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Abelian Finitely Generated Groups, I

Last time, we proved the following result:

Theorem (Finitely Generated Abelian Groups: Invariant Factors)

If G is a finitely generated abelian group, then there exists a
unique nonnegative integer r (the rank of the group G ) and a
unique list of positive integers a1, . . . , ak such that a1|a2| · · · |ak
such that G ∼= Zr × (Z/a1Z)× · · · × (Z/akZ).

We will now extend this theorem by breaking apart the cyclic
factors into prime-power cyclic factors.



The Chinese Remainder Theorem, I

We can also decompose the terms Z/nZ into prime powers using
the Chinese remainder theorem, as follows:

Proposition (Chinese Remainder Theorem for Z)

If a and b are relatively prime integers, then Z/abZ is isomorphic
to (Z/aZ)× (Z/bZ). Thus, if n has prime factorization
n = pa1

1 · · · p
ak
k , we have Z/nZ ∼= (Z/pa1

1 Z)× · · · × (Z/pak
k Z).

In number theory this result is usually stated as follows: for any
relatively prime moduli m1, . . . ,mk and any integers a1, . . . , ak ,
there exists a unique solution modulo m1 · · ·mk to the system

x ≡ a1 mod m1

...
...

...

x ≡ ak mod mk



The Chinese Remainder Theorem, II

Proof:

For the first part, consider the map ϕ : Z→ (Z/aZ)× (Z/bZ)
given by ϕ(n) = (n mod a, n mod b).

This map is easily seen to be a ring homomorphism, and its
kernel consists of the elements n ∈ Z divisible by both a and
b. Since a and b are relatively prime, this means kerϕ = abZ.

Thus, by the first isomorphism theorem, we obtain an
injective ring homomorphism ϕ̃ : Z/abZ→ (Z/aZ)× (Z/bZ).

But since Z/abZ and (Z/aZ)× (Z/bZ) both have cardinality
ab, the map is also surjective, hence is an isomorphism.

The second part follows by a trivial induction using the fact
that the prime powers pai

i in the prime factorization of
n = pa1

1 · · · p
ak
k are relatively prime.



The Chinese Remainder Theorem, III

In fact, the Chinese remainder theorem is quite general and can be
formulated in arbitrary commutative rings with 1.

If we work with general ideals, rather than just principal ideals
in a Euclidean domain, the proper condition is not coprimality
but rather “comaximality”.

Explicitly, if R is commutative with 1, we say that the ideals I
and J are comaximal if I + J = R.

Then the statement of the Chinese remainder theorem is as follows:

Theorem (Chinese Remainder Theorem, general)

Let R be a commutative ring with 1 and I1, I2, . . . , In be pairwise
comaximal ideals of R. Then I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In and
R/(I1I2 · · · In) ∼= (R/I1)× (R/I2)× · · · × (R/In) as rings.



Generated Finitely Abelian Groups, II

By decomposing each of the cyclic Z/nZ factors from the invariant
factor decomposition, we see that any finitely generated abelian
group decomposes as a direct product of copies of Z with Z
modulo prime powers:

Theorem (Finitely Generated Abelian Groups: Elementary Divisors)

If G is a finitely generated abelian group, then there exists a
unique nonnegative integer r and a unique list of prime powers pai

i

such that G ∼= Zr × (Z/pa1
1 Z)× · · · × (Z/pak

k Z).

The terms appearing in the direct product are called the
elementary divisors of G .



Finitely Generated Groups Abelian, III

Proof:

The existence follows immediately from decomposing each of
the Z/nZ terms from the invariant factor decomposition into
prime powers.

For the uniqueness, observe that for any m, the mth-power
map ϕm on G is a group homomorphism from G to G since G
is abelian. The kernel of ϕm consists of all elements of order
dividing m in G .

The idea is that knowing kerϕm for all m uniquely
characterizes the finite cyclic factors that can show up in the
direct product decomposition of G .

For example, if p is a prime, then kerϕp picks out all of the
terms in the direct product whose prime is p: specifically, a
term Z/pnZ contributes the elements pn−1Z/pnZ.



Generated Finitely Groups Abelian, IV

Proof (continued):

More generally, kerϕpd picks out all of the elements in the
copies of Z/pZ, ... , Z/prdZ, but for higher powers of p we
only get the elements of order dividing pd in those copies.

Then the quotient ker(ϕpd )/ ker(ϕpd+1) is trivial in all

components of the direct product except for the terms Z/pkZ
with k ≥ d , where it yields a copy of Z/pZ.

Therefore, by computing the order of each quotient
ker(ϕpd )/ ker(ϕpd+1), we can determine the number of terms

Z/pkZ in the direct product with k ≥ d for each d .

This uniquely determines all of the Z/piZ components in
terms of the group structure of G .

Furthermore, if p is a prime not appearing in any of the
prime-power components, we can see that G/pG is isomorphic
to (Z/pZ)r , so the rank r is also uniquely determined.



Groups Abelian Generated Finitely, V

The argument we gave establishes the uniqueness of the
elementary divisors, and (with appropriate minor modification) also
gives the uniqueness of the invariant factors.

Given the invariant factors, it is easy to find the elementary
divisors, since we need only find the prime-power factorizations
of the invariant factors and then break the terms apart using
the Chinese remainder theorem as described above.

If we have a decomposition into elementary divisor form, we
can reconstruct the invariant factor form recursively: the
largest invariant factor is the product of the largest power of
each prime, then the next largest invariant factor is the
product of the largest remaining power of each prime, and so
forth.



Finitely Groups Abelian Generated, VI

Example: Find the elementary divisor form of (Z/6Z)× (Z/240Z).

We simply break each term into prime powers.

Note 6 = 2 · 3 and 240 = 24 · 3 · 5.

So Z/6Z ∼= (Z/2Z)× (Z/3Z) and
Z/240Z ∼= (Z/16Z)× (Z/3Z)× (Z/5Z).

Thus, the elementary divisor form of (Z/6Z)× (Z/240Z) is
(Z/2Z)× (Z/3Z)× (Z/16Z)× (Z/3Z)× (Z/5Z),
or, if we put the terms marginally more in order,
(Z/2Z)× (Z/16Z)× (Z/3Z)× (Z/3Z)× (Z/5Z).



Finitely Groups Abelian Generated, VI
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Groups Generated Finitely Abelian, VII

Example: Find the invariant factor form of
(Z/16Z)× (Z/16Z)× (Z/3Z)× (Z/5Z)× (Z/5Z)× (Z/125Z).

The prime powers are 24, 24, then 3, then 53, 5, 5.

The largest factors are 24 · 3 · 53 = 6000. Then the largest
remaining factors are 24 · 1 · 5 = 80, and the largest factors
after those are 1 · 1 · 5 = 5.

Since we have exhausted all factors, we have found all of the
invariant factors, and the invariant factor form is
(Z/5Z)× (Z/80Z)× (Z/6000Z).



Groups Generated Finitely Abelian, VII
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Groups Finitely Generated Abelian, VIII

Example: Classify the abelian groups of order 36 up to
isomorphism, in both elementary divisor and invariant factor form.

We first make a list of possible elementary divisors. Since
36 = 2232 we only need to work with the primes 2 and 3.

The possible cyclic factors for p = 2 are Z/4Z and
(Z/2Z)× (Z/2Z), while the possible cyclic factors for p = 3
are Z/9Z and (Z/3Z)× (Z/3Z).



Groups Finitely Generated Abelian, VIII

Example: Classify the abelian groups of order 36 up to
isomorphism, in both elementary divisor and invariant factor form.

We first make a list of possible elementary divisors. Since
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Groups Generated Abelian Finitely, IX

Example: Classify the abelian groups of order 36 up to
isomorphism, in both elementary divisor and invariant factor form.

Thus, since all combinations are possible and distinct, we see
that there are 4 abelian groups of order 36, and their
elementary divisor forms are (Z/4Z)× (Z/9Z),
(Z/4Z)× (Z/3Z)× (Z/3Z), (Z/2Z)× (Z/2Z)× (Z/9Z), and
(Z/2Z)× (Z/2Z)× (Z/3Z)× (Z/3Z).

To convert these into invariant factor form, we follow the
procedure described above to obtain the invariant factor forms
Z/36Z, (Z/3Z)× (Z/12Z), (Z/2Z)× (Z/18Z), and
(Z/6Z)× (Z/6Z).



Groups Finitely Generated Abelian, X

Example: Find the number of abelian groups, up to isomorphism,
of order 7200.

We make a list of possible elementary divisors. Since
7200 = 25 · 3 · 52 we must work with 2, 3, and 5.

The possible powers for p = 2 are 5, 4-1, 3-2, 3-1-1, 2-2-1,
2-1-1-1, and 1-1-1-1-1, yielding 7 possible combinations of
cyclic factors.

The only possible term for p = 3 is Z/3Z, yielding 1
possibility.

For p = 5 the terms are either 2 or 1-1, yielding 2 possibilities.

Thus, there are 7 · 1 · 2 = 14 abelian groups of order 7200, up
to isomorphism.



Groups Finitely Generated Abelian, X

Example: Find the number of abelian groups, up to isomorphism,
of order 7200.

We make a list of possible elementary divisors. Since
7200 = 25 · 3 · 52 we must work with 2, 3, and 5.

The possible powers for p = 2 are 5, 4-1, 3-2, 3-1-1, 2-2-1,
2-1-1-1, and 1-1-1-1-1, yielding 7 possible combinations of
cyclic factors.

The only possible term for p = 3 is Z/3Z, yielding 1
possibility.

For p = 5 the terms are either 2 or 1-1, yielding 2 possibilities.

Thus, there are 7 · 1 · 2 = 14 abelian groups of order 7200, up
to isomorphism.



Abelian Generated Groups Finitely, XI

Our arguments in establishing the classification of finitely
generated abelian groups also gives us an algorithm for computing
a list of generators.

When the group is infinite, we do essentially need to compute
the various relations that hold between a list of generators.

However, when the group is finite, we do not need to do this
explicitly, if we are able to compute the kernels of the various
pnth-power maps for the primes p dividing the order of the
group, since as we saw, these kernels uniquely characterize the
group structure.

One may use these observations, for example, to write down
the group structure of (Z/nZ)× for each n.



Sylow’s Theorems, I

We continue our analysis of the structure of finite groups.

Suppose the order of G is n. By Lagrange’s theorem, the
order of any subgroup of G must divide n.

From the classification of finite(ly generated) abelian groups,
it is not hard to see that if G is abelian, then G has a
subgroup of order d for every divisor d of n.



Sylow’s Theorems, II

However, if G is non-abelian, then it is not the case that there
necessarily exists a subgroup of order d for every d dividing n.

Indeed, A4, of order 12, has no subgroup of order 6, though it
does have subgroups of orders 1, 2, 3, 4, and 12.

By Cauchy’s theorem, if p is a prime dividing n, then G
necessarily contains an element of order p, which will then
generate a subgroup of G of order p.

Note that A4 does contain subgroups of these required prime
orders 2 and 3 (along with the obvious subgroups of orders 1
and 12). But it also contains a subgroup of order 4.

In fact, this is required: we will now show that if pd is a prime
power dividing the order of G , then in fact G must possess a
subgroup of order pd .



Sylow’s Theorems, III

Definition

If p is a prime, a p-group is a group whose order is a power of p.

Z/64Z, D2·4, and Q8 are 2-groups while Z/25Z is a 5-group.

Definition

If G is a group and p is a prime, a subgroup of G that is a p-group
is called a p-subgroup of G . If pd is the largest power of p dividing
#G , then a p-subgroup of G of order pd is called a
Sylow p-subgroup of G .

If pd is the largest power of p dividing #G , then pd is the
largest possible order of a p-subgroup of G , by Lagrange’s
theorem. A Sylow p-subgroup, therefore, is a p-subgroup of G
of the maximum possible size.



Sylow’s Theorems, IV

Examples:

1. S4 contains a subgroup H = 〈(1 2 3 4), (2 4)〉 isomorphic to
the dihedral group D2·4 of order 8.

Since #S4 = 24 = 23 · 3, this subgroup H is a Sylow
2-subgroup of S4.
S4 also contains several subgroups of order 3, generated
by 3-cycles: 〈(1 2 3)〉, 〈(1 2 4)〉, 〈(1 3 4)〉, 〈(2 3 4)〉. These
are Sylow 3-subgroups of S4.

2. The subgroup 〈4〉 of Z/36Z, which has order 9, is a Sylow
3-subgroup of Z/36Z.

Indeed, this is the unique Sylow 3-subgroup of Z/36Z.
There is also a unique Sylow 2-subgroup of Z/36Z: the
subgroup 〈9〉, which has order 4.



Sylow’s Theorems, V

Examples:

3. Identify all of the Sylow subgroups of A5.

Note that A5 has order 5!/2 = 60 = 22 · 3 · 5. Therefore, the
Sylow 2-subgroups have order 4, the Sylow 3-subgroups have
order 3, and the Sylow 5-subgroups have order 5.

The Sylow 3-subgroups are cyclic and generated by 3-cycles.
Since there are 5 · 4 · 3/3 = 20 3-cycles, and each Sylow
3-subgroup contains 2 different ones, there are 10 Sylow
3-subgroups.

The Sylow 5-subgroups are cyclic and generated by 5-cycles.
Since there are 5 · 4 · 3 · 2 · 1/5 = 24 5-cycles, and each Sylow
5-subgroup contains 4 different ones, there are 6 Sylow
5-subgroups.



Sylow’s Theorems, V
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Sylow’s Theorems, VI

Examples:

3. Identify all of the Sylow subgroups of A5.

It is a bit harder to identify the Sylow 2-subgroups.

Observe that 〈(1 2)(3 4), (1 3)(2 4)〉 is a subgroup of order 4
inside A5, isomorphic to the Klein 4-group, so it is a Sylow
2-subgroup.

In fact, there are 5 of these subgroups inside A5, obtained by
fixing one point and taking the Klein 4-subgroup of the
resulting subgroup isomorphic to A4.

They are 〈(1 2)(3 5), (1 3)(2 5)〉, 〈(1 2)(4 5), (1 4)(2 5)〉 ,
〈(1 3)(4 5), (1 4)(3 5)〉 , and 〈(2 3)(4 5), (2 4)(3 5)〉.
In fact, these are all of the Sylow 2-subgroups, because the
only elements of A5 with order dividing 4 are the 2,2-cycles,
and it is not hard to see that these are the only 2-groups that
can be formed from them.
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Sylow’s Theorems, VII

It is not obvious that Sylow p-subgroups exist. This fact, and
substantially more, is the content of the following results of Sylow:

Theorem (Sylow’s Theorems)

Suppose that G is a finite group, p is a prime, and pd is the largest
power of p dividing the order of G . Then the following hold:

1. G contains a Sylow p-subgroup.

2. If P is any Sylow p-subgroup of G and Q is any p-subgroup of
G , then Q is contained in some conjugate of P (thus, Q is
contained in a Sylow p-subgroup of G ). Thus, all Sylow
p-subgroups of G are conjugate in G and isomorphic.

3. The number np of Sylow p-subgroups satisfies np ≡ 1 (mod
p). Furthermore, np = [G : NG (P)] where P is any Sylow
p-subgroup of G , and so as a consequence, np divides #G/pd .



Sylow’s Theorems, VIII

We will prove each of the pieces (1)-(3) separately, and the
arguments will be a showcase of our results on group actions.

I will mention that, although the proofs of Sylow’s theorems
are not actually that complicated, it is not necessary to know
them in order to use the results.

This is in contrast to various other theorems that we have
proven, where the ideas in the proof are also important and
will show up repeatedly.

For example, many of our results about the structure of the
field extension F (α)/F when α is algebraic rely upon the fact
that F (α) is isomorphic to F [x ]/m(x), and understanding this
fact is crucial for many other things we do.

With Sylow’s theorems, in contrast (at least for “group theory
novices”) the results and applications are the most important.



Sylow’s Theorems, IX: Class Action

1. G contains a Sylow p-subgroup.

Proof:

We induct on the order n of G . The base case n = 1 is trivial.

For the inductive step, let p be a prime and suppose any
group of order strictly less than n has a Sylow p-subgroup.

Recall that the class equation in G says that
#G = #Z (G ) +

∑e
i=1 [G : CG (gi )], where the g1, . . . , ge are

representatives of the non-central conjugacy classes of G and
Z (G ) is the center of G .

We break into two cases: either p divides #Z (G ), or it
doesn’t.



Sylow’s Theorems, X: Where’s The Action?

1. G contains a Sylow p-subgroup.

Proof (case 1):

If p divides #Z (G ), then by Cauchy’s theorem, Z (G ) has an
element of order p, which then generates a normal subgroup
N of G of order p. (The subgroup is normal because it is
contained in Z (G ).)

Then G/N is a group of order n/p, so by the inductive
hypothesis it has a Sylow p-subgroup P, which is necessarily
of order pd−1.

Then by the lattice isomorphism theorem, the subgroup P of
G containing N with P/N = P (i.e., the preimage of P under
the projection map from G to G/N) has order
#P ·#N = pd−1 · p = pd in G .

Thus, P is a Sylow p-subgroup of G .



Sylow’s Theorems, XI: Action Hero

1. G contains a Sylow p-subgroup.

Proof (case 2):

Now suppose that p does not divide #Z (G ).

We have #G = #Z (G ) +
∑e

i=1 [G : CG (gi )].

Since p divides #G , at least one of the terms [G : CG (gi )]
must not be divisible by p.

Let H = CG (gi ). Since [G : H] is not divisible by p, the order
of H is divisible by pd , and also because gi is not in the center
of G , H is a proper subgroup of G .

Thus, by the induction hypothesis, H has a Sylow p-subgroup
P of order pd : then P is also a Sylow p-subgroup of G .

G has a Sylow p-subgroup in both cases, so we win.



Sylow’s Theorems, XII: Side Action

For the next part of the proof, we first establish a lemma about
actions of p-groups:

Lemma (Fixed-Point Congruence for p-Group Actions)

Let p be a prime and suppose P is a p-group acting on a finite set
A. Then #A ≡ #FixP(A) mod p, where FixP(A) denotes the
number of fixed points of P on A (in other words, the number of
a ∈ A such that g · a = a for all g ∈ P).

I will note that the argument we gave to prove Cauchy’s theorem is
an application of this lemma to the cyclic permutation action of
Z/pZ on ordered p-tuples (g1, . . . , gp) with g1 · · · gp = 1.



Sylow’s Theorems, XIII: Action Item

Proof:

By the orbit-stabilizer theorem, the size of the orbit of any
a ∈ A is equal to [P : Pa], the index of the stabilizer Pa of a,
which is a divisor of #P by Lagrange’s theorem.

Therefore, any orbit either has size 1, or has size divisible by p
since P is a p-group.

Note that a ∈ A has an orbit of size 1 if and only if its
stabilizer Pa is all of P, which is equivalent to saying that a is
a fixed point of P.

Since the orbits partition A, this means that #A is equal to
the total number of fixed points (the orbits of size 1) plus a
multiple of p (the other orbits).

Therefore, #A ≡ #FixP(A) mod p as desired.



Sylow’s Theorems, XIV: All Action, All The Time

2. If P is any Sylow p-subgroup of G and Q is any p-subgroup of
G , then Q is contained in some conjugate of P (thus, Q is
contained in a Sylow p-subgroup of G ). Thus, all Sylow
p-subgroups of G are conjugate in G and isomorphic.

Proof:

Let P, Q be as above and observe that Q acts on the left
cosets of P by left multiplication: explicitly, the action is
g · (hP) = (gh)P for any g ∈ Q and left coset hP of P.

Therefore, since Q is a p-group, by the lemma above, we see
that the number of fixed points of this action is congruent to
the number of left cosets [G : P] modulo p.

But since P is a Sylow p-subgroup of G , the index [G : P] is
relatively prime to p, so the number of fixed points is nonzero.



Sylow’s Theorems, XIV: Action News

2. If P is any Sylow p-subgroup of G and Q is any p-subgroup of
G , then Q is contained in some conjugate of P (thus, Q is
contained in a Sylow p-subgroup of G ). Thus, all Sylow
p-subgroups of G are conjugate in G and isomorphic.

Proof (continued):

So suppose that hP is a fixed point of the action of Q on left
cosets of P by left multiplication.

This means g · (hP) = hP for all g ∈ Q, which is to say,
ghP = hP. Equivalently, gh ∈ hP for all g ∈ Q, which is to
say, Q ⊆ hPh−1.

Thus, Q is contained in a conjugate of P as claimed.

For the second part, if Q is now another Sylow p-subgroup,
we see Q ⊆ hPh−1 as above, but since Q and hPh−1 have the
same cardinality, they are equal: thus, P and Q are conjugate.



Sylow’s Theorems, XV: Lights, Camera, Action

3. The number np of Sylow p-subgroups satisfies np ≡ 1 (mod
p). Furthermore, np = [G : NG (P)] where P is any Sylow
p-subgroup of G , and so as a consequence, np divides #G/pd .

Proof:

Let P be a Sylow p-subgroup of G and take A to be the set of
all Sylow p-subgroups of G .

Observe that P acts on A by conjugation: explicitly, the
action is g · Q = gQg−1 for any g ∈ P and any Sylow
p-subgroup Q of G .

Therefore, since P is a p-group, by the lemma we see that the
number of fixed points of this action is congruent modulo p to
the number of Sylow p-subgroups of G . We will show that
this action has a single fixed point: namely, P.



Sylow’s Theorems, XV: Action Comics

3. The number np of Sylow p-subgroups satisfies np ≡ 1 (mod
p). Furthermore, np = [G : NG (P)] where P is any Sylow
p-subgroup of G , and so as a consequence, np divides #G/pd .

Proof (part 1):

So suppose that Q is a fixed point of the conjugation action:
then gQg−1 = Q for all g ∈ P, meaning that P ≤ N(Q).
Since Q is a subgroup, Q ≤ N(Q) as well.

Notice that P and Q are then both Sylow p-subgroups of
N(Q), and so (2) applied to N(Q) shows that P and Q are
conjugate inside N(Q). However, by definition Q is a normal
subgroup of N(Q), since all elements of N(Q) normalize Q,
and so the only possibility is to have P = Q.

Thus, P is the only fixed point of the conjugation action on
A, and so the number np of Sylow p-subgroups is congruent
to 1 modulo p as claimed.



Sylow’s Theorems, XVI: Action Replay

3. The number np of Sylow p-subgroups satisfies np ≡ 1 (mod
p). Furthermore, np = [G : NG (P)] where P is any Sylow
p-subgroup of G , and so as a consequence, np divides #G/pd .

Proof (part 2):

For the second statement, consider the conjugation action of
G on the set of its Sylow p-subgroups.

The stabilizer of P under this action is the set of g ∈ G such
that gPg−1 = P, which is the normalizer NG (P) of P in G .

Therefore, since all Sylow p-subgroups are conjugate by (2),
the size of the orbit of P is np, which by the orbit-stabilizer
theorem is also equal to [G : NG (P)].

This is a divisor of #G by Lagrange’s theorem, and since it is
relatively prime to p, it must in fact divide #G/pd .



Sylow Applications, I

Sylow’s theorems are very useful for obtaining additional structural
information about groups of a given order.

The first step is to make a list of all of the possible Sylow
numbers (i.e., candidates for the numbers np of Sylow
p-subgroups for each prime p dividing the order of G ).

We can then try to exploit this information to pin down more
of the group structure.



Sylow Applications, II

In particular, if we can show that a particular Sylow number np

must be equal to 1, then we know the resulting Sylow p-subgroup
must be normal.

This follows from Sylow (3): if P is the Sylow p-subgroup,
then np = [G : NG (P)], so nP = 1 if and only if NG (P) = G ,
which is to say, when P is a normal subgroup of G .

Even when np is not necessarily equal to 1, it is often still
useful to consider NG (P), since it is another subgroup of G
whose order we know if we know np.



Sylow Applications, III

Example: If #G = 45, find the possible Sylow numbers of G and
identify the possible structures of the Sylow subgroups of G .

Since 45 = 32 · 5 we see that n3 is a divisor of 45 that is
congruent to 1 modulo 3. The only divisors not containing a
factor of 3 are 1 and 5, and only 1 is congruent to 1 modulo
3. Thus, n3 = 1, so there is a unique Sylow 3-subgroup of G ,
which has order 32 = 9.

Since groups of order p2 are abelian, the Sylow 3-subgroup is
isomorphic either to Z/9Z or to (Z/3Z)× (Z/3Z).

Likewise, n5 is a divisor of 45 that is congruent to 1 modulo 5,
hence is actually a divisor of 9. But the only divisor of 9
congruent to 1 modulo 5 is 1. Thus, n5 = 1 also. This means
that there is a unique Sylow 5-subgroup, which has order 5
and is thus isomorphic to Z/5Z.
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Sylow Applications, IV

Example: If #G = 60, find the possible Sylow numbers of G and
identify the possible structures of the Sylow subgroups of G .

Since 60 = 22 · 3 · 5 we see that n2 is a divisor of 15 that is
odd. Thus, we have n2 ∈ {1, 3, 5, 15}, and since a Sylow
2-subgroup has order 4, it is isomorphic to Z/4Z or to
(Z/2Z)× (Z/2Z).

Likewise, n3 is a divisor of 22 · 5 = 20 that is congruent to 1
modulo 3. This means n3 ∈ {1, 10} and since a Sylow
3-subgroup has order 3, it is isomorphic to Z/3Z.

Finally, n5 is a divisor of 22 · 3 = 10 that is congruent to 1
modulo 5. This means n5 ∈ {1, 6} and since a Sylow
5-subgroup has order 5, it is isomorphic to Z/5Z.
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odd. Thus, we have n2 ∈ {1, 3, 5, 15}, and since a Sylow
2-subgroup has order 4, it is isomorphic to Z/4Z or to
(Z/2Z)× (Z/2Z).

Likewise, n3 is a divisor of 22 · 5 = 20 that is congruent to 1
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Sylow Applications, V

We do not quite have all the tools necessary to classify groups of
most orders yet.

We will discuss some such tools next class (specifically, how to
construct new subgroups by taking products of smaller
subgroups).

However, one thing we can do is use Sylow’s theorems to
establish that there are no simple groups of a particular order.

This kind of calculation is useful because it allows us to
narrow down the list of possible simple groups, which (as we
discussed a few classes ago) are the basic building blocks of
finite groups using quotients and group extensions.

The simplest approach is to show that a Sylow number must
equal 1.



Sylow Applications, VI

Example: Show that a group of order 40 cannot be simple.

Since 40 = 23 · 5, we want to compute the possible values of
n2 and n5.

The number n2 of Sylow 2-subgroups is odd and a divisor of
5, so n2 ∈ {1, 5}.
Also, the number n5 of Sylow 5-subgroups is congruent to 1
mod 5 and is a divisor of 23 = 8. The only such divisor is 1,
so n5 = 1.

But, by our observation earlier, since there is a unique Sylow
5-subgroup, it is normal.

Then our group G has a nontrivial proper normal subgroup, so
it is not simple.
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5-subgroup, it is normal.

Then our group G has a nontrivial proper normal subgroup, so
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Sylow Applications, VII

Example: Show that a group G of order 1375 cannot be simple.

Notice that 1375 = 53 · 11. Then n5 is a divisor of 11
congruent to 1 modulo 5, so n5 ∈ {1, 11}.
Also, n11 is a divisor of 53 congruent to 1 modulo 11. But the
only such divisor is 1, meaning n11 = 1.

But then because n11 = 1, by our results above this means
that the unique Sylow 11-subgroup is normal, and thus G
cannot be simple.
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Sylow Applications, VIII

Frequently, the congruence conditions do not immediately force the
existence of a normal Sylow subgroup.

But sometimes we can count elements in these various Sylow
subgroups and show that having all of the Sylow numbers be
large would force the group to have too many elements.

The general idea is that a group of order p must have p − 1
elements of order p, and they are all generators.

Therefore, distinct subgroups of order p in G cannot share
any of their elements of order p.



Sylow Applications, VIII

Example: Show that a group G of order 105 cannot be simple.

Notice that 105 = 3 · 5 · 7. Thus, n3 ≡ 1 mod 3 and divides
5 · 7, so must be among {1, 5, 7, 35}. The only possibilities are
n3 ∈ {1, 7}.
Likewise, n5 ≡ 1 mod 5 and divides 3 · 7, so must be among
{1, 3, 7, 21}. The only possibilities are n5 ∈ {1, 21}.
Finally, n7 ≡ 1 mod 7 and divides 3 · 5, so must be among
{1, 3, 5, 15}. The only possibilities are n7 ∈ {1, 15}.
If any of n3, n5, and n7 equals 1, then the corresponding
Sylow subgroup is normal and then G is not simple.
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Sylow Applications, IX

Example: Show that a group G of order 105 cannot be simple.

A priori, it may seem that we could have n3 = 7, n5 = 21, and
n7 = 15. However, this is not actually possible.

Each Sylow 3-subgroup is cyclic and thus has 3− 1 = 2
elements of order 3.

Each of these elements of order 3 generates the group, so all
7 · (3− 1) = 14 of these elements must be distinct.

Likewise, there would have to be 21 · (5− 1) = 84 elements of
order 5, and 15 · (7− 1) = 90 elements of order 7.

Along with the identity, we have now identified
1 + 14 + 84 + 90 = 189 different elements of G , but G cannot
actually have this many elements.

Therefore, we cannot have n3 = 7, n5 = 21, and n7 = 15, so
one of them must equal 1: thus G is not simple.
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Sylow Applications, X

Example: Show that a group G of order 132 cannot be simple.

Notice that 132 = 22 · 3 · 11. Then n2 is odd and divides
3 · 11, so n2 ∈ {1, 3, 11, 33}. Likewise, n3 ≡ 1 (mod 3) and
divides 22 · 11, so n3 ∈ {1, 4, 22}, and n11 ≡ 1 (mod 11) and
divides 22 · 3, so n11 ∈ {1, 12}.
If n3 or n11 equals 1, then the corresponding Sylow subgroup
is normal.

Otherwise, we would have n11 = 12 and n3 ≥ 4: in this case
we would obtain 12 · (11− 1) = 120 elements of order 11
along with an additional 4 · (3− 1) = 8 elements of order 3.

There are only 132− 120− 8 = 4 elements remaining in the
group, so since there is a Sylow 2-subgroup and it has order 4,
all of the remaining elements must lie in this Sylow
2-subgroup, and there can be only one of them.

Thus, n2, n3, or n11 must equal 1, and so G cannot be simple.
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Summary

We discussed more about the classification of finitely-generated
abelian groups and gave examples.

We stated and proved Sylow’s theorems.

We gave some applications of Sylow’s theorems.

Next lecture: Products of subgroups.


