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Products of Subgroups

Products of Subgroups

Semidirect Products

This material represents §3.4.3-3.4.4 from the course notes.



Products of Subgroups, I

We proved earlier that every finitely generated abelian group
decomposes as a direct product of cyclic groups.

This result tells us that finitely generated abelian groups can
be built up from subgroups by taking products.

We can often piece other groups together from subgroups in a
similar way.

We would like to study how to do this, because it will give us
more ways to construct finite groups and classify groups of a
given order.



Products of Subgroups, II

If H and K are subgroups of G , then we can certainly consider the
subgroup 〈H,K 〉 generated by H and K .

However, the elements in this subgroup are hard to write
down in general, since they are words of arbitrary length in the
elements of H and K .

If elements from H and K commute with one another, then
by rearranging the elements in the word and using the fact
that H and K are closed under multiplication, we can reduce
any word to a product of the form hk for h ∈ H and k ∈ K .

We will now look at the same set of elements for arbitrary
subgroups: this is the idea of the product of two subgroups.



Products of Subgroups, III

Definition

If H and K are subgroups of G , then the product HK is the set
HK = {hk : h ∈ H, k ∈ K}.

The product of two subgroups is not necessarily a subgroup of G .

For example, for H = {1, (1 2)}, K = {1, (1 3)} in G = S3,
the product HK = {1, (1 2), (1 3), (1 3 2)}, which is not a
subgroup of G .

However, in some cases HK will be a subgroup: for example,
with H = {1, (1 2)} and K = {1, (3 4)} in G = S4, then
HK = {1, (1 2), (3 4), (1 2)(3 4)} is indeed a subgroup of G .



Products of Subgroups, IV

We have various properties of subgroup products:

Proposition (Products of Subgroups)

Let G be a group and H and K be subgroups of G .

1. If H and K are finite, then #(HK ) =
#H ·#K

#(H ∩ K )
.

2. The product HK is a subgroup of G if and only if HK = KH.

3. If H ≤ NG (K ) or K ≤ NG (H), then HK is a subgroup of G .

4. If H or K is normal in G , then HK is a subgroup of G .

5. If both H and K are normal in G , and H ∩K = {e}, then HK
is isomorphic to the direct product H × K .

6. If np = 1 for every prime p dividing #G , then G is the
(internal) direct product of its Sylow subgroups. Such groups
are called nilpotent groups.



Products of Subgroups, V

Proofs:

1. If H and K are finite, then #(HK ) =
#H ·#K

#(H ∩ K )
.

Observe that HK is a union of left cosets of K :
specifically: HK = ∪h∈HhK .

Thus we need only count how many distinct left cosets
are obtained, since each left coset has cardinality #K .

Consider the action of H by left multiplication on the left
cosets of K in HK : by definition, there is a single orbit
for this action.



Products of Subgroups, VI

Proofs:

1. If H and K are finite, then #(HK ) =
#H ·#K

#(H ∩ K )
.

Notice that the stabilizer of the left coset eK is the set of
h ∈ H with h · eK = eK , which is equivalent to saying
h ∈ K .

Thus, the stabilizer is simply the set of h ∈ H such that
h ∈ K , which is to say, it is the intersection H ∩ K .

So by the orbit-stabilizer theorem, the size of the orbit is
equal to the index [H : H ∩ K ]. This means

#(HK ) = #K · [H : H ∩ K ] =
#H ·#K

#(H ∩ K )
, as claimed.

Remark: If H or K is infinite, then trivially HK is also infinite. We
also emphasize that HK is not assumed to be a subgroup here.



Products of Subgroups, VII

Proofs:

2. The product HK is a subgroup of G if and only if HK = KH.

First suppose HK = KH.

Let g = hk and g ′ = h′k ′ be elements of HK , with
h, h′ ∈ H and k , k ′ ∈ K .

Then since HK = KH, the element kh′ ∈ KH is of the
form h′′k ′′ for some h′′ ∈ H and k ′′ ∈ K .

Then gg ′ = hkh′k ′ = h(kh′)k ′ = h(h′′k ′′)k ′ =
(hh′′)(k ′′k ′) ∈ HK .

Likewise, g−1 = k−1h−1 ∈ KH = HK . Since the identity
e = ee is clearly in HK , this means HK is a subgroup of
G .



Products of Subgroups, VIII

Proofs:

2. The product HK is a subgroup of G if and only if HK = KH.

Conversely, suppose HK is a subgroup.

Then since H and K are both in HK , we have
〈H,K 〉 = HK and so KH ⊆ 〈H,K 〉 = HK .

For the other containment, suppose k ∈ K and h ∈ H.

Then we have h−1k−1 ∈ HK , so since HK is closed
under inverses, we see (h−1k−1)−1 = kh must be in HK
for any k , h.

Thus, HK ⊆ KH, and so in fact HK = KH.



Products of Subgroups, IX

Proofs:

3. If H ≤ NG (K ) or K ≤ NG (H), then HK is a subgroup of G .

Suppose H ≤ NG (K ), and let h ∈ H and k ∈ K .

By hypothesis, hkh−1 ∈ K , and therefore we can write
hk = (hkh−1)h ∈ KH.

Thus, hk ∈ KH, and so HK ⊆ KH.

Likewise, kh = h(h−1kh) ∈ HK , and so KH ⊆ HK .

We therefore have KH = HK , and so HK is a subgroup
of G by (2).

The case where K ≤ NG (H) is essentially identical.



Products of Subgroups, X

Proofs:

4. If H or K is normal in G , then HK is a subgroup of G .

If H is normal in G , then NG (H) = G .

Thus, trivially K ≤ NG (H). So by (3), HK is a subgroup
of G .

Likewise, if K is normal in G , then H ≤ G = NG (K ), so
again by (3), HK is a subgroup of G .



Products of Subgroups, XI

Proofs:

5. If both H and K are normal in G , and H ∩K = {e}, then HK
is isomorphic to the direct product H × K .

Since H is a normal subgroup of G , by (4) that means
HK is a subgroup of G .

We first show that the elements of H commute with the
elements of K .

To see this, observe that if h ∈ H and k ∈ K , then
hkh−1k−1 = (hkh−1)k−1 is an element of K , since
hkh−1 ∈ K since K is normal in G .

But hkh−1k−1 = h(kh−1k−1) is also an element of H,
since kh−1k−1 ∈ H since H is normal in G .

This means hkh−1k−1 ∈ H ∩ K , and so hkh−1k−1 = e,
meaning that hk = kh: thus, h and k commute.



Products of Subgroups, XII

Proofs:

5. If both H and K are normal in G , and H ∩K = {e}, then HK
is isomorphic to the direct product H × K .

Next, we claim that every element of HK can be written
uniquely in the form hk with h ∈ H and k ∈ K .

To see this suppose hk = h′k ′ for h, h′ ∈ H and
k , k ′ ∈ K . Then (h′)−1h = k ′k−1. But the left-hand side
is an element of H while the right-hand side is an
element of K , so by the assumption H ∩ K = {e}, this
common element must be the identity e.

Thus (h′)−1h = e = k ′k−1 and so h′ = h and k ′ = k ,
meaning h and k are unique.



Products of Subgroups, XIII

Proofs:

5. If both H and K are normal in G , and H ∩K = {e}, then HK
is isomorphic to the direct product H × K .

Therefore, we have a well-defined map ϕ : HK → H × K
mapping hk to the ordered pair (h, k).

It is a group homomorphism because if g = hk and
g ′ = h′k ′ then ϕ(gg ′) = ϕ(hkh′k ′) = ϕ(hh′kk ′) =
(hh′, kk ′) = ϕ(hk)ϕ(h′k ′) = ϕ(g)ϕ(g ′), where we used
the fact that h′ and k commute.

Finally, ϕ is trivially injective (since (h, k) = (e, e)
implies hk = e) and surjective (by definition of HK ) and
so it is an isomorphism.



Products of Subgroups, XIV

A brief interjection about some terminology in this last situation.

If both H and K are normal in G , and H ∩K = {e}, then HK
is isomorphic to the direct product H × K .

Under these hypotheses, we call the subgroup HK the
internal direct product of H and K , and call the group H × K
the external direct product of H and K .

The difference is irrelevant as a practical matter, but the
distinction is that the internal direct product is defined inside
a group that already contains H and K as subgroups, whereas
the external direct product is an explicit construction of a new
group using the Cartesian product.



Products of Subgroups, XV

Proofs:

6. If np = 1 for every prime p dividing #G , then G is the
(internal) direct product of its Sylow subgroups.

The intersection of two Sylow subgroups with different
primes is trivial by Lagrange’s theorem, since the order of
their intersection divides the order of each group.

Therefore, since they are all normal since np = 1 for
every prime p dividing #G , by applying (5) repeatedly we
see that the product of any number of the Sylow
subgroups is isomorphic to their direct product.

In particular, since the product of all the Sylow subgroups
has the same order as G , it is equal to G , and so G is
isomorphic to the direct product of its Sylow subgroups.

A group satisfying the condition (6) is called a nilpotent group.



Products of Subgroups, XV

One common technique for analyzing the structure of finite groups
is to start with the various Sylow subgroups, and then take various
products or normalizers to construct larger subgroups in terms of
these.

In particular, if we can show that all of the Sylow numbers are
equal to 1, then the group is the direct product of its Sylow
subgroups.

This reduces us to the situation of having to identify all the
possibilities for the Sylow subgroups.



Products of Subgroups, XVI

Example: Show that every group of order 7007 is abelian, and
classify them up to isomorphism.

We start by finding the possible Sylow numbers.

For a group of order 7007 = 72 · 11 · 13, the number n7 is
congruent to 1 modulo 7 and divides 11 · 13. The only such
number is 1, so n7 = 1.

Likewise, n11 ≡ 1 (mod 11) and divides 72 · 13, but the only
such divisor is 1. Similarly, the only possible value for n13 is 1.



Products of Subgroups, XVI

Example: Show that every group of order 7007 is abelian, and
classify them up to isomorphism.

We start by finding the possible Sylow numbers.

For a group of order 7007 = 72 · 11 · 13, the number n7 is
congruent to 1 modulo 7 and divides 11 · 13. The only such
number is 1, so n7 = 1.

Likewise, n11 ≡ 1 (mod 11) and divides 72 · 13, but the only
such divisor is 1. Similarly, the only possible value for n13 is 1.



Products of Subgroups, XVI

Example: Show that every group of order 7007 is abelian, and
classify them up to isomorphism.

All of the Sylow subgroups of G are normal, so G is nilpotent
and is the direct product of its Sylow subgroups.

All of these Sylow subgroups are abelian since their orders are
either a prime or a square of a prime, so G is abelian.

By our classification of abelian groups, we see there are two
isomorphism types for G : either
G ∼= (Z/49Z)× (Z/11Z)× (Z/13Z) ∼= Z/7007Z or
G ∼= (Z/7Z)× (Z/7Z)× (Z/11Z)× (Z/13Z) ∼=
(Z/7Z)× (Z/1001Z).



Products of Subgroups, XVII

For certain classes of group orders with a small number of prime
divisors, we can essentially classify groups of that order using
Sylow’s theorems.

We can illustrate some of the ideas by classifying the groups
of order pq, where p and q are distinct primes.

This will turn out to be more involved than it might seem in
one case.



Groups of Order pq, I

Example: If p and q are primes with p < q such that p does not
divide q − 1, show that any group of order n = pq is abelian and
cyclic.

By Sylow’s theorems, the number np divides q and is
congruent to 1 modulo p. Since p does not divide q − 1, the
only possibility is np = 1.

Likewise, nq divides p and is congruent to 1 modulo q, so
since p < q we must have nq = 1.

Therefore, both the Sylow p-subgroup and the Sylow
q-subgroup are normal in G , and so G is isomorphic to their
direct product.

Since both groups are cyclic, we see
G ∼= (Z/pZ)× (Z/qZ) ∼= Z/pqZ by the Chinese remainder
theorem. Thus, G is cyclic as claimed.



Groups of Order pq, I

Example: If p and q are primes with p < q such that p does not
divide q − 1, show that any group of order n = pq is abelian and
cyclic.

By Sylow’s theorems, the number np divides q and is
congruent to 1 modulo p. Since p does not divide q − 1, the
only possibility is np = 1.

Likewise, nq divides p and is congruent to 1 modulo q, so
since p < q we must have nq = 1.

Therefore, both the Sylow p-subgroup and the Sylow
q-subgroup are normal in G , and so G is isomorphic to their
direct product.

Since both groups are cyclic, we see
G ∼= (Z/pZ)× (Z/qZ) ∼= Z/pqZ by the Chinese remainder
theorem. Thus, G is cyclic as claimed.



Groups of Order pq, II

Of course, we have conspicuously omitted the case q ≡ 1 mod p.

Indeed, at least in some cases we can see that the group is
not necessarily abelian: for example, if p = 2, then we have
the dihedral group D2·q of order 2q, and it is not abelian.

Thus, in this situation, it would seem that more is going on.

Indeed, in addition to the case np = nq = 1 (in which case G
is cyclic by the above argument) there is also another
possibility, namely, np = q.

In this case, there are q total Sylow p-subgroups, each of
which has p − 1 elements of order p for a total of
q(p − 1) = pq − q elements.

Together with the q elements in the Sylow q-subgroup, this
accounts for all of the elements in the group.



Groups of Order pq, III

We have not yet shown that there actually exists such a group.

Undeterred, in this hypothetical group, let P = 〈g〉 be a
Sylow p-subgroup, and Q = 〈h〉 be the Sylow q-subgroup.

Then PQ = G in this case by order considerations, even
though G is not isomorphic to the direct product P × Q.

Observe that g acts on the set of elements of Q by
conjugation, since Q is normal in G .

Thus, ghg−1 = hd for some positive integer d .

Moreover, since g has order p, we see h = gphg−p = hdp
, and

so dp ≡ 1 (mod q).

This means d must be an element of order p in (Z/qZ)×,
since d cannot equal 1 by the assumption that g and h do not
commute. Note that such an element exists in (Z/qZ)×, since
(Z/qZ)× is cyclic (as we proved) and p divides its order q− 1.



Groups of Order pq, IV

Our calculations on the last slide suggest that we could take a
presentation of this group as

〈
g , h | gp = hq = e, ghg−1 = hd

〉
where d is an element of order p in (Z/qZ)×.

It may seem that we would obtain several different groups,
one for each of the p − 1 elements of order p in (Z/qZ)×.

But in fact, they are all isomorphic to one another, as can be
seen by changing variables from g to ga for an appropriate
value of a ∈ (Z/pZ)×.



Groups of Order pq, V

We still need to show that
〈
g , h | gp = hq = e, ghg−1 = hd

〉
actually does describe a group of order pq.

Observe that by using the given relations, each element of the
group is of the form gahb for some a ∈ {0, 1, . . . , p − 1} and
b ∈ {0, 1, . . . , q − 1}, so the order of the group is at most pq.

To show equality, we can give a construction of such a group,
motivated by the left-multiplication action of G on the
elements of Q.

This action is transitive and faithful, so if we label the
elements {e, h, h2, . . . , hq−1} of Q as {1, 2, . . . , q}, then the
permutation associated to h is (1 2 3 . . . q), while the
permutation associated to g is the product of (q − 1)/p
p-cycles that conjugates h to hd .



Groups of Order pq, VI

Examples:

1. Suppose p = 2 and q = 5.

We take a q-cycle h = (1 2 3 4 5).

Notice that −1 has order p = 2 in (Z/5Z)×.

So we require ghg−1 = h−1 = (1 5 4 3 2).

Thus, we can take g = (2 5)(3 4).

2. Suppose p = 3 and q = 7.

We take a q-cycle h = (1 2 3 4 5 6 7).

Notice that 2 has order p = 3 in (Z/7Z)×.

So we require ghg−1 = h2 = (1 3 5 7 2 4 6).

Thus, we can take g = (2 3 5)(4 7 6).



Groups of Order pq, VI

Examples:

1. Suppose p = 2 and q = 5.

We take a q-cycle h = (1 2 3 4 5).

Notice that −1 has order p = 2 in (Z/5Z)×.

So we require ghg−1 = h−1 = (1 5 4 3 2).

Thus, we can take g = (2 5)(3 4).

2. Suppose p = 3 and q = 7.

We take a q-cycle h = (1 2 3 4 5 6 7).

Notice that 2 has order p = 3 in (Z/7Z)×.

So we require ghg−1 = h2 = (1 3 5 7 2 4 6).

Thus, we can take g = (2 3 5)(4 7 6).



Groups of Order pq, VII

Examples:

3. Suppose p = 5 and q = 11.

We take a q-cycle h = (1 2 3 4 5 6 7 8 9 10 11).

Notice that 3 has order p = 5 in (Z/11Z)×.

So we require ghg−1 = h3 = (1 4 7 10 2 5 8 11 3 6 9).

Thus, we can take g = (2 4 10 6 5)(3 7 8 11 9).



Groups of Order pq, VII

Examples:

3. Suppose p = 5 and q = 11.

We take a q-cycle h = (1 2 3 4 5 6 7 8 9 10 11).

Notice that 3 has order p = 5 in (Z/11Z)×.

So we require ghg−1 = h3 = (1 4 7 10 2 5 8 11 3 6 9).

Thus, we can take g = (2 4 10 6 5)(3 7 8 11 9).



Groups of Order pq, VIII

We can also give a construction using matrix groups.

Specifically, take H =

{[
x y
0 1

]
: x , y ∈ Fq with xp = 1

}
,

the subgroup of upper-triangular matrices in GL2(Fq) whose
diagonal entries are {x , 1} where xp = 1.

Since F×q is cyclic of order q − 1 as we showed, and p divides
q − 1, the kernel of the pth power map has order p, so there
are p possible values of x .

Since there are q possible values of y , we see #H = pq.

Now we just have to show it has the desired presentation.



Groups of Order pq, IX

We have H =

{[
x y
0 1

]
: x , y ∈ Fq with xp = 1

}
.

By order considerations, H is generated by the elements

g̃ =

[
a 0
0 1

]
of order p, where a is a primitive pth root of

unity, and h̃ =

[
1 1
0 1

]
of order q.

It is then a straightforward calculation to see that
g̃p = h̃q = I2 and g̃ h̃g̃−1 = h̃a.

Thus, H has the desired presentation〈
g , h | gp = hq = e, ghg−1 = hd

〉
, and is the unique

non-abelian group of order pq up to isomorphism.



Groups of Order p2q, I

Using similar arguments we can classify groups of order p2q for
certain values of p and q.

Specifically, if p and q are distinct primes, we will show that
any group G of order p2q must have a normal Sylow
p-subgroup or a normal Sylow q-subgroup.

Furthermore, if p does not divide q − 1 and (p, q) 6= (2, 3), we
can show that G must be abelian and isomorphic to Z/p2qZ
or to (Z/pZ)× (Z/pqZ).



Groups of Order p2q, II

First, we analyze the possible Sylow numbers for G of order p2q.

If p > q then np ∈ {1, q} but it cannot equal q because q 6≡ 1
(mod p). Thus in this case, np = 1.

Otherwise, suppose p < q. Then np ∈ {1, q} and nq ∈ {1, p2}
since nq 6= p because p < q and so p cannot be congruent to
1 modulo q.

If nq = p2 then there would be p2(q − 1) elements of order q
in these Sylow q-subgroups, leaving only n − p2(q − 1) = p2

elements left for the Sylow p-subgroup, so np would be 1.

Therefore, G also must have a normal Sylow subgroup in this
case.



Groups of Order p2q, III

In fact, we can say more.

Indeed, when p < q, if p does not divide q − 1 then we
cannot have np = q, so np = 1.

Furthermore, if we had nq = p2, then p < q and q divides
p2 − 1.

But since q is prime, either q divides p − 1 (impossible since
p < q) or q divides p + 1.

But because p < q, the only possibility is that q = p + 1.

Since the only even prime is 2, this forces p = 2 and q = 3,
which we specifically excluded.

Therefore, we have np = nq = 1.



Groups of Order p2q, IV

So, if (p, q) 6= (2, 3) and q is not 1 mod p, we have np = nq = 1.

Then, G is nilpotent hence isomorphic to the direct product of
its Sylow p-subgroup and its Sylow q-subgroup.

Since both of these Sylow subgroups are abelian since their
orders are either a prime or a square of a prime, we see that G
is abelian.

Then by the classification of finitely generated abelian groups,
G is a direct product of cyclic groups, and based on its prime
factorization we get the two possibilities Z/p2qZ and
(Z/pZ)× (Z/pqZ) given above.



Groups of Order p2q, V

It remains to analyze the situations of groups of order 12, and the
situation where only one of the Sylow subgroups is normal.

Much like the situation with groups of order pq, we will be
able to construct non-abelian groups in these cases.

We would like to do this more systematically than the fairly
ad hoc approach we took with groups of order pq.

We will therefore finish off this chapter by discussing
semidirect products, which will allow us to write down more
general constructions for groups in exactly these situations.



Motivation for Semidirect Products, I

Suppose we have subgroups H and K of a group G , such such that
G = HK and H ∩ K = {e}, but now we only assume H is normal,
not necessarily K .

As a prototypical example, think of H = 〈r〉 and K = 〈s〉
inside D2·n.

Then since G = HK and H ∩ K = {e}, every element of G
must be uniquely written in the form hk for h ∈ H and k ∈ K ,
since the number of such products is #H ·#K = #G .

It is no longer true, however, that elements of H will commute
with elements of K , so in order to describe the multiplication
in this group, we need to be able to convert a product
(h1k1) · (h2k2) into a product of an element of H with an
element of K .



Motivation for Semidirect Products, II

Since HK = G is a subgroup of G , we know that HK = KH.

So, the element k1h2 ∈ KH must be of the form h3k3 ∈ HK .
Then we can write (h1k1) · (h2k2) = h1(k1h2)k2 =
h1(h3k3)k2 = (h1h3)(k3k2) ∈ HK .

It is not so clear what precisely we can do to simplify this
procedure.

For motivation, consider D2·n: whenever we want to simplify a
product like (sr2)(sr5), we use the relation rs = sr−1.

Now notice that we can rewrite that relation as srs−1 = r−1.

The point here is that H = 〈r〉 is normal, so the elements of
K will act on it by conjugation. So in fact we will always get
a relation of this kind when H is normal.



Motivation for Semidirect Products, III

For each k ∈ K , it is true that kHk−1 = H, since H is normal.

Thus, for each k ∈ K , we have an associated isomorphism
ϕk : H → H with ϕk(h) = khk−1.

We can use this to evaluate the product (h1k1) · (h2k2).

Specifically, we have k1h2 = ϕk1(h2)k1, and therefore
(h1k1) · (h2k2) = h1[k1h2]k2 = h1[ϕk1(h2)k1]k2
= [h1ϕk1(h2)] · [k1k2].

What we see is that if we work with ordered pairs
(h, k) ∈ H × K , then the composition operation we have is
(h1, k1) ? (h2, k2) = (h1ϕk1(h2), k1k2): it behaves as normal
multiplication in the K -component, but it is “twisted” by the
isomorphism ϕk1 in the H-component.



Motivation for Semidirect Products, IV

Let’s work out exactly what this looks like in G = D2·5, with
H = 〈r〉 = {e, r , r2, r3, r4} and K = 〈s〉 = {e, s}.

For each element of K , we get an isomorphism ϕk : H → H
acting via ϕk(h) = khk−1.

So, the isomorphism ϕe has ϕe(h) = ehe−1 = h, so it is just
the identity.

The isomorphism ϕs has ϕs(h) = shs−1 = h−1ss−1 = h−1 for
each h ∈ H, and so ϕs is the map taking each element of H
to its inverse.

Using the ordered pair notation, for example, we get
(r , s) ? (r2, e) = (rϕs(r2), se) = (r · r−2, se) = (r4, s), which,
in regular notation inside G , reads as the statement
(rs)(r2) = r4s, which is indeed true.



Motivation for Semidirect Products, V

As we have noted previously, the isomorphisms of H with itself are
called automorphisms.

Conveniently, someone put a problem on Homework 8 that
was all about group automorphisms, so (presumably) you’re
now at least moderately comfortable with them.

As you showed, the automorphisms of H form a group under
function composition, denoted Aut(H).

So: for each element of K we have an automorphism ϕk of H.

Furthermore, we have ϕkk ′ = ϕk ◦ ϕk ′ for any k , k ′ ∈ K , since
ϕkk ′(h) = (kk ′)h(kk ′)−1 = ϕk(ϕk ′(h)) for all h ∈ H.

This means that the association of k to the map ϕk is
actually a group homomorphism of K into Aut(H).



Motivation for Semidirect Products, VI

The idea now is that we can reverse this process.

Explicitly, suppose that H and K are any groups and we have
a homomorphism σ of K into Aut(H), so that for each k ∈ K
we obtain an automorphism σk of H.

We can then use the calculations we just made on the last
slides to define a group operation ? on ordered pairs (h, k) by
taking (h1, k1) ?σ (h2, k2) = (h1σk1(h2), k1k2).

Of course, we do have to check that this is actually a group,
but it is.

The resulting group is called the semidirect product of H and
K .



Semidirect Products, I

Theorem (Semidirect Products)

Let H and K be any groups, let σ : K → Aut(H) be a group
homomorphism with σk being the automorphism σ(k) on H, and
let G be the set of ordered pairs (h, k) for h ∈ H and k ∈ K .
Then G is a group with order #H ·#K under the operation

(h1, k1) ?σ (h2, k2) = (h1σk1(h2), k1k2).

Furthermore, the subset {(h, e) : h ∈ H} is isomorphic to H and is
a normal subgroup of G , while the subset {(e, k) : k ∈ K} is
isomorphic to K .
This group is called the semidirect product of H and K with
respect to σ, and is denoted H oσ K .



Semidirect Products, II

Proof:

Each of the assertions is a direct calculation.

For [G1], first note that σk1k2(h3) = σk1(σk2(h3)).

Then we have
[(h1, k1) ?σ (h2, k2)] ?σ (h3, k3)

= (h1σk1(h2), k1k2) ?σ (h3, k3)
= (h1σk1(h2)σk1k2(h3), k1k2k3)
= (h1σk1(h2)σk1(σk2(h3)), k1k2k3)
= (h1σk1(h2σk2(h3)), k1k2k3)
= (h1, k1) ?σ (h2σk2(h3), k2k3)
= (h1, k1) ?σ [(h2, k2) ?σ (h3, k3)].



Semidirect Products, III

Proof (continued):

For [G2], we observe that (e, e) is the identity of G , since
(e, e) ?σ (h, k) = (eσe(h), ek) = (h, k) and likewise
(h, k) ?σ (e, e) = (h, k).

For [G3], the inverse of (h, k) is (σk−1(h−1), k−1), since
(h, k) ?σ (σk−1(h−1), k−1) = (hσk(σk−1(h−1)), kk−1) = (e, e)
and likewise (σk−1(h−1), k−1) ?σ (h, k) = (e, e).

Also, {(h, e) : h ∈ H} is a normal subgroup isomorphic to H,
since (h1, e) ? (h2, e) = (h1h2, e) and
(h1, k) ? (h2, e) ? (h1, k)−1 = (h1h2h−11 , e).

Likewise, {(e, k) : k ∈ K} is a subgroup isomorphic to K ,
since (e, k1) ? (e, k2) = (e, k1k2).



Semidirect Products, IV

The idea here is that semidirect products are somewhat like direct
products (whose underlying set is also ordered pairs of elements of
H and K ) but have a different group operation.

In fact, if σ is the identity map, then the semidirect product
with respect to σ is simply the direct product, since the group
operation is (h1, k1) ?σ (h2, k2) = (h1σk1(h2), k1k2).

Furthermore, we can view H and K as being embedded inside
of the semidirect product H oσ K as the subgroups
{(h, e) : h ∈ H} and {(e, k) : k ∈ K} respectively.

When we make this identification, we see that H ∩ K = {e},
G = HK , and H is a normal subgroup of G : this is precisely
the setup we started with.



Semidirect Products, V

The point of all of this discussion was to identify when we can
decompose a group G as a semidirect product.

Specifically, if we can decompose G as a product HK for two
subgroups H and K with H normal in G and H ∩ K = {e},
this means G must be (isomorphic to) a semidirect product
H oσ K for some σ : K → Aut(H).

As with direct products, in principle we should draw a
distinction between an internal semidirect product (in which
we already have a group G with those subgroups H and K as
above) and an external semidirect product (in which we are
taking two abstract groups H and K with some σ → Aut(H)
and constructing this new group H oσ K ).

In practice, we don’t really care, since we are thinking of the
semidirect product as an abstract construction most of the
time anyway.



Semidirect Products, VI

A few miscellaneous notational remarks:

The notation H oσ K is intended to evoke the direct product
but also to point out the asymmetry between H (which is
normal) and K (which need not be).

The side of the symbol o with the vertical bar identifies the
subgroup that is not normal.

Contrarians sometimes use A nσ B, which is a semidirect
product in which B is normal, and σ : A→ Aut(B).

One may always switch the order in this way because if
AB = G then BA = G as well (since BA is a subgroup, it
equals AB), though the resulting construction differs slightly.

When the map σ is clear from context, it is often omitted.
Usually, when we write H o K with no σ, we are specifically
avoiding the case where we end up with the direct product.



Semidirect Products, VII

Examples:

1. Let H = 〈a〉 be cyclic of order 5 and K = 〈b〉 be cyclic of
order 4.

Let σ : K → Aut(H) be the homomorphism such that
σb(a) = a2.

Note that there is such a homomorphism, because the
squaring map has order 4 inside Aut(H) ∼= (Z/5Z)×,
which is cyclic of order 4 and generated by the element 2.

The resulting semidirect product H oσ K is a group of
order 20 generated by a and b.

The elements a, b satisfy the relations a5 = e and b4 = e
inherited from H and K , and they also satisfy
bab−1 = a2 from the action of the automorphism.

We get a presentation
〈
a, b | a5 = b4 = e, bab−1 = a2

〉
.



Semidirect Products, VII

Examples:

2. Let H = 〈a〉 be cyclic of order 5 and K = 〈b〉 be cyclic of
order 4.

We can construct a different semidirect product if instead
we use the homomorphism τ : K → Aut(H) such that
σb(a) = a4. This is well-defined because this
automorphism has order 2 inside Aut(H).

Then H oσ K is a group of order 20 generated by a and
b, but now a, b satisfy the relations bab−1 = a4 = a−1,
so this group has a presentation〈
a, b | a5 = b4 = e, bab−1 = a−1

〉
.



Semidirect Products, VIII

In these two examples, we have constructed two groups of order 20.

The two semidirect products we constructed were
G1 =

〈
a, b | a5 = b4 = e, bab−1 = a2

〉
and

G2 =
〈
a, b | a5 = b4 = e, bab−1 = a−1

〉
.

In fact, these are different from any of the other groups of
order 20 we have encountered so far.

Neither of them is abelian, like Z/20Z and (Z/2Z)× (Z/10Z),
and neither is isomorphic to the dihedral group D2·10 since the
dihedral group has no elements of order 4.

G1 and G2 are also not isomorphic to each other, although
this is a bit harder to see directly: one way is to note that the
second group has an element of order 5 and order 2 that
commute (namely, a and b2) while the first doesn’t.

It is easier to note that the images im(σ) for σ : K → Aut(H)
differ for these two groups (G1 has order 4, G2 has order 2).



Semidirect Products, IX

Examples:

3. Let H be any abelian group and K = 〈b〉 be cyclic of order 2.

Also let σ : K → Aut(H) be the map sending the
nonidentity element b ∈ K to the inversion
automorphism with σb(a) = a−1 for any a ∈ H.

We obtain a semidirect product H oσ K of order 2 ·#H.

If H = 〈a〉 is cyclic of order n, then the resulting
semidirect product is a group of order 2n generated by a
and b, and a, b satisfy the relations bab−1 = a−1.

In that case, the semidirect product is isomorphic to the
dihedral group D2·n, with a playing the role of r and b
playing the role of s.

However, for other H, we get new groups. For example,
if H is isomorphic to Z, we get a group with presentation
〈a, b | b2 = e, bab−1 = a−1〉.



Semidirect Products, IX

Examples:

4. Let H = 〈a〉 be cyclic of order q and K = 〈b〉 be cyclic of
order p, for primes p and q.

Then to construct a semidirect product H oσ K , we need
a map σ : K → Aut(H).

Note that Aut(H) ∼= (Z/qZ)× is cyclic of order q − 1.

So if p does not divide q − 1, the only such map σ is the
identity map, yielding the direct product.

If p does divide q − 1, then there is a nontrivial map σ,
since Aut(H) will contain an element d of order p.

If we take σb(a) = ad , then the semidirect product has
presentation 〈a, b | aq = bp = e, bab−1 = ad〉, which is
the non-abelian group of order pq we found earlier.



Semidirect Products, X

In fact, we could have used semidirect products to classify the
groups of order pq quite a bit more simply1.

Explicitly, if p < q then we know the Sylow q-subgroup H is
normal. Then if K is any Sylow p-subgroup, we have
H ∩ K = {e} by Lagrange’s theorem, and so HK = G .

This tells us that G is a semidirect product H oσ K for some
σ : K → Aut(H).

The analysis we just gave then shows G is actually a direct
product unless p divides q − 1, in which case there are some
nontrivial possible σ, which yield non-abelian groups.

Using a result we will mention next time, all of those groups
turn out to be isomorphic.

1In fact, we really did just write down the semidirect product structure, just
without identifying it as such.



Summary

We discussed products of subgroups and established some of their
basic properties.

We classified groups of some orders.

We introduced semidirect products.

Next lecture: More semidirect products, field automorphisms.


