field of
〈
r2
〉

must be

Q(
√

3, i).

Likewise, s stabilizes 31/4 so the fixed field of 〈s〉 must be
Q(31/4) since it has degree 4 over Q.

Then since r 〈s〉 r−1 =
〈
sr2
〉

the fixed field of
〈
sr2
〉

is

s(Q(31/4)) = Q(31/4i).

Since
√

3 is stabilized by r2 and s, and the fixed field
〈
r2, s

〉
has degree 2 over Q, it is Q(

√
3).



Fundamentally Galois Examples, XI

Example: Identify all of the intermediate fields of Q(31/4, i) and
then draw the subfield lattice.

Likewise, since
√
−3 = i

√
3 is stabilized by r2 and sr , and the

fixed field
〈
r2, sr

〉
has degree 2 over Q, it is Q(

√
−3).

It remains to find the fixed fields of 〈sr〉 and
〈
sr3
〉
; since these

are conjugate, it is enough to find one of them.

For sr , we can compute explicitly that sr stabilizes 31/4(1− i)
(this element can be found by writing out an explicit basis and
evaluating the action of sr on it) but that no other
nonidentity automorphism fixes it, so it does not lie in any
proper subfield of the fixed field of sr .

Thus the fixed field of sr is Q(31/4(1− i)).

Then since r 〈sr〉 r−1 =
〈
sr3
〉
, the fixed field of

〈
sr3
〉

is

r [Q(31/4(1− i))] = Q(31/4(1 + i)).



Fundamentally Galois Examples, XII

Example: Identify all of the intermediate fields of Q(31/4, i) and
then draw the subfield lattice.

So the full subfield lattice is as follows:



Fundamentally Galois Examples, XIII

Example: Find the splitting field K of p(x) = x6 + 3 over Q and
identify all of its subfields.

If we write α = (−3)1/6 = 31/6e iπ/12, we can see that the
roots of p(x) are α · ζk6 for 0 ≤ k ≤ 5, where

ζ6 = e2πi/6 = 1
2 + i

√
3
2 is a primitive 6th root of unity.

Thus, K = Q(α, ζ6), which is the composite of the fields
Q(α), which has degree 6 over Q by Eisenstein’s criterion,
and the field Q(ζ6), which has degree 2 over Q.

Any automorphism of K/Q then must map α to one of its six
Galois conjugates over Q, namely α · ζk6 for 0 ≤ k ≤ 5, and
must also map ζ6 to one of its two Galois conjugates over Q,
namely ζ6, ζ56 = ζ6.



Fundamentally Galois Examples, XIV

Example: Find the splitting field K of p(x) = x6 + 3 over Q and
identify all of its subfields.

It would then seem that we have 12 automorphisms of K/Q,
and that [K : Q] is equal to 12.

But in fact, this is not the case: note that
α3 =

√
3e iπ/4 = i

√
3, and therefore 2ζ6 − 1 = i

√
3 = α3,

meaning that ζ6 ∈ Q(α), as you showed on Homework 5.

Therefore in fact K = Q(α) so [K : Q] = 6, not 12, and the
automorphisms (of which there are 6) are determined solely by
their action on α.



Fundamentally Galois Examples, XV

Example: Find the splitting field K of p(x) = x6 + 3 over Q and
identify all of its subfields.

If σ is the automorphism with σ(α) = αζ6, then
σ(
√
−3) = σ(α3) = α3ζ36 = −

√
−3, and thus σ(ζ6) = ζ56 .

Hence σ2(α) = σ(α)σ(ζ6) = α, so σ has order 2.

Likewise, if τ is the automorphism with τ(α) = αζ26 , then
τ(
√
−3) = τ(α3) = α3ζ66 =

√
−3 and thus τ(ζ6) = ζ6. Hence

τ3(α) = αζ66 = α, so τ has order 3.

We can then compute τσ(α) = τ(αζ6) = αζ36 , while
στ(α) = σ(αζ26 ) = αζ56 : thus στ 6= τσ.

Hence Gal(K/Q) is non-abelian, so must be isomorphic to
the dihedral group D2·3, with σ playing the role of s and τ
playing the role of r .



Fundamentally Galois Examples, XVI

Example: Find the splitting field K of p(x) = x6 + 3 over Q and
identify all of its subfields.

We can then compute fixed fields: by the fundamental
theorem of Galois theory, the fixed field of τ is the unique
subfield of Q(α) of degree, so it must be Q(

√
−3).

Likewise, there are three Galois-conjugate subfields of degree
3: since α2/ζ6 = 31/3 ∈ K , this means one of them is
Q(31/3). We can compute
σ(31/3) = σ(α2/ζ6) = α2ζ36 = −α2, and so σ fixes Q(31/3).

Since the Galois conjugates of 31/3 over Q are 31/3ζ3 and
31/3ζ23 the other fixed fields are Q(31/3ζ3) (the fixed field of
〈στ〉) and Q(31/3ζ3) (the fixed field of

〈
στ2

〉
).



Fundamentally Galois Examples, XVII

Example: Find the splitting field K of p(x) = x6 + 3 over Q and
identify all of its subfields.

The full subfield diagram is then as follows:



Summary

We established some characterizations of Galois extensions.

We prove the fundamental theorem of Galois theory.

We discussed a number of examples of the Galois correspondence.

Next lecture: Characterizing Galois extensions, the proof and
examples of the fundamental theorem of Galois theory.


