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Field Automorphisms

Last time, we introduced automorphisms of a field extension K/F
(ring isomorphisms of K with itself that fix F ) and characterized
automorphisms of simple extensions:

Theorem (Automorphisms of Simple Algebraic Extensions)

Suppose α is algebraic over F with minimal polynomial m(x), and
K = F (α): then for any σ ∈ Aut(K/F ), σ(α) is also a root of
m(x) in K .
Conversely, if β is any other root of m(x) in K , then there exists a
unique automorphism τ ∈ Aut(K/F ) with τ(α) = β.
Therefore, |Aut(K/F )| is equal to the number of roots of m(x) in
K , and is (in particular) finite and at most [K : F ].

Today, we will extend these results to study automorphism of
splitting fields.



Isomorphism Lifting Lemma

We will also use the isomorphism lifting lemma a number of times,
so here is a reminder of what it says:

Lemma (Lifting Isomorphisms)

Let ϕ : E → F be an isomorphism of fields. If α is algebraic over E
with minimal polynomial p(x) = a0 + a1x + · · ·+ anxn ∈ E [x ], and
β is algebraic over F with minimal polynomial
q(x) = ϕ(a0) + ϕ(a1)x + · · ·+ ϕ(an)xn ∈ F [x ], then there is a
unique isomorphism ϕ̃ : E (α)→ F (β) extending ϕ (i.e., such that
ϕ̃|E = ϕ) and such that ϕ(α) = β.

By iteratively applying this result, we can lift the isomorphism ϕ
(or ϕ̃) to an isomorphism of the splitting field of p over E with the
splitting field of q over F .



Automorphisms of Splitting Fields, I

We will first establish a useful fact about roots of polynomials in
splitting fields:

Theorem (Normality of Splitting Fields)

If K is a splitting field over F and p(x) ∈ F [x ] is irreducible, if
p(x) has a root in K then p(x) splits completely in K (i.e., all
roots of p(x) are in K ).

This property of splitting fields described above arises often enough
that we will give it a name:

Definition

The extension K/F is normal if for any irreducible p(x) ∈ F [x ], if
p(x) has a root in K then p(x) splits completely in K .

The content of the theorem is that splitting fields are normal.



Automorphisms of Splitting Fields, II

Proof:

Suppose that K is the splitting field of the polynomial
q(x) ∈ F [x ] having roots r1, . . . , rn: then K = F (r1, . . . , rn).

Suppose also that p(x) has a root α ∈ K , and let β be any
other root of p(x) (in some splitting field).

By the isomorphism lifting lemma, there is an isomorphism
σ : F (α)→ F (β) fixing F and with σ(α) = β.

Then K (β) = F (r1, . . . , rn, β) = F (β)(r1, . . . , rn), so K (β) is
a splitting field for q(x) over F (β).

Also, since α ∈ K , we see that K is a splitting field for q(x)
over F (α).



Automorphisms of Splitting Fields, III

Proof (continued):

By the isomorphism lifting lemma for splitting fields, the
isomorphism σ : F (α)→ F (β) extends to an isomorphism of
the respective splitting fields K and K (β) fixing F .

In particular, since isomorphisms preserve extension degrees,
this means [K : F ] = [K (β) : F ].

But since both of these extensions are finite-degree, we must
have K (β) = K , and thus β ∈ K .

Since β was an arbitrary root of p, all roots of p are in K .
This means K is normal, as claimed.



Automorphisms of Splitting Fields, IV

Now we can compute #Aut(K/F ) when K is a splitting field:

Theorem (Automorphisms of Splitting Fields)

If K is a splitting field over F , then |Aut(K/F )| ≤ [K : F ] with
equality if and only if K/F is separable (i.e., when K is the
splitting field of a separable polynomial over F ).



Automorphisms of Splitting Fields, V

We will actually show a slightly stronger result by induction on
n = [K : F ].

Suppose that ϕ : E → F is a given field isomorphism, and K
is the splitting field of the polynomial qE (x) over E .

Take qF (x) to be the polynomial obtained by applying ϕ to
the coefficients of qE (x) and let L be the splitting field of
qF (x) over F .

By using the isomorphism lifting lemma, we showed that K is
isomorphic to L via a map that extends ϕ.

We will show that the number of such isomorphisms
σ : K → L is at most [K : F ], with equality if and only if K/F
is separable.

The desired result then follows upon setting E = F and ϕ to
be the identity map.



Automorphisms of Splitting Fields, V

Proof:

We induct on n = [K : F ]. The base case n = 1 is trivial,
since then K = E , L = F , and so the only possible map
σ : K → L extending ϕ is ϕ itself.

For the inductive step, suppose n ≥ 2 and let pE (x) be any
irreducible factor of qE (x) of degree greater than 1 having a
root α, which is in K by hypothesis.

Set pF (x) to be the polynomial obtained by applying ϕ to the
coefficients of pE (x). Then if σ is any isomorphism from K to
L, then σ(α) is some root βi of pF (x), which is in L.

By the isomorphism lifting lemma, the number of such
isomorphisms τi : E (α)→ F (βi ) is equal to the number of
roots βi of pF (x), which is at most
[F (β) : F ] = deg(pF ) = deg(pE ) = [E (α) : E ], with equality
precisely when pE (x) is separable.



Automorphisms of Splitting Fields, VI

Proof (continued):

Now we apply the inductive hypothesis to each of the possible
maps τi : E (α)→ F (βi ), since K is a splitting field (of qE )
over E (α) and L is a splitting field (of qF ) over F (βi ).

This tells us that the number of isomorphisms σ : K → L
extending τi is at most [K : E (α)] with equality precisely
when qE (x) is separable.

Summing over all of the maps τi , we see that the total number
of isomorphisms σ : K → L extending ϕ : E → F is at most
[E (α) : E ] · [K : E (α)] = [K : E ], with equality if and only if
qE (x) is separable (since this implies pE (x) is also separable).



Automorphisms of Splitting Fields, VII

Splitting fields of separable polynomials play a pivotal role in
studying finite-degree extensions:

Definition

If K/F is a finite-degree extension, we say that K is a
Galois extension of F if |Aut(K/F )| = [K : F ].

If K/F is a Galois extension, we will refer to Aut(K/F ) as the
Galois group of K/F , and denote it as Gal(K/F ).

Some authors refer to the automorphism group of any extension as
a Galois group. We only refer to Galois groups for extensions that
have the “maximal possible” number of automorphisms as a way
of emphasizing the important properties of these extensions.



Automorphisms of Splitting Fields, VIII

Our theorem from two slides ago shows that if K is a splitting field
of a separable polynomial over F , then K/F is Galois.

We will later show that the converse of this statement is also
true, namely that |Aut(K/F )| ≤ [K : F ] for all finite-degree
extensions, and that equality holds if and only if K/F is a
splitting field of a separable polynomial.

The requirement that the polynomial be separable is
necessary: for example, suppose F = F2(t) and K is the
splitting field of the irreducible polynomial p(x) = x2 − t.
Then K = F (t1/2), and p(x) = (x − t1/2)2 in K : then any
automorphism σ of K/F is determined by the value of
σ(t1/2). But since σ(t1/2) must map to a root of p(x), there
is only one choice, namely σ(t1/2) = t1/2. Hence Aut(K/F )
is the trivial group, even though [K : F ] = 2.



Automorphisms of Splitting Fields, IX

In many cases, we can explicitly compute Galois groups of splitting
fields by analyzing the behavior of generators of the extension.

Specifically, if we can write down a nice set of generators for a
splitting field, then to compute elements of the Galois group,
we just have to identify the automorphisms based on their
actions on the generators.

In some cases, just knowing the order of the Galois group
(which by our theorem is equal to the degree of the splitting
field, when it is separable) is enough to characterize all the
possible automorphisms.



Automorphisms of Splitting Fields, IX

Example: Find the Galois group of the splitting field of
p(x) = x3 − 2 over Q.

We have seen that the splitting field of x3 − 2 over Q is
K = Q( 3

√
2, ζ3).

So let’s try to write down some automorphisms based on their
actions on the generators 3

√
2 and ζ3.

Since the minimal polynomial of 3
√

2 over Q is x3 − 2, any
automorphism of K/Q must send 3

√
2 to one of the three

roots 3
√

2, 3
√

2ζ3, and 3
√

2ζ23 .

Likewise, since the minimal polynomial of ζ3 over Q is
x2 − x + 1, any automorphism of K/Q must send ζ3 to one of
the two roots ζ3, ζ23 .

Thus, there are at most 6 possible automorphisms of K/Q.



Automorphisms of Splitting Fields, IX

Example: Find the Galois group of the splitting field of
p(x) = x3 − 2 over Q.

But because [K : Q] = 6 and K is separable, we know
Gal(K/Q) is a group of order 6.

Thus, all 6 possible choices 3
√

2 7→ { 3
√

2, 3
√

2ζ3,
3
√

2ζ23},
ζ3 7→ {ζ3, ζ23} must actually extend to automorphisms.

One automorphism σ has σ( 3
√

2, ζ3) = ( 3
√

2ζ3, ζ3).

Another automorphism τ has τ( 3
√

2, ζ3) = ( 3
√

2, ζ23 ).

Then στ has στ( 3
√

2, ζ3) = σ( 3
√

2, ζ23 ) = ( 3
√

2ζ3, ζ
2
3 ), whereas

τσ has τσ( 3
√

2, ζ3) = τ( 3
√

2ζ3, ζ3) = ( 3
√

2ζ23 , ζ
2
3 ).

Since στ 6= τσ here, so by our classification of groups of order
6, we see that the Galois group must be isomorphic to D2·3.



Automorphisms of Splitting Fields, X

Example: Find the Galois group of the splitting field of
p(x) = x3 − 2 over Q.

With the automorphisms σ with σ( 3
√

2, ζ3) = ( 3
√

2ζ3, ζ3) and τ
with τ( 3

√
2, ζ3) = ( 3

√
2, ζ23 ), we can check that σ3 = τ2 = e,

while τσ2 = στ .

Thus, σ plays the role of the element r ∈ D2·3 while τ plays
the role of s.

Another way we could have identified the Galois group G was
to observe that G permutes the roots of the polynomial
x3 − 2.

Since these roots generate the splitting field K/Q, the group
action is faithful, and so we get an embedding of G as a
subgroup of S3. But since #G = 6, in fact G ∼= S3.



Automorphisms of Splitting Fields, X

In fact, this last observation holds in general: if K/F is the
splitting field of the polynomial p(x) with roots r1, r2, . . . , rn, then
any element of the Galois group will act as a permutation on these
roots. Conversely, any element of Gal(K/F ) is characterized by the
associated permutation inside Sn (if we fix a labeling of the roots).

In the example, if we label the roots { 3
√

2, 3
√

2ζ3,
3
√

2ζ23} as
{1, 2, 3}, then σ corresponds to the permutation (1 2 3) while
τ corresponds to the permutation (2 3).

Although in that example the Galois group was all of S3, in general
Galois groups can be proper subgroups of Sn.

For example, as we saw last time, the Galois group of the field
K = Q(

√
2,
√

3), which is the splitting field for
p(x) = (x2 − 2)(x2 − 3), only has 4 elements.

If we label the roots
√

2,−
√

2,
√

3,−
√

3 as {1, 2, 3, 4} then
the possible permutations are e, (1 2), (3 4), and (1 2)(3 4).



Automorphisms of Splitting Fields, XI

Example: Find the order of the Galois group of the splitting field of
p(x) = x4 − 3 over Q.

The roots of this polynomial are 31/4 · ik for 0 ≤ k ≤ 3, and
so the splitting field is K = Q(31/4, i), which has degree 8
over Q by similar arguments to those we have given.

Since the polynomial is trivially separable since it is irreducible
and in characteristic 0, the order of the Galois group is 8.

Each automorphism of K/Q must map 31/4 to one of the 4
roots of x4 − 3, and must map i to one of the 2 roots of
x2 + 1.

Thus, since we know there are 8 automorphisms of K/Q, all 8
choices must actually yield automorphisms.



Automorphisms of Splitting Fields, XI

Example: Find the order of the Galois group of the splitting field of
p(x) = x4 − 3 over Q.

The roots of this polynomial are 31/4 · ik for 0 ≤ k ≤ 3, and
so the splitting field is K = Q(31/4, i), which has degree 8
over Q by similar arguments to those we have given.

Since the polynomial is trivially separable since it is irreducible
and in characteristic 0, the order of the Galois group is 8.

Each automorphism of K/Q must map 31/4 to one of the 4
roots of x4 − 3, and must map i to one of the 2 roots of
x2 + 1.

Thus, since we know there are 8 automorphisms of K/Q, all 8
choices must actually yield automorphisms.



Automorphisms of Splitting Fields, XII

Example: Find the Galois group of the splitting field of
p(x) = x4 − 3 over Q.

One automorphism σ has σ(31/4, i) = (31/4i , i), and another
map τ has τ(31/4, i) = (31/4,−i).

We can then see σ has order 4, τ has order 2, and στ = τσ3.

Thus, the Galois group is isomorphic to the dihedral group
D2·4 of order 8, with σ acting as r and τ acting as s.

If we label the four roots {31/4, 31/4i ,−31/4,−31/4i} of p(x)
as {1, 2, 3, 4}, then σ corresponds to the permutation (1 2 3 4)
and τ corresponds to the permutation (2 4).

In fact, we could have identified the Galois group structure
purely using the fact that it is a subgroup of S4 of order 8: it
is then a Sylow 2-subgroup of S4, and as we have previously
shown, the Sylow 2-subgroups of S4 are dihedral of order 8.



Automorphisms of Splitting Fields, XII

Example: Find the Galois group of the splitting field of
p(x) = x4 − 3 over Q.

One automorphism σ has σ(31/4, i) = (31/4i , i), and another
map τ has τ(31/4, i) = (31/4,−i).

We can then see σ has order 4, τ has order 2, and στ = τσ3.

Thus, the Galois group is isomorphic to the dihedral group
D2·4 of order 8, with σ acting as r and τ acting as s.

If we label the four roots {31/4, 31/4i ,−31/4,−31/4i} of p(x)
as {1, 2, 3, 4}, then σ corresponds to the permutation (1 2 3 4)
and τ corresponds to the permutation (2 4).

In fact, we could have identified the Galois group structure
purely using the fact that it is a subgroup of S4 of order 8: it
is then a Sylow 2-subgroup of S4, and as we have previously
shown, the Sylow 2-subgroups of S4 are dihedral of order 8.



Automorphisms of Splitting Fields, XIII

Example: If p is a prime, find the Galois group of Q(ζp)/Q.

As we have discussed, K = Q(ζp) has degree p − 1 over Q,
and is the splitting field of the cyclotomic polynomial

Φp(x) =
xp − 1

x − 1
= xp−1 + xp−2 + · · ·+ x + 1 whose roots are

ζp, ζ2p , ... , ζp−1
p . Thus, Gal(K/Q) has order p − 1.

Furthermore, any element σ ∈ Gal(K/Q) is determined by
the value σ(ζp), which must be ζkp for some integer k with
1 ≤ k ≤ p − 1. Since there are at most p − 1 such maps, all
of them must actually give rise to automorphisms.

Hence Gal(K/Q) = {σ1, σ2, . . . , σp−1} where σa(ζp) = ζap .



Automorphisms of Splitting Fields, XIII

Example: If p is a prime, find the Galois group of Q(ζp)/Q.

As we have discussed, K = Q(ζp) has degree p − 1 over Q,
and is the splitting field of the cyclotomic polynomial

Φp(x) =
xp − 1

x − 1
= xp−1 + xp−2 + · · ·+ x + 1 whose roots are

ζp, ζ2p , ... , ζp−1
p . Thus, Gal(K/Q) has order p − 1.

Furthermore, any element σ ∈ Gal(K/Q) is determined by
the value σ(ζp), which must be ζkp for some integer k with
1 ≤ k ≤ p − 1. Since there are at most p − 1 such maps, all
of them must actually give rise to automorphisms.

Hence Gal(K/Q) = {σ1, σ2, . . . , σp−1} where σa(ζp) = ζap .



Automorphisms of Splitting Fields, XIV

Example: If p is a prime, find the Galois group of Q(ζp)/Q.

We have Gal(K/Q) = {σ1, σ2, . . . , σp−1} where σa(ζp) = ζap .

We can then compute σaσb(ζp) = σa(ζbp ) = ζabp . Thus we see
that σaσb = σab, where we view the subscript modulo p.

Hence the group structure of Gal(K/Q) is the same as the
structure of the nonzero elements of Z/pZ under
multiplication.

Explicitly, this says that the map ϕ : (Z/pZ)× → Gal(K/Q)
given by ϕ(a) = σa is an isomorphism.

Since (Z/pZ)× is the multiplicative group of the field Fp,
which is a cyclic group, we conclude that Gal(K/Q) is a
cyclic group of order p − 1.

If you like, you can also recognize this action as the
automorphism group of the cyclic group of pth roots of unity.



Automorphisms of Splitting Fields, XV

Example: If p is a prime, find the Galois group of Fpn/Fp.

We have previously shown that K = Fpn is the splitting field
of the separable polynomial xpn − x over Fp, and so the Galois
group has order [Fpn : Fp] = n.

We have also shown that the Frobenius map ϕ : K → K given
by ϕ(a) = ap is an automorphism of K . We can then compute
ϕ2(a) = ϕ(ap) = ap

2
, ϕ3(a) = ϕ(ϕ2(a)) = ϕ(ap

2
) = ap

3
, and

in general ϕk(a) = ap
k
.

In particular, since every element of Fpn is a root of xpn − x ,
we see that ϕn(a) = ap

n
= a for every a, so ϕn is the identity.

On the other hand, ϕk for k < n cannot be the identity, since
ϕk(a) = a is the same as the polynomial equation

ap
k − a = 0, which can have at most pk < pn roots in K .

Hence ϕ has order n in Gal(K/Fp). Thus, Gal(K/Fp) is
cyclic and generated by the Frobenius map ϕ.



Automorphisms of Splitting Fields, XV

Example: If p is a prime, find the Galois group of Fpn/Fp.

We have previously shown that K = Fpn is the splitting field
of the separable polynomial xpn − x over Fp, and so the Galois
group has order [Fpn : Fp] = n.

We have also shown that the Frobenius map ϕ : K → K given
by ϕ(a) = ap is an automorphism of K . We can then compute
ϕ2(a) = ϕ(ap) = ap

2
, ϕ3(a) = ϕ(ϕ2(a)) = ϕ(ap

2
) = ap

3
, and

in general ϕk(a) = ap
k
.

In particular, since every element of Fpn is a root of xpn − x ,
we see that ϕn(a) = ap

n
= a for every a, so ϕn is the identity.

On the other hand, ϕk for k < n cannot be the identity, since
ϕk(a) = a is the same as the polynomial equation

ap
k − a = 0, which can have at most pk < pn roots in K .

Hence ϕ has order n in Gal(K/Fp). Thus, Gal(K/Fp) is
cyclic and generated by the Frobenius map ϕ.



Fixed Fields, I

We will now exploit more of the group-action structure of the
automorphism group of an extension K/F .

If σ ∈ Aut(K/F ) is a particular automorphism, consider the
set of all elements of K stabilized by σ.

This is a subset of K containing F (since all elements of F are
fixed by σ) and is closed under subtraction and division, since
if x , y are both fixed by σ then so are x − y and x/y (the
latter when y 6= 0).

Thus, the elements stabilized by σ is a subfield of K
containing F . We call this subfield the fixed field of σ.

The fixed field of σ is an intermediate field of the extension
K/F , meaning that it is a field that lies between K and F .



Fixed Fields, I

We will now exploit more of the group-action structure of the
automorphism group of an extension K/F .

If σ ∈ Aut(K/F ) is a particular automorphism, consider the
set of all elements of K stabilized by σ.

This is a subset of K containing F (since all elements of F are
fixed by σ) and is closed under subtraction and division, since
if x , y are both fixed by σ then so are x − y and x/y (the
latter when y 6= 0).

Thus, the elements stabilized by σ is a subfield of K
containing F . We call this subfield the fixed field of σ.

The fixed field of σ is an intermediate field of the extension
K/F , meaning that it is a field that lies between K and F .



Fixed Fields, II

Examples:

1. Suppose that K = Q(
√

2,
√

3)/Q.

If σ is the automorphism with
σ(a + b

√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3− d

√
6 for

a, b, c , d ∈ Q, then the elements of K fixed by σ are
those of the form a + c

√
3. Thus the fixed field of σ is

the subfield Q(
√

3).

If τ is the automorphism with
τ(a + b

√
2 + c

√
3 + d

√
6) = a + b

√
2− c

√
3− d

√
6,

then the elements of K fixed by τ are those of the form
a + b

√
2. Thus, the fixed field of τ is the subfield Q(

√
2).

The elements fixed by στ are those of the form a + d
√

6.
Thus the fixed field of στ is the subfield Q(

√
6).



Fixed Fields, III

Examples:

2. Suppose K = Q(21/4)/Q.

If σ is the automorphism with σ(21/4) = −21/4, then
σ(a + b21/4 + c

√
2 + d23/4) = a− b21/4 + c

√
2− d23/4.

This means that the elements of K fixed by σ are those
of the form a + c

√
2.

Thus the fixed field of σ is the subfield Q(
√

2).
The only other automorphism of this field extension is
the trivial automorphism. Its fixed field is Q(21/4).



Fixed Fields, IV

More generally, we can consider subfields fixed by a collection of
automorphisms:

Definition

If K/F is a field extension and S is a set of automorphisms of
K/F , then the fixed field of S is the subfield of K fixed by all
automorphisms in S.

Note that the fixed field of S is the intersection of the fixed fields
of all automorphisms in S .

The fixed field of each automorphism is a subfield of K
containing F . Thus, the fixed field of S is indeed a field
(justifying the name).



Fixed Fields, V

Examples:

3. Suppose K = Q(
√

2,
√

3)/Q.

As before let σ be the automorphism with
σ(
√

2,
√

3) = (−
√

2,
√

3) and τ be the automorphism
with τ(

√
2,
√

3) = (
√

2,−
√

3).

Then the fixed field of the set {σ, τ} is the intersection
Q(
√

3) ∩Q(
√

2) = Q: the only elements of K fixed by
both σ and τ are rational numbers.

In the same way, the fixed field of {τ, στ} is
Q(
√

2) ∩Q(
√

6) = Q, and the fixed field of {σ, στ} is
also Q.



Fixed Fields, VI

In fact, we really only need to concern ourselves with fixed fields of
subgroups of G = Aut(K/F ).

Specifically, notice that if σ and τ both fix the subfield E ,
then so do στ and σ−1. Thus, since the identity also fixes E ,
we see that the collection of automorphisms fixing E is a
subgroup of Aut(K/F ).

It is then easy to see that the fixed field of S is the same as
the fixed field of 〈S〉, the subgroup of Aut(K/F ) generated
by S .

We may therefore restrict our focus to fixed fields of
subgroups of Aut(K/F ), since we do not lose any information
by doing so.



Fixed Fields, VII

Examples:

4. Suppose once again that K = Q(
√

2,
√

3)/Q.

Take σ, τ as before with σ(
√

2,
√

3) = (−
√

2,
√

3) and
τ(
√

2,
√

3) = (
√

2,−
√

3).

By our calculations earlier, the fixed fields of the possible
subgroups {e}, 〈σ〉, 〈τ〉, 〈στ〉, and 〈σ, τ〉 of Aut(K/Q)
are Q(

√
2,
√

3), Q(
√

3), Q(
√

2), Q(
√

6), and Q
respectively.



Fixed Fields, VIII

Examples:

5. Suppose K = Q(21/4)/Q.

Take σ to be the automorphism with σ(21/4) = −21/4.

Then as we already calculated, the fixed fields of the
possible subgroups {e} and 〈σ〉 of Aut(K/Q) are
Q(21/4) and Q(

√
2).

Notice in particular that Q is not the fixed field of any
subgroup of K , since the only nontrivial automorphism σ
in Aut(K/Q) fixes all of Q(

√
2).



Fixed Fields, IX

In more complicated examples, computing fixed fields ultimately
reduces to solving a system of linear equations1.

Explicitly, each automorphism of K/F acts as a linear
transformation on K as an F -vector space.

If we fix a basis for K/F , determining the elements fixed by a
linear transformation (or collection of linear transformations)
is the same as solving the corresponding system of linear
equations in the coefficients of the basis elements.

Thus, computing the fixed field of a subgroup is equivalent to
solving a (possibly large) system of linear equations over F .

Since the fixed field of a subgroup is the same as the fixed
field for a set of its generators, when we actually compute
fixed fields explicitly, we only need to solve the equations
associated with the generators of the desired subgroup.

1This is pleasantly convenient, because linear algebra is the best.



Fixed Fields, X

Example: For K = Q(21/3, ζ3)/Q, find the fixed field E of the
subgroup 〈ϕ〉, where ϕ acts via ϕ(21/3, ζ3) = (21/3ζ3, ζ

2
3 ),

Let’s use the basis {1, 21/3, 41/3, ζ3, 21/3ζ3, 41/3ζ3} for K .
Then ϕ(a + b21/3 + c41/3 + dζ3 + e21/3ζ3 + f 41/3ζ3) =
a + b21/3ζ3 + c41/3ζ23 + dζ23 + e21/3 + f 41/3ζ3 for
a, b, c , d , e, f ∈ Q.

Since ζ23 = −1− ζ3, rewriting in terms of the original basis
yields ϕ(a + b21/3 + c41/3 + dζ3 + e21/3ζ3 + f 41/3ζ3) =
(a− d) + e21/3 − c41/3 − dζ3 + b21/3ζ3 + (f − c)41/3ζ3.

Hence the elements of E have a = a− d , b = e, c = −c ,
d = −d , e = b, and f = f − c .

These reduce to d = 0, c = 0, and b = e, so E ’s elements are
a + b(21/3 + 21/3ζ3) + f (41/3ζ3) = a− b21/3ζ23 + f 41/3ζ3.

Thus, we see E = Q(21/3ζ23 ).



Fixed Fields, XI

Example: For K = Q(21/3, ζ3)/Q, find the fixed field E of the
subgroup 〈ψ〉, where ψ acts via ψ(21/3, ζ3) = (21/3, ζ23 ),

Again use {1, 21/3, 41/3, ζ3, 21/3ζ3, 41/3ζ3} for K . Then
ψ(a + b21/3 + c41/3 + dζ3 + e21/3ζ3 + f 41/3ζ3) =
a + b21/3 + c41/3 + dζ23 + e21/3ζ23 + f 41/3ζ23 for
a, b, c , d , e, f ∈ Q.

Since ζ23 = −1− ζ3, rewriting in terms of the original basis
yields ϕ(a + b21/3 + c41/3 + dζ3 + e21/3ζ3 + f 41/3ζ3) =
(a + d) + (b + e)21/3 + (c + f )41/3− dζ3− e21/3ζ3− f 41/3ζ3.

Hence the elements of E have a + d = a, b + e = b,
c + f = c , −d = d , −e = e, −f = f .

These reduce to d = e = f = 0, so E ’s elements are
a + b21/3 + c41/3. This means E = Q(21/3).



Fixed Fields, XI

Example: For K = Q(21/3, ζ3)/Q, find the fixed field E of the
subgroup 〈ψ〉, where ψ acts via ψ(21/3, ζ3) = (21/3, ζ23 ),

Again use {1, 21/3, 41/3, ζ3, 21/3ζ3, 41/3ζ3} for K . Then
ψ(a + b21/3 + c41/3 + dζ3 + e21/3ζ3 + f 41/3ζ3) =
a + b21/3 + c41/3 + dζ23 + e21/3ζ23 + f 41/3ζ23 for
a, b, c , d , e, f ∈ Q.

Since ζ23 = −1− ζ3, rewriting in terms of the original basis
yields ϕ(a + b21/3 + c41/3 + dζ3 + e21/3ζ3 + f 41/3ζ3) =
(a + d) + (b + e)21/3 + (c + f )41/3− dζ3− e21/3ζ3− f 41/3ζ3.

Hence the elements of E have a + d = a, b + e = b,
c + f = c , −d = d , −e = e, −f = f .

These reduce to d = e = f = 0, so E ’s elements are
a + b21/3 + c41/3. This means E = Q(21/3).



Fixed Fields, XII

We can also invert this procedure and consider the collection of
automorphisms in Aut(K/F ) that fix a particular intermediate
field E of K/F .

In the language of group actions, this is the stabilizer of E
under the group action of Aut(K/F ) on subsets of K .

In the language of automorphisms of extensions, this “fixing
subgroup” is the group Aut(K/E ), which is naturally a
subgroup of Aut(K/F ), since any automorphism of K fixing
E automatically also fixes the subfield F of E .



Fixed Fields, XIII

Examples:

1. Suppose K = Q(
√

2,
√

3)/Q.

Take σ, τ as before with σ(
√

2,
√

3) = (−
√

2,
√

3) and
τ(
√

2,
√

3) = (
√

2,−
√

3).

For the subfield Q(
√

3), the automorphisms fixing it are
the identity and τ .

For the subfield Q(
√

2), the automorphisms fixing it are
the identity and σ.

For the subfield Q(
√

6), the automorphisms fixing it are
the identity and στ .

For the subfield Q, all four automorphisms fix this
subfield.

For the subfield Q(
√

2,
√

3), the only automorphism
fixing it is the identity.



Fixed Fields, XIV

Examples:

2. Suppose K = Q(21/3, ζ3)/Q.

If E is the subfield Q(ζ3), then the subgroup of
Aut(K/Q) fixing E is 〈σ〉, where σ is the automorphism
with σ(21/3, ζ3) = (21/3ζ3, ζ3). To see this, note σ fixes
E , hence so does 〈σ〉, but the other automorphisms of K
map ζ3 to ζ23 and thus they do not fix E .

If E is the subfield Q( 3
√

2), then the subgroup of
Aut(K/Q) fixing E is 〈τ〉, where τ(21/3, ζ3) = (21/3, ζ23 ).
To see this observe that 〈τ〉 does fix E , but none of the
other automorphisms of K fix 3

√
2.

In a similar way, the fixing subgroup of Q( 3
√

2ζ3) is 〈τσ〉,
since τσ( 3

√
2ζ3) = τ( 3

√
2ζ23 ) = 3

√
2ζ3, while the fixing

subgroup of Q( 3
√

2ζ23 ) is 〈τσ2〉.



Fixed Fields, XIV

Examples:

3. Suppose K = Q(21/4)/Q.

If E = Q(
√

2), then the subgroup of Aut(K/Q) fixing E
is all of Aut(K/Q).

If E = Q, then the subgroup of Aut(K/Q) fixing E is
also all of Aut(K/Q).

If E = Q(21/4) then only the identity fixes E .



Fixed Fields, XV

We now have two operations that relate subgroups of Aut(K/F )
to intermediate fields of K/F : to a subgroup we associate its
corresponding fixed field, and to an intermediate field we associate
the subgroup stabilizing it.

Observe that each of these operations is inclusion-reversing.

Explicitly, if E1 and E2 are two intermediate fields of K/F
with E1 ⊆ E2, then Aut(K/E2) ⊆ Aut(K/E1), since any
automorphism that fixes E2 automatically fixes the subfield E1

as well.

In the other direction, if H1 and H2 are subgroups of
Aut(K/F ) with H1 ⊆ H2, then the corresponding fixed fields
F1 and F2 have F2 ⊆ F1, since any automorphism in H1 (i.e.,
fixing F1) by assumption is also in H2 (i.e., fixes F2).

It is natural to ask how these maps relate to one another.



Fixed Fields, XVI

Examples:

1. Consider K = Q(
√

2,
√

3).

The fixed fields of the possible subgroups {e}, 〈σ〉, 〈τ〉,
〈στ〉, and 〈σ, τ〉 of Aut(K/Q) are Q(

√
2,
√

3), Q(
√

3),
Q(
√

2), Q(
√

6), and Q respectively.

Inversely, the automorphism groups Aut(K/E ) for each
of the subfields Q(

√
2,
√

3), Q(
√

3), Q(
√

2), Q(
√

6), and
Q are {e}, 〈σ〉, 〈τ〉, 〈στ〉, and 〈σ, τ〉 respectively.

Thus, the two maps are inverses for Q(
√

2,
√

3), at least
for all of the subfields we have listed (we will later show
that these are in fact all of the subfields of K ).



Fixed Fields, XVII

Examples:

2. Consider K = Q( 3
√

2, ζ3).

The fixed fields of the possible subgroups {e}, 〈σ〉, 〈τ〉,
〈τσ〉,

〈
τσ2

〉
, and 〈σ, τ〉 of Aut(K/Q) are Q( 3

√
2, ζ3),

Q(ζ3), Q( 3
√

2), Q( 3
√

2ζ3), and Q( 3
√

2ζ23 ) and Q
respectively.

Inversely, the automorphism groups Aut(K/E ) for each
of the subfields Q( 3

√
2, ζ3), Q(ζ3), Q( 3

√
2), Q( 3

√
2ζ3), and

Q( 3
√

2ζ23 ) and Q are {e}, 〈σ〉, 〈τ〉, 〈τσ〉,
〈
τσ2

〉
, and

〈σ, τ〉 respectively.

Thus, the two maps are inverses for Q( 3
√

2, ζ3), at least
for all of the subfields we have listed (we will later show
that these are in fact all of the subfields of K ).



Fixed Fields, XVIII

Examples:

3. Consider K = Q(21/4)/Q.

The fixed fields of the subgroups {e} and 〈σ〉 of
Aut(K/Q) are Q(21/4) and Q(

√
2) respectively.

Inversely, the automorphism groups Aut(K/E ) for each
of the intermediate fields Q(21/4), Q(

√
2), and Q are

{e}, 〈σ〉, and 〈σ〉 respectively.

Here, the two maps are not inverses: although the fixed
field map on subgroups is injective, the subfields Q(

√
2)

and Q both have automorphism group 〈σ〉.
4. Consider K = Q(21/3)/Q.

The fixed field of Aut(K/Q), which is the trivial group,
is Q(21/3). The corresponding automorphism groups for
both intermediate fields Q(21/3) and Q are the full
automorphism group.



Fixed Fields, XX

In two of the examples, our maps were inverses, while in the other
two, they were not.

Note that the fields in the first two examples were Galois
extension (i.e., a splitting field of a separable polynomial),
while the fields in the second and third examples were not.

In examples 3 and 4, Aut(K/Q) did not have “enough
automorphisms” to ensure that the fixed field of Aut(K/Q) is
actually Q rather than a larger subfield.

Our goal is now to show that these two maps are in fact inverses
when the extension K/F is Galois, and to elucidate the associated
“Galois correspondence” between subgroups of Gal(K/F ) and
intermediate fields of K/F in that case.



The Fundamental Theorem of Galois Theory, I

As we have seen via a few examples, when K/F is a Galois
extension there appears to be a natural inclusion-reversing
correspondence between subgroups of the automorphism group
G = Gal(K/F ) and intermediate fields E of K/F :

{
Subfields E of K

Containing F

}
Elements of G Fixing E//

Elements of K Fixed By Hoo

{
Subgroups

H of G

}

Our goal next time will be to prove that this “Galois
correspondence” does indeed give an inclusion-reversing bijection
between the intermediate fields E of K/F and the subgroups H of
G = Gal(K/F ).



The Fundamental Theorem of Galois Theory, II

For now, we can give a few illustrations of the Galois
correspondence:

Consider K = Q(
√

2,
√

3) with the automorphisms
σ(
√

2,
√

3) = (−
√

2,
√

3) and τ(
√

2,
√

3) = (
√

2,−
√

3).

Then the fixed fields of the subgroups {e}, 〈σ〉, 〈τ〉, 〈στ〉,
and 〈σ, τ〉 are Q(

√
2,
√

3), Q(
√

3), Q(
√

2), Q(
√

6), and Q
respectively.

Conversely, the automorphism groups Aut(K/E ) fixing those
six intermediate fields are precisely those subgroups of
Gal(K/Q) in that order.

This correspondence is particularly obvious when comparing
subgroup and subfield diagrams.



The Fundamental Theorem of Galois Theory, III

Here are the corresponding subgroup and subfield diagrams for
Q(
√

2,
√

3)/Q (where we have also labeled the diagrams with the
relative extension degrees and subgroup indices and drawn the
subgroup diagram upside-down):



The Fundamental Theorem of Galois Theory, IV

For another example, consider K = Q(21/3, ζ3)/Q.

We have previously described the automorphisms
σ(21/3, ζ3) = (21/3ζ3, ζ3) and τ(21/3, ζ3) = (21/3, ζ23 ).

As we have noted, the fixed fields of the subgroups {e}, 〈τ〉,
〈τσ〉,

〈
τσ2

〉
, 〈σ〉, and 〈τ, σ〉 are respectively Q(21/3, ζ3),

Q(21/3), Q(21/3ζ3), Q(21/3ζ23 ), Q(ζ3), and Q.

Conversely, the automorphism groups Aut(K/E ) fixing those
six intermediate fields are precisely those subgroups of
Gal(K/Q) in that order.



The Fundamental Theorem of Galois Theory, V

Here are the corresponding subgroup and subfield diagrams for
Q(21/3, ζ3)/Q:

Notice here there are also correspondences between the subfield
degrees and the indexes of subgroups. We will establish these
properties, and several others, next time.



Summary

We discussed automorphisms of splitting fields and introduced the
notion of a Galois group.

We discussed fixed fields of automorphisms.

We introduced the fundamental theorem of Galois theory.

Next lecture: Characterizing Galois extensions, the proof and
examples of the fundamental theorem of Galois theory.


