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Semidirect Products, Field Automorphisms

Semidirect Products

Field Automorphisms

This material represents §3.4.4 + §4.1.1-4.1.2 from the course
notes.



Recall, I

Recall our results on semidirect products:

Theorem (Semidirect Products)

Let H and K be any groups, let σ : K → Aut(H) be a group
homomorphism with σk being the automorphism σ(k) on H, and
let G be the set of ordered pairs (h, k) for h ∈ H and k ∈ K .
Then G is a group with order #H ·#K under the operation

(h1, k1) ?σ (h2, k2) = (h1σk1(h2), k1k2).

Furthermore, the subset {(h, e) : h ∈ H} is isomorphic to H and is
a normal subgroup of G , while the subset {(e, k) : k ∈ K} is
isomorphic to K .
This group is called the semidirect product of H and K with
respect to σ, and is denoted H oσ K .



Recall, II

The point of the discussion last time was to identify when we can
decompose a group G as a direct product or semidirect product.

Specifically, suppose that we can decompose G as a product
HK for two subgroups H and K where H ∩ K = {e}.
If both H and K are normal in G , then G is (isomorphic) to
the direct product H × K .

If only H is normal in K , then instead G must be (isomorphic
to) a semidirect product H oσ K for some σ : K → Aut(H).



More Semidirect Products, I

Examples:

4. Let p be a prime. Let H = 〈a〉 × 〈b〉 be the direct product of
two cyclic groups of order p and K = 〈c〉 be cyclic of order p.

Then H has the structure of an Fp-vector space, and its
group automorphisms are vector space isomorphisms.

This means that Aut(H) ∼= GL2(Fp), with the action of a
matrix being componentwise on the elements a and b.

Because GL2(Fp) has order (p2 − 1)(p2 − p), it has a
Sylow p-subgroup of order p.

We can realize this subgroup explicitly as the matrices of

the form

[
1 d
0 1

]
for d ∈ Fp.



More Semidirect Products, II

Examples:

4. Let p be a prime. Let H = 〈a〉 × 〈b〉 be the direct product of
two cyclic groups of order p and K = 〈c〉 be cyclic of order p.

Now let σ : K → Aut(H) be the map with

σ(c) =

[
1 1
0 1

]
, which is well-defined since this matrix

has order p in GL2(Fp).

Explicitly, the associated automorphisms of H map
σc(a) = a and σc(b) = ab.

The resulting semidirect product H oσ K
is a non-abelian group of order p3, and it has a presentation〈

a, b, c : ap = bp = cp = e, ab = ba, cac−1 = a, cbc−1 = ab
〉
.

One may show that it is isomorphic to the Heisenberg
group from Homework 7.



More Semidirect Products, III

We can also use semidirect products to classify groups of a given
order, if we can establish the existence of an appropriate normal
subgroup and “complement” subgroup.

In many cases, we will obtain several different possible choices
for maps σ : K → Aut(H).

It can be shown that if K is cyclic and the images σ1(K ) and
σ2(K ) inside Aut(H) are conjugate subgroups, then in fact
the resulting semidirect products are isomorphic.

Specifically, if K = 〈a〉 and gσ1(K )g−1 = σ2(K ), so that
gσ1(a)g−1 = σ2(a)d for an integer d , then the map
ψ : H oσ1 K → H oσ2 K given by ψ(h, k) = ([σ2]g (h), ad) is
an isomorphism.



More Semidirect Products, IV

Example: Classify the groups of order 30.

Since 30 = 2 · 3 · 5, we must have n2 ∈ {1, 3, 5, 15},
n3 ∈ {1, 10}, and n5 ∈ {1, 6}.
However, we cannot have both n3 = 10 and n5 = 6, since
then there would be 20 elements of order 3 and 24 elements
of order 5, which is more than the number of elements in the
group. Thus, n3 = 1 or n5 = 1.

Therefore, the product of the Sylow 3-subgroup and Sylow
5-subgroup is also a subgroup of G (by our properties of
subgroup products, since one of them is normal), and so G
has a subgroup H of order 15.

Since 3 does not divide 5− 1, from our classification of groups
of order pq, H is cyclic.

In fact, H is a normal subgroup of G , by problem 1a of
Homework 8, since it has index 2.



More Semidirect Products, V

Example: Classify the groups of order 30.

Now, there exists a Sylow 2-subgroup K of G .

Then by order considerations, we see G must be isomorphic to
a semidirect product H oσ K for some σ : K → Aut(H).

Since H ∼= Z/15Z, one may verify that
Aut(H) ∼= (Z/15Z)× ∼= (Z/3Z)× × (Z/5Z)×, which is a
product of a cyclic group of order 2 with a cyclic group of
order 4.

The map σ must send the nonidentity element k ∈ K to an
element of Aut(H) of order dividing 2.

If σ is the trivial map, then G is abelian and isomorphic to
Z/30Z.



More Semidirect Products, VI

Example: Classify the groups of order 30.

We want σ : K → Aut(H) ∼= (Z/3Z)× × (Z/5Z)×.

If σ(k) = (−1, 1), then the resulting automorphism maps
(a, b) ∈ (Z/3Z)× (Z/5Z) to (a−1, b). Then Z/5Z is in the
center of G , and G is isomorphic to (Z/5Z)× S3.

If σ(k) = (1,−1), then the resulting automorphism maps
(a, b) ∈ (Z/3Z)× (Z/5Z) to (a, b−1). Then Z/3Z is in the
center of G , and G is isomorphic to (Z/3Z)× D2·5.

If σ(k) = (−1,−1), then the resulting automorphism maps
g ∈ (Z/15Z) to g−1. It is not hard to see that G is then
isomorphic to D2·15.

Since these are all of the possible automorphisms, we see that
up to isomorphism, there are four non-isomorphic groups of
order 30: Z/30Z, (Z/5Z)× S3, (Z/3Z)× D2·5, and D2·15.



More Semidirect Products, VII

Example: Classify the groups of order 12.

Since 12 = 22 · 3, we must have n2 ∈ {1, 3} and n3 ∈ {1, 4}.
First suppose that n3 = 4. Then there are 8 elements of order
3, leaving only 12− 8 = 4 remaining elements, which must
therefore form a unique Sylow 2-subgroup.

Therefore, n2 = 1, so the Sylow 2-subgroup H is normal in G .

If K is any Sylow 3-subgroup, then H ∩ K = {e} since their
orders are relatively prime, and since #H ·#K = 12, we have
HK = G .

Therefore, G is a semidirect product H oσ K for some
nontrivial σ : K → Aut(H).

Otherwise, if n3 = 1, then G is again a semidirect product,
but now the Sylow 3-subgroup is normal and the Sylow
2-subgroup is not (necessarily).



More Semidirect Products, VIII

Example: Classify the groups of order 12.

1. n2 = 1, n3 = 1.

Then G is nilpotent and the direct product of its Sylow
subgroups. Since the Sylow subgroups have orders 4 and 3,
they are both abelian.

This means there are two isomorphism types for G : either G
is isomorphic to (Z/4Z)× (Z/3Z) ∼= Z/12Z or to
(Z/2Z)× (Z/2Z)× (Z/3Z) ∼= (Z/2Z)× (Z/6Z).



More Semidirect Products, VIII

Example: Classify the groups of order 12.

2. n2 = 1, n3 = 4, H = 〈a〉 cyclic of order 4, K = 〈c〉 order 3.

Then Aut(H) ∼= (Z/4Z)× is cyclic of order 2.

But then if K = 〈c〉, there is no nontrivial map
σ : K → Aut(H), since σc(a) would have order dividing both
2 and 3.

This is impossible, since then n3 would be 1, not 4.



More Semidirect Products, IX

Example: Classify the groups of order 12.

3. n2 = 1, n3 = 4, H = 〈a〉 × 〈b〉 is Klein-4, K = 〈c〉 of order 3.

Then Aut(H) ∼= GL2(F2), of order (22 − 1)(22 − 2) = 6.

Thus, if σ : K → Aut(H) is nontrivial, the image is a Sylow
3-subgroup of GL2(F3). Since these are all conjugate, the
semidirect product is unique up to isomorphism.

Explicitly, if we take σ : K → Aut(H) to be the map with

σ(c) =

[
0 1
1 1

]
, then as an explicit automorphism we have

σc(a) = b and σc(b) = ab.

The resulting semidirect product H oσ K is a non-abelian
group of order 12, and it has a presentation〈
a, b, c : a2 = b2 = c3 = e, ab = ba, cac−1 = b, cbc−1 = ab

〉
.

In fact, this group is isomorphic to A4 (take a 7→ (1 2)(3 4),
b 7→ (1 4)(2 3), and c 7→ (1 2 3)).



More Semidirect Products, X

Example: Classify the groups of order 12.

3. n2 = 3, n3 = 1, K = 〈a〉 cyclic of order 4, H = 〈c〉 of order 3.

Note here that Aut(H) ∼= (Z/3Z)× is cyclic of order 2, and
generated by the inversion map c 7→ c−1.

Then there is one nontrivial homomorphism σ : K → Aut(H),
which has σa(c) = c−1.

The resulting semidirect product is a non-abelian group of
order 12, and it has a presentation〈
a, c : a4 = c3 = e, aca−1 = c−1

〉
.



More Semidirect Products, XI

Example: Classify the groups of order 12.

4. n2 = 3, n3 = 1, K = 〈a, b〉 is Klein-4, H = 〈c〉 of order 3.

There are three nontrivial homomorphisms
σ : K → Aut(H) ∼= (Z/3Z)× = {±1}: we can take
(a, b) 7→ (1,−1), (−1, 1), (−1,−1).

However, since their images are all the same (namely, {±1}),
the resulting semidirect products are isomorphic.

If we take the first one, then the automorphisms act via
σb(a) = a and σc(a) = a−1. So we get a presentation〈
a, b, c : a3 = b2 = c2 = e, bc = cb, bab−1 = a, cac−1 = a−1

〉
.

In fact, this group is generated by c and d = ab, with
presentation

〈
c, d : c2 = d6 = e, cdc−1 = d−1

〉
, which

shows that it is isomorphic to the dihedral group D2·6.



More Semidirect Products, XII

Example: Classify the groups of order 12.

We have examined all of the possible cases.

Since we can tell the cases apart by the number and structure
of the Sylow subgroups, the groups are all non-isomorphic to
one another.

Thus, we conclude that there are five non-isomorphic groups
of order 12: (Z/2Z)× (Z/6Z), Z/12Z, A4, the nontrivial
semidirect product (Z/3Z) o (Z/4Z), and D2·6.



From Groups to Fields

There is, of course, much more to be done in classifying finite
groups of a given order.

Our goal, however, is not to give exhaustive classifications for
lots of group orders (although it is possible to do this in a
number of cases using only Sylow’s theorems and semidirect
products, and some other observations about group actions
and p-groups).

Instead, the purpose is to have shown some of the tools that
can be used to analyze the structure of finite groups of
relatively small orders.

Our reason for doing all of this group theory was so that we
could study automorphism groups of fields.

We have already witnessed the power of group actions for
studying groups. Now we will use them to study fields.



Field Automorphisms, I

We begin by studying the collection of structure-preserving
symmetries of a field K .

Definition

If K is a field, a (field) automorphism of K is a ring isomorphism
of K with itself; explicitly, a field automorphism is a map
σ : K → K that is a bijection and has σ(x + y) = σ(x) + σ(y) and
σ(xy) = σ(x)σ(y) for all x , y ∈ K . The collection of all
automorphisms of K is denoted Aut(K ).

We will not worry about confusing the automorphism group of K
as a group with the automorphism group of K as a field. We will
essentially always intend the latter.



Field Automorphisms, II

Examples:

1. For K = C, the complex conjugation map σ(a + bi) = a− bi ,
for a, b ∈ R, is an automorphism of K . It is clearly a bijection,
and it also respects addition and multiplication.

2. For K = Q(
√

D) for squarefree D, the “conjugation map”
σ(a + b

√
D) = a− b

√
D, for a, b ∈ Q, is an automorphism of

K . (If D < 0 then this map is simply complex conjugation.)

3. For K = Fpn for a positive integer n, the pth-power Frobenius
map σ(x) = xp for x ∈ K is an automorphism of K . As we
have previously mentioned, σ respects addition and
multiplication and is injective, hence (since K is finite) it is a
bijection.



Field Automorphisms, III

Based on our understanding of groups as collections of symmetries,
we would expect Aut(K ) to be a group under function
composition1. Indeed, it is a group:

The operation is well-defined, since the composition of two
automorphisms is an automorphism.

The operation is associative, since function composition is
associative.

There is an identity element, namely the identity map.

Every element has an inverse, namely, the inverse function,
which is also an automorphism.

1You may also expect it to be a group because I’ve already repeatedly
referred to “the automorphism group of a field”!



Field Automorphisms, IV

Given a map from K to K , it is not hard to check whether it is an
automorphism, but a priori it is not obvious how to construct
automorphisms of K , nor how to compute the automorphism
group Aut(K ).

As a first step, we observe that any automorphism of K must
fix 0 and 1 (i.e., map 0 and 1 to themselves), and hence by a
trivial induction must fix the prime subfield of K .

In particular, this immediately tells us that Aut(Q) and
Aut(Fp) are both the trivial group.

To extend this further, it will be useful to generalize our
analysis to automorphisms that preserve field extensions.



Field Automorphisms, V

Definition

If K/F is a field extension, we define Aut(K/F ) to be the set of
automorphisms of K fixing F (i.e., the collection of σ ∈ Aut(K )
such that σ(a) = a for every a ∈ F ).

We can see that Aut(K/F ) is a subgroup of Aut(K ): the
identity map on K is clearly an element of Aut(K/F ), and if
σ, τ ∈ Aut(K/F ) then στ−1 is also in Aut(K/F ) since
στ−1(a) = σ(τ−1(a)) = σ(a) = a for all a ∈ F .

By our observations on the previous slide, since any
automorphism of K fixes the prime subfield K ′, we have
Aut(K ) = Aut(K/K ′).

Thus, we may freely pass between speaking about
automorphisms of K and automorphisms of K/K ′.



Field Automorphisms, VI

A first observation toward computing all the automorphisms of an
extension K/F is that any automorphism must be a linear
transformation on K (though of as an F -vector space).

Specifically, for σ ∈ Aut(K/F ), then σ(v + w) = σ(v) +σ(w)
and σ(αv) = ασ(v) for any v ,w ∈ K and α ∈ F .

Indeed, since σ is a bijection, in fact σ is an F -vector space
isomorphism from K to itself.

In particular, we may completely specify σ by its values on a
basis for K/F .

In fact, since σ also respects multiplication in K , it is enough
to specify the value of σ on a set of generators for K/F as a
field extension.



Field Automorphisms, VI

Although we can characterize an automorphism σ of K/F by its
values on a set of generators for K/F , we cannot do so arbitrarily.

For example, we cannot map any of the nonzero generators to
0, since σ must be a bijection.

But even if we avoid trivial difficulties like that, other
problems can arise.

For example, suppose K = Q(
√

2,
√

3)/Q, and we want to try
setting σ(

√
2) =

√
3 and σ(

√
3) =

√
2.

If this were a field automorphism, we would also have to take
σ(1) = 1 and σ(

√
6) = σ(

√
2)σ(
√

3) =
√

6.

These choices do extend to a linear transformation, since
we’ve now specified the values on a basis for K/Q.

However, the resulting map is not a field automorphism,
because σ(

√
2 ·
√

2) = 2 but σ(
√

2) · σ(
√

2) = 3.



Field Automorphisms, VII

We would like determine exactly what choices will extend to an
actual automorphism of the extension.

We can glean some insight from the example of Q(
√

2,
√

3).

Specifically, because σ ∈ Aut(K/F ) preserves addition and
multiplication along with all elements of F , it will also
preserve any algebraic relations between the generators that
can be written using coefficients of F .

Thus, for example, because (
√

2)2 = 2, the image σ(
√

2)
must also satisfy the same algebraic relation: specifically,

σ(
√

2)2 = σ(
√

2
2
) = σ(2) = 2.

So in fact, the value σ(
√

2) can only be one of
√

2 and −
√

2.

In many cases, we can use this type of observation to compute all
possible automorphisms.



Field Automorphisms, VIII

Example: Find all automorphisms of Q(
√

2)/Q.

By the discussion above, an automorphism σ of Q(
√

2)/Q is
completely determined by the value σ(

√
2).

Explicitly, we would have
σ(a + b

√
2) = σ(a) +σ(b)σ(

√
2) = a + b ·σ(

√
2) for a, b ∈ Q.

Also as noted on the last slide, we must have σ(
√

2) =
√

2 or
σ(
√

2) = −
√

2.

But each of these choices does in fact extend to an
automorphism of Q(

√
2)/Q: the choice σ(

√
2) =

√
2 is

satisfied by the identity automorphism, while the choice
σ(
√

2) = −
√

2 is satisfied by the conjugation automorphism.



Field Automorphisms, IX

Example: Find all automorphisms of Q(
√

2)/Q.

We conclude that |Aut(K/Q)| = 2, and so the automorphism
group must be cyclic and isomorphic to Z/2Z.

Indeed, if τ represents the conjugation automorphism, then
the structure of the group dictates that τ2 will be the identity.

Indeed, we have
τ2(a + b

√
2) = τ(τ(a + b

√
2)) = τ(a− b

√
2) = a + b

√
2, as

claimed.

Remark: If D is a squarefree integer, the same arguments with D
in place of 2 show that for K = Q(

√
D), the automorphism group

Aut(K/Q) also has order 2 and is isomorphic to Z/2Z.



Field Automorphisms, X

Example: Find all automorphisms of Q( 3
√

2)/Q.

As above, an automorphism σ of Q( 3
√

2)/Q is completely
determined by the value σ( 3

√
2).

Since ( 3
√

2)3 − 2 = 0, applying σ to both sides yields
σ( 3
√

2)3 − 2 = 0, so σ( 3
√

2) is a root of p(x) = x3 − 2.

However, the other two roots of this polynomial (inside C) are
3
√

2 · ζ3 and 3
√

2 · ζ23 for ζ3 a primitive 3rd root of unity. These
elements are not in Q( 3

√
2), since they are not real.

Therefore, the only possibility is to have σ( 3
√

2) = 3
√

2, and
then σ is simply the identity map.

Thus, Aut(Q( 3
√

2)/Q) is the trivial group.

Remark: If K is either of Q( 3
√

2 · ζ3) or Q( 3
√

2 · ζ23 ), then
Aut(K/Q) is also the trivial group. This follows by the same
argument, since the polynomial x3 − 2 only has one root in K .



Field Automorphisms, XI

Rather than doing more ad hoc examples, let’s formalize the ideas.
We will first establish a lemma that will be useful for constructing
isomorphisms:

Lemma (Lifting Isomorphisms)

Let ϕ : E → F be an isomorphism of fields. If α is algebraic over E
with minimal polynomial p(x) = a0 + a1x + · · ·+ anxn ∈ E [x ], and
β is algebraic over F with minimal polynomial
q(x) = ϕ(a0) + ϕ(a1)x + · · ·+ ϕ(an)xn ∈ F [x ], then there is a
unique isomorphism ϕ̃ : E (α)→ F (β) extending ϕ (i.e., such that
ϕ̃|E = ϕ) and such that ϕ(α) = β.

We essentially proved this in the course of establishing the
uniqueness of splitting fields. But it’s been a while, so I’ll go
through the argument.



Field Automorphisms, XII

Proof:

Since the minimal polynomial has degree n, that means
[E (α) : E ] = n with basis {1, α, α2, . . . , αn}, and similarly
[F (β) : F ] = n with basis {1, β, β2, . . . , βn}.
Then any isomorphism ϕ̃ extending ϕ with ϕ̃(α) must have
ϕ̃(c0 + c1α + · · ·+ cn−1α

n−1) =
ϕ(c0) + ϕ(c1)β + · · ·+ ϕ(cn−1)βn−1 for ci ∈ E , so there is at
most one possible map ϕ̃.

On the other hand, one may verify that this map ϕ̃ (which is
well defined) does indeed respect addition and multiplication,
and has an inverse map ϕ̃−1(d0 + d1β + · · ·+ dn−1β

n−1) =
ϕ−1(d0) + ϕ−1(d1)α + · · ·+ ϕ−1(dn−1)αn−1, so ϕ̃ is in fact
an isomorphism.



Field Automorphisms, XIII

In the situation where we take the map ϕ to be the identity, we
obtain a characterization of the automorphisms of a simple
algebraic extension:

Theorem (Automorphisms of Simple Algebraic Extensions)

Suppose α is algebraic over F with minimal polynomial m(x), and
K = F (α): then for any σ ∈ Aut(K/F ), σ(α) is also a root of
m(x) in K .
Conversely, if β is any other root of m(x) in K , then there exists a
unique automorphism τ ∈ Aut(K/F ) with τ(α) = β.
Therefore, |Aut(K/F )| is equal to the number of roots of m(x) in
K , and is (in particular) finite and at most [K : F ].

This business about counting the number of roots should remind
you of separability, which will come into play in a little while.



Field Automorphisms, XIV

Proof:

Suppose that m(x) = anxn + · · ·+ a1x + a0 with the ai ∈ F .
Note that σ(ai ) = ai since σ fixes F .

Then m(σ(α)) = anσ(α)n + · · ·+ a1σ(α) + a0 = σ(anα
n) +

· · ·+ σ(a1α) + σ(a0) = σ(anα
n + · · ·+ a1α + a0) = σ(0) = 0

and so σ(α) is also a root of m(x).

For the second statement, suppose β is another root of m(x)
in K . If we apply the isomorphism lifting lemma with E = F
(so that the isomorphism ϕ is the identity map), then we see
that there is a unique isomorphism τ : F (α)→ F (β) such
that τ(α) = β. Since F (α) = K = F (β), the map τ is an
automorphism of K .

We then have a bijection between roots of m(x) in K and
Aut(K/F ), and since m(x) has degree [K : F ], we conclude
that |Aut(K/F )| ≤ [K : F ].



Field Automorphisms, XV

Using this characterization, we can compute all the automorphisms
of a simple algebraic extension, and then (at least in principle) we
may determine the structure of the automorphism group.

The hard part is determining how many roots of the minimal
polynomial of the generator α are actually in the field
K = F (α).

Once we have identified them all, however, we need only
count how many of them there are. Then by the isomorphism
lifting lemma, we get an automorphism of K/F for each root.

To find the group structure, we can then write down the
action of each automorphism on α and see what happens
when we compose them. This is where knowledge of the
possible groups of a given order will be very useful.



Field Automorphisms, XVI

Example: Identify the elements of Aut(Q(
√

2 +
√

3)/Q).

As we have previously computed,
√

2 +
√

3 is a root of the
polynomial m(x) = x4 − 10x2 + 1.

Also, since K = Q(
√

2 +
√

3) = Q(
√

2,
√

3) has degree 4 over
Q, we see m(x) is irreducible over Q.

By applying the quadratic formula twice, we can see that the
four roots of m(x) are ±

√
2±
√

3, all of which are in K .

Hence there are 4 automorphisms of K/Q, obtained by
mapping

√
2 +
√

3 to any one of the other four roots of m(x).



Field Automorphisms, XVI

Example: Identify the group structure of Aut(Q(
√

2 +
√

3)/Q).

One option is to compute the actions of the four
automorphisms just from their behavior on

√
2 +
√

3.

Clearly, the map sending
√

2 +
√

3 to itself will extend to the
identity automorphism.

But it is not so clear how to compute the compositions of the
other automorphisms, since we only know their values on√

2 +
√

3.

So in fact, we will really need to calculate their values on a
basis of the extension: then it will be quite easy to see how
they compose.



Field Automorphisms, XVII

Example: Identify the group structure of Aut(Q(
√

2 +
√

3)/Q).

For the map σ with σ(
√

2 +
√

3) = −
√

2 +
√

3, we see
σ(5 + 2

√
6) = σ((

√
2 +
√

3)2) = σ(
√

2 +
√

3)2 =
(
√

2−
√

3)2 = 5− 2
√

6, and
σ(11
√

2 + 9
√

3) = σ((
√

2 +
√

3)3) = σ(
√

2 +
√

3)3 =
(
√

2−
√

3)3 = 11
√

2− 9
√

3.

So since σ fixes Q, by taking appropriate linear combinations
we can conclude that σ(

√
2) =

√
2, σ(

√
3) = −

√
3, and

σ(
√

6) = −
√

6.

Thus σ is the map with
σ(a + b

√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3− d

√
6 for

a, b, c , d ∈ Q.



Field Automorphisms, XVIII

Example: Identify the group structure of Aut(Q(
√

2 +
√

3)/Q).

In a similar way, we can see that the map τ with
τ(
√

2 +
√

3) =
√

2−
√

3 has τ(
√

2) =
√

2, τ(
√

3) = −
√

3,
and thus τ is the map with
τ(a + b

√
2 + c

√
3 + d

√
6) = a + b

√
2− c

√
3− d

√
6.

Since σ has
σ(a + b

√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3− d

√
6,

we can see that στ is the map with
στ(a + b

√
2 + c

√
3 + d

√
6) = a− b

√
2− c

√
3 + d

√
6.

Notice then that σ2, τ2, and (στ)2 are each the identity map,
and also that τσ = στ .

So we can see Aut(Q(
√

2,
√

3)/Q) = {e, σ, τ, στ} is
isomorphic to the Klein 4-group.



Field Automorphisms, XIX

The procedure in this last example only applies to simple
extensions, and in any case it seems likely that it might be easier
to analyze the automorphisms of Q(

√
2 +
√

3) = Q(
√

2,
√

3) using
the simpler generators

√
2 and

√
3.

We know that any automorphism of Q(
√

2,
√

3) must map√
2 to ±

√
2 and must also map

√
3 to ±

√
3, and since

√
2

and
√

3 generate the field, these choices completely determine
the automorphism.

But since these two choices yield at most 4 possible
automorphisms, and there actually are 4 automorphisms from
our calculations above, all 4 possible choices must in fact
extend to automorphisms.



Field Automorphisms, XX

Thus in fact, we can equivalently describe the four automorphisms
of Q(

√
2,
√

3)/Q as the four possible maps sending
√

2 to ±
√

2
and
√

3 to ±
√

3.

We can see that the automorphism mapping
√

2 7→
√

2 and√
3 7→

√
3 is the identity map.

If we let σ be the automorphism mapping
√

2 7→ −
√

2 and√
3 7→

√
3, then σ(

√
6) = σ(

√
2)σ(
√

3) = −
√

6, and so
explicitly σ is the map we found before, with
σ(a + b

√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3− d

√
6.

Likewise, if we let τ be the automorphism mapping
√

2 7→
√

2
and
√

3 7→ −
√

3, then τ(
√

6) = τ(
√

2)τ(
√

3) = −
√

6, so
τ(a + b

√
2 + c

√
3 + d

√
6) = a + b

√
2− c

√
3− d

√
6.

We can then immediately determine the group structure by
composing σ and τ as we did above.



Field Automorphisms, XXI

Notice that our computation of the automorphisms in the second
version of the example relied on the knowledge that there were
actually 4 automorphisms of the extension Q(

√
2,
√

3)/Q.

We could, alternatively, have constructed these
automorphisms explicitly via the isomorphism lifting lemma on
simple extensions.

To construct σ, first observe that x2 − 2 is the minimal
polynomial of both

√
2 and −

√
2 over Q(

√
3), since

[Q(
√

2,
√

3) : Q(
√

3)] = 2.

Then by the isomorphism lifting lemma applied to the identity
map on Q(

√
3), there is an automorphism σ of Q(

√
2,
√

3)
with Q(−

√
2,
√

3) that fixes Q(
√

3) and maps
√

2 to −
√

2.
This automorphism then has σ(

√
2) = −

√
2 and σ(

√
3) =

√
3,

so it extends to the automorphism we identified above.



Field Automorphisms, XXII

We can also construct the other automorphisms of Q(
√

2,
√

3)/Q
in this way.

Explicitly, we can construct τ by observing that x2 − 3 is the
minimal polynomial of both

√
3 and −

√
3 over Q(

√
2).

Thus, there is an automorphism τ of Q(−
√

2,
√

3) that fixes
Q(
√

2) and maps
√

3 to −
√

3.

We can also construct στ by lifting the conjugation
automorphism on Q(

√
3): explicitly, x2 − 2 is the minimal

polynomial of both
√

2 over Q(
√

3) and of −
√

2 over
Q(−
√

3).

Then there is an automorphism of Q(
√

2,
√

3) that extends
the conjugation automorphism on Q(

√
3) (sending

√
3 to

−
√

3) to Q(
√

2,
√

3) that maps
√

2 to −
√

2.



Field Automorphisms, XXIII

We can use a similar procedure to the one we gave for Q(
√

2,
√

3)
to construct automorphisms of other composite extensions by
lifting isomorphisms of appropriate subfields.

The idea is quite similar: we start with an isomorphism on the
bottom, and then add generators one at a time.



Field Automorphisms, XXIV

Example: Construct a nontrivial automorphism of K = Q( 3
√

2, ζ3)
over Q.

There are various choices to be made here.

Let’s start with the isomorphism of E = Q( 3
√

2) with
E ′ = Q( 3

√
2 · ζ3) that maps 3

√
2 to 3

√
2 · ζ3.

Since the minimal polynomial of ζ3 over both E and E ′ has
degree 2 (since ζ3 is a root of the quadratic polynomial
x2 − x + 1 and ζ3 is not in E or E ′), we can then lift this
isomorphism to obtain an automorphism σ of K with
σ(ζ3) = ζ3 and σ( 3

√
2) = 3

√
2 · ζ3.



Field Automorphisms, XXV

Example: Construct a nontrivial automorphism of K = Q( 3
√

2, ζ3)
over Q.

We have an automorphism σ of K with σ(ζ3) = ζ3 and
σ( 3
√

2) = 3
√

2 · ζ3.

We can write out the full action of σ on K using the Q-basis
{1, 3
√

2, 3
√

4, ζ3,
3
√

2ζ3,
3
√

4ζ3}: since σ(1) = 1, σ( 3
√

2) = 3
√

2ζ3,
σ( 3
√

4) = 3
√

4ζ23 , σ(ζ3) = ζ3, σ( 3
√

2ζ3) = 3
√

2ζ23 , and
σ( 3
√

4ζ3) = 3
√

4ζ33 = 3
√

4.

Then σ(c1 + c2
3
√

2 + c3
3
√

4 + c4ζ3 + c5
3
√

2ζ3 + c6
3
√

4ζ3) =
c1 + c2

3
√

2ζ3 + c3
3
√

4ζ23 + c4ζ3 + c5
3
√

2ζ23 + c6
3
√

4 for arbitrary
constants ci ∈ Q.

Observe (in particular) how unpleasant it would be to verify
that σ is actually an automorphism of K using only this latter
description!



Field Automorphisms, XXVI

It is not immediately obvious, however, that every automorphism of
an arbitrary finite-degree extension actually arises in this fashion.

Suppose that K/F is a finite-degree extension: as we have
shown, K = F (α1, . . . , αn) for some α1, . . . , αn ∈ K that are
algebraic over F .

Since each automorphism σ of K/F is determined by its
values on α1, . . . , αn, and σ(αi ) must be a root of the minimal
polynomial of αi , we see that there are only finitely many
automorphisms of K/F , and so Aut(K/F ) is a finite group.

If β1, β2, . . . , βn are other roots of the minimal polynomials of
the αi in K , we might attempt to use the isomorphism lifting
lemma to construct an automorphism of K that maps αi to βi
for each i .

But, sadly, this is not always possible!



Field Automorphisms, XXVII

To illustrate the issues, consider the field K = Q( 4
√

2,
√

2).

If we take α1 = 4
√

2 and β1 = − 4
√

2, with α2 =
√

2 and
β2 = −

√
2, then each βi is a root of the corresponding

minimal polynomial of αi over Q.

However, there is no automorphism τ of K that maps α1 to
β1 and α2 to β2, because we would have
τ(
√

2) = τ(α2) = β2 = −
√

2, but also
τ(
√

2) = τ(α2
1) = β21 =

√
2.

The issue here is that there is an algebraic relation between
the generators of this field (namely,

√
2 = ( 4

√
2)2) that must

also be respected by the automorphism, so we cannot make
our choices arbitrarily.

Of course, this is a mildly fictitious issue, because we could
have just used a single generator 4

√
2. (But you get the idea.)



Field Automorphisms, XXVIII

There is also another related difficulty in this example of
K = Q( 4

√
2,
√

2), namely, that some isomorphisms of subfields
cannot be lifted to the full field.

For example, the conjugation map σ : Q(
√

2)→ Q(
√

2)
sending

√
2 to −

√
2 cannot be lifted to an automorphism of

K , because there is no possible value of σ̃( 4
√

2): its square
would necessarily be −

√
2, but there is no such element in K .

On the other hand, there is such an element (namely, 4
√

2 · i)
in the splitting field Q( 4

√
2, i).

This suggests that working with splitting fields may solve this
particular problem.

In fact, we have already shown that for splitting fields, we can
always lift isomorphisms on appropriate subfields to the full
splitting field. So, we will pick up with automorphisms of
splitting fields next time.



Summary

We discussed some more examples of semidirect products and
classified the groups of some small orders.

We introduced the automorphism group of a field extension and
described methods for computing it in some cases.

Next lecture: Automorphisms of splitting fields, Galois groups,
fixed fields.


