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Polynomial Invariants and An, I

Our primary interest in groups, and in group actions in particular,
is to use them to study field extensions. An important action that
will be relevant to our work is the action of Sn and its subgroups
on polynomials.

The idea is that if we have n variables x1, x2, . . . , xn, then Sn acts
on the set of variables by permuting their indices. We can then
extend this action to the polynomial ring F [x1, x2, . . . , xn] in n
variables with coefficients from F by having permutations act
variable-by-variable in each monomial term.
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Example:

8. (Sn on Polynomials): If F is a field and x1, x2, . . . , xn are
independent variables, then Sn acts on the polynomial ring
F [x1, x2, . . . , xn] via “index permutation” of the variables.
Explicitly, given a polynomial p(x1, x2, . . . , xn) and σ ∈ Sn, the
action of σ is σ · p(x1, x2, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)).

It is easy to see that this definition yields a group action,
since σ1 · (σ2 · p)) = σ1 · p(xσ2(1), . . . , xσ2(n)) =
p(xσ1σ2(1), . . . , xσ1σ2(n)) = (σ1σ2) · p, and
1 · p = p(x1, . . . , xn) = p.
As an example, with n = 4 and
p(x1, x2, x3, x4) = (x1 − 2x2x4)(4x3

3 − x2
4 ) then for

σ = (1 2 3 4) we have σ · p = (x2 − 2x3x1)(4x3
4 − x2

1 ).
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Example: Let G = S3 act by index permutation on F [x1, x2, x3].

1. Calculate σ · (x2
1x2x3 + 3x1x2) where σ = (1 3 2).

2. Find the orbit and stabilizer of the polynomials x1x2 and x2
1x2

under the action of G .

We have σ · (x2
1x2x3 + 3x1x2) = x2

3x1x2 + 3x3x1.

The orbit of x1x2 is {x1x2, x1x3, x2x3}.
The stabilizer of x1x2 is {1, (1 2)}.
The orbit of x2

1x2 is {x2
1x2, x1x2

2 , x
2
1x3, x1x2

3 , x
2
2x3, x2x2

3}.
The stabilizer of x2

1x2 is {1}.
Note in each case that the size of the orbit times the size of
the stabilizer is 6 = #G , as dictated by the orbit-stabilizer
theorem.
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We will do much more when we study the roots of degree-3 and
degree-4 polynomials. For now, we will use this action to study the
alternating group An:

For a fixed n, define the polynomial

D =
∏

1≤i<j≤n
(xi − xj).

For example, when n = 3, D = (x1 − x2)(x1 − x3)(x2 − x3).

Now consider the action of Sn on D via index permutation, so
that for σ ∈ Sn we have σ(D) =

∏
1≤i<j≤n(xσ(i) − xσ(j)).

For example, with n = 3 and σ = (1 2 3) we have
σ(D) = (x2 − x3)(x2 − x1)(x3 − x1) = −D.
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We have D =
∏

1≤i<j≤n(xi − xj).

As with the example on the last slide, it is in fact true that
any permutation σ ∈ Sn will map D either to D or to −D.

This follows by noting that each term in the product for D
will appear in σ(D), except possibly with the variables in the
other order, which is true because σ is an injective map on the
set of

(n
2

)
unordered pairs (a, b) with a 6= b, and is therefore a

bijection on this set.

Thus, by collecting all the signs, we see that D and σ(D) are
the same except up to a product of some number of −1 terms.
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In the language of group actions, the observations on the previous
slide amount to noting that the group Sn acts via index
permutation on the set {+D,−D}.

Our goal now is to prove that An is the stabilizer of D.

Since there is only one orbit of Sn acting on {+D,−D} (since
there obviously exists a permutation interchanging +D and
−D), the orbit-stabilizer theorem will then immediately imply
that [Sn : An] = 2, and thus that #An = n!/2.
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Definition

For σ ∈ Sn we define the sign sgn(σ) of σ to be +1 if σ(D) = D
and −1 if σ(D) = −D. We call a permutation σ even if
sgn(σ) = 1 and odd if sgn(σ) = −1.

Example: In G = S4, find the signs of σ = (1 2 4) and τ = (1 3).

Here,
D = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

Then
σ ·D = (x2 − x4)(x2 − x3)(x2 − x1)(x4 − x3)(x4 − x1)(x3 − x1)
= (−1)4D = D. So sgn(σ) = 1.

Likewise,
τ ·D = (x3 − x2)(x3 − x1)(x3 − x4)(x2 − x1)(x2 − x4)(x1 − x4)
= (−1)3D = −D. So sgn(τ) = −1.
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Since Sn acts on the set A = {+D,−D}, as we just showed, we
obtain a group homomorphism from Sn into the permutation group
SA
∼= {±1}. This tells us that the sign map is actually a group

homomorphism:

Proposition (Sign Map is a Homomorphism)

The sign map is a group homomorphism sgn : Sn → {±1}.
Equivalently, sgn(τσ) = sgn(τ)sgn(σ) for all σ, τ ∈ Sn.

Example: In G = S4, verify sgn(στ) = sgn(σ)sgn(τ) for
σ = (1 2 4) and τ = (1 3).

We have στ = (1 2 4)(1 3) = (1 3 2 4), so στ · D
= (x3 − x4)(x3 − x2)(x3 − x1)(x4 − x2)(x4 − x1)(x2 − x1)
= (−1)5D = −D.

So sgn(στ) = −1 = (1)(−1) = sgn(σ)sgn(τ) as claimed.
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It is possible to give direct proofs that the sign map is a group
homomorphism.

However, these proofs are usually very lengthy and technical.

One fairly standard approach is to count the number of
“inversions”, pairs (i , j) with i < j but σ(i) > σ(j). Each
inversion contributes a factor of −1 to the action of σ on D,
and so the sign of σ is (−1) to the number of inversions of σ.

Another approach is to show that the sign map is the same as
the determinant of the associated permutation matrix M
having a 1 in the entries (i , σ(i)) for each i and 0s elsewhere.

Then the fact that the sign map is a group homomorphism
follows from the fact that determinants of matrices are
multiplicative (which is, of course, another standard fact that
is frustratingly difficult to prove from scratch!).
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When I defined An last week, I noted that An contains all of the
even permutations. Using the sign map we can prove that there
are no other elements in An, and also compute the order of An and
show that it is a normal subgroup of Sn:

Theorem (Alternating Group)

The alternating group An is the kernel of the sign map and is
therefore is a normal subgroup of Sn. Explicitly, An consists of all
even permutations, and has order n!/2.
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We will first prove an easy lemma:

Lemma (Transpositions are Odd)

Every transposition in Sn is an odd permutation.

Proof:

First, observe that sgn((1 2)) = −1 since the permutation
(1 2) only flips the sign of the single term x1 − x2 in D.

Then for any transposition (i j), if we set σ = (1 i)(2 j) then
σ(1 2)σ = (i j).

Since the sign map is a homomorphism we have
sgn((i j)) = sgn(σ(1 2)σ) = sgn(σ) · (−1) · sgn(σ) = −1.

Thus, all transpositions are odd permutations.
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Theorem (Alternating Group)

The alternating group An is the kernel of the sign map and is
therefore is a normal subgroup of Sn. Explicitly, An consists of all
even permutations, and has order n!/2.

Proof:

Since the sign map is a homomorphism, for transpositions
σ1, . . . , σk we have sgn(σ1 · · ·σk) = (−1)k by the lemma.

So, ker(sgn) consists of the permutations that are a product
of an even number of transpositions, which is precisely how
we defined An. Thus, An is the kernel of the sign map and
consists of all even permutations.

Furthermore, since sgn is surjective since sgn((1 2)) = −1, we
see Sn/An

∼= im(sgn) has order 2, so |An| = |Sn| /2 = n!/2.
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Our argument also gives an easy way to compute the sign of a
general permutation from its cycle decomposition.

Specifically, since a k-cycle can be written as the product of
k − 1 transpositions, the sign of a k-cycle is the opposite of
the parity of k.

Thus for example, 3-cycles are even while 8-cycles are odd.

Then we see that a permutation is even whenever it has an
even number of even-length cycles, and it is odd when it has
an odd number of even-length cycles.

We also see that even permutations are the product of an
even number of transpositions, while odd permutations are
those that are the product of an odd number of transpositions
(whence the terminology), and that no permutation is both
even and odd (since the sign map is well-defined).
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We now study in more detail the conjugation action of a group G
on its set of elements.

As we noted earlier, if G is any group, then G acts on the set
A = G via g · a = gag−1 for any g ∈ G and a ∈ A.

We may generalize this action by noting that G also acts
elementwise on the collection of subsets of G , by defining
g · S = {gs : s ∈ S} for an arbitrary subset S of G .
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First, we study the orbits of the conjugation action on elements:

Definition

If G is a group and a ∈ G , we say that b is conjugate to a if there
exists some g ∈ G with b = gag−1. The conjugacy class of a in G
is the set of elements of G conjugate to a. Explicitly, the
conjugacy class of a is the set {gag−1 : g ∈ G}, which is the orbit
of a under conjugation by G .

In an abelian group, each element is its own conjugacy class,
since the condition is simply b = gag−1 = gg−1a = a.

More generally, a single element {a} is its own conjugacy class
precisely when a ∈ Z (G ), which is to say, when a commutes
with every element of G .
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Examples:

1. In D2·4, the conjugacy classes are {1}, {r2}, {r , r3}, {s, sr2},
and {sr , sr3}.

We can compute that srs−1 = r3 and rsr−1 = sr2 and
r(sr)r−1 = sr3.
So, the given collections are indeed conjugate.
It is not hard to verify that these sets are distinct
conjugacy classes.
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Examples:

2. In GL2(Q), the matrices A =

[
−3 5
1 1

]
and B =

[
2 0
0 −4

]
are conjugate via M =

[
1 −5
1 1

]
, since MAM−1 = B.

Conjugacy of matrices is often studied in linear algebra
(where it also has the same name).
In 5112, you’ll learn the conjugacy classes in GLn×n(F )
for any field F are uniquely represented by matrices in
rational canonical form: block-diagonal matrices whose
diagonal blocks are companion matrices (1s directly
below the diagonal, coefficients of the characteristic
polynomial in the last column, 0s elsewhere) for
polynomials p1, p2, . . . , pk where p1|p2| · · · |pk .
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Examples:

3. In S3, the conjugacy classes are {1}, {(1 2), (1 3), (2 3)}, and
{(1 2 3), (1 3 2)}.

We can compute that (1 3) = g(1 2)g−1,
(2 3) = h(1 2)h−1, and (1 2 3) = g(1 3 2)g−1 for
g = (2 3) and h = (1 3).
Thus, the given collections are conjugate to one another.
It is also not so hard to verify that these sets are distinct
conjugacy classes.
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We can in fact generalize the last example to compute the
conjugacy classes in Sn:

Proposition (Conjugacy Classes in Sn)

If τ ∈ Sn, then for any cycle (a1 . . . an), we have
τ(a1 . . . an)τ−1 = (τ(a1) . . . τ(an)).
Thus, to conjugate a permutation σ by a permutation τ , we simply
apply τ to all of the elements in the cycles of σ.
In particular, two elements of Sn are conjugate if and only if they
have the same cycle type.
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Proof:

The first statement is a direct calculation: for each i , we have
τ(a1 . . . an)τ−1[τ(ai )] = τ(a1 . . . an)(ai ) = τ(ai+1), where
we take an+1 = a1.

Thus, by the cycle decomposition algorithm, there is a single
cycle in τ(a1 . . . an)τ−1, consisting of (τ(a1) . . . τ(an)).

The second statement follows from the first one by writing σ
as a product of disjoint cycles σ = σ1 · · ·σd and observing
that τστ−1 = (τσ1τ

−1) · · · (τσdτ−1).
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Proof (continued):

The last statement follows from the second one: any
conjugate of σ has the same cycle type as σ by the
calculations on the last slide.

Conversely, if σ′ has the same cycle type as σ, if we align
cycles of corresponding lengths together from σ and σ′, say so
that the lists of all the elements in the cycles are a1, . . . , an
and b1, . . . , bn, then the permutation τ with τ(ai ) = bi for
each i will conjugate σ to σ′.
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Let’s go through some examples:

Example: For σ = (1 7 4 8 6) and τ = (1 5)(2 4 3)(6 7) inside S8,
compute στσ−1 and τστ−1.

From the procedure given in the proposition, we have
στσ−1 = (σ(1)σ(5))(σ(2)σ(4)σ(3))(σ(6)σ(7)) =
(7 5)(2 8 3)(1 4).

We can confirm this explicitly by multiplying out στσ−1 =
(1 7 4 8 6)(1 5)(2 4 3)(6 7)(1 6 8 4 7) = (1 4)(2 8 3)(5 7)(6).

Likewise, τστ−1 = (τ(1) τ(7) τ(4) τ(8) τ(6)) = (5 6 3 8 7).
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Example: Show that σ1 = (1 4 3 8)(2 5 6) and σ2 = (1 2 6)(3 7 4 5)
are conjugate inside S8, and find an explicit permutation τ with
σ2 = τσ1τ

−1.

From the procedure given in the proposition, and making sure
to include the 1-cycles, we can write the two permutations
with cycles in corresponding order, as σ1 = (1 4 3 8)(2 5 6)(7)
and σ2 = (3 7 4 5)(1 2 6)(8).

Then, for example, the permutation τ with τ(1) = 3,
τ(4) = 7, τ(3) = 4, τ(8) = 5, τ(2) = 1, τ(5) = 2, τ(6) = 6,
and τ(7) = 8 will have σ2 = τσ1τ

−1.

The cycle decomposition of this τ is (1 3 4 7 8 5 2).

Note that τ is not unique. Indeed, if we wrote
σ2 = (5 3 7 4)(6 1 2)(8), which is equivalent, we would get
instead τ = (1 5)(2 6)(3 7 8 4).
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Example: There are 5 conjugacy classes in S4, since there are 5
possible cycle types: the identity, transpositions, 3-cycles, 4-cycles,
and the 2,2-cycles.

Explicitly, the conjugacy classes are

1. {1}
2. {(1 2), (1 3), (1 4), (2, 3), (2 4), (3, 4)}
3. {(1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3)}
4. {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)}
5. {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

In general, the number of conjugacy classes in Sn will be the
number of integer partitions of n.
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We record some useful general properties of the conjugation action:

Proposition (Properties of Conjugation, I)

Let G be a group acting on its set of elements by conjugation.

1. For any g ∈ G , the conjugation-by-g map ϕg : G → G is a
group isomorphism, with inverse ϕ−1g = ϕg−1 .
In particular, all elements in a given conjugacy class have the
same order.

2. If S is any subset of G , then the stabilizer of S under the
conjugation action of G is the normalizer
NG (S) = {g ∈ G : gSg−1 = S}.
The number of conjugates of S in G is [G : NG (S)], the index
of the normalizer.
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We record some useful general properties of the conjugation action:

Proposition (Properties of Conjugation, II)

Let G be a group acting on its set of elements by conjugation.

3. If a is any element of G , the stabilizer of S under the
conjugation action of G is the centralizer
CG (a) = {g ∈ G : gag−1 = a}, the set of elements of G
commuting with a.
The number of conjugates of a in G is [G : CG (a)], the index
of the centralizer.

4. (Class Equation) If G is a finite group and g1, . . . , gd are
representatives of the non-central conjugacy classes of G,
then #P = #Z (G ) +

∑d
i=1 [P : CP(gi )].
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Proofs:

1. For any g ∈ G , the conjugation-by-g map ϕg : G → G is a
group isomorphism, with inverse ϕ−1g = ϕg−1 . In particular,
all elements in a given conjugacy class have the same order.

We have
ϕg (ab) = g(ab)g−1 = (gag−1)(gbg−1) = ϕg (a)ϕg (b) so
ϕg is a group homomorphism.

Furthermore, since
ϕg−1(ϕg (a)) = g−1[gag−1](g−1)−1 = g−1gag−1g = a
we see that ϕg−1 ◦ ϕg is the identity map; similarly
ϕg−1 ◦ ϕg is also the identity, so ϕg is an isomorphism.

The second statement follows from the fact that group
isomorphisms preserve orders of elements.
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Proofs:

2. If S is any subset of G , then the stabilizer of S under the
conjugation action of G is the normalizer
NG (S) = {g ∈ G : gSg−1 = S}. The number of conjugates
of S in G is [G : NG (S)], the index of the normalizer.

By definition, g ∈ G stabilizes S under conjugation
precisely when gSg−1 = S .

The second statement is an immediate consequence of
the orbit-stabilizer theorem.

Some other facts about normalizers (while we’re here):

NG (S) is also equal to the normalizer NG (〈S〉) of the
subgroup generated by S .
The normalizer of any subgroup H contains H.
H is normal in G if and only if NG (H) = G .
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Proofs:

3. If a is any element of G , the stabilizer of S under the
conjugation action of G is the centralizer
CG (a) = {g ∈ G : gag−1 = a}, the set of elements of G
commuting with a. The number of conjugates of a in G is
[G : CG (a)], the index of the centralizer.

This is simply (2) applied to the set S = {a}.
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Proofs:

4. (Class Equation) If G is a finite group and g1, . . . , gd are
representatives of the non-central conjugacy classes of G ,
then #G = #Z (G ) +

∑d
i=1 [P : CG (gi )].

The distinct conjugacy classes of G partition G , since
they are equivalence classes of an equivalence relation.

Also, each element of the center Z (G ) is its own
conjugacy class.

The remaining conjugacy classes, by hypothesis, are
represented by the elements g1, . . . , gd .

By (3), the number of elements in the conjugacy class of
gi is equal to [G : CG (gi )].

Thus, summing the sizes of all conjugacy classes yields
#Z (G ) +

∑d
i=1 [G : CG (gi )], which is also #G .
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The class equation contains valuable combinatorial information
about the group G . We will use it later in a more substantial way
in our proofs of Sylow’s theorems. For now, we will use it to
deduce some useful and important facts about p-groups:

Proposition (Centers of p-Groups)

If p is a prime and P is a finite p-group (i.e., a finite group whose
order is a power of p), then #Z (P) > 1.

In other words, any p-group (e.g., D2·4 or Q8 or the Heisenberg
groups Hp you saw on homework 7) must contain at least one
nonidentity element that commutes with every other element of
the group.
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Proof:

If g1, . . . , gd represent the non-central conjugacy classes of P,
the class equation says #P = #Z (P) +

∑d
i=1 [P : CP(gi )].

Since the centralizer CP(gi ) is a subgroup of P, by Lagrange’s
theorem its order and index are both powers of p.

Furthermore, since each gi is by hypothesis non-central, this
means CP(gi ) is a proper subgroup of P, and so its index is
greater than 1.

Thus, each term in
∑d

i=1 [P : CP(gi )] is a multiple of p.

Since #P is also a multiple of p, this means
#Z (P) = #P −

∑d
i=1 [P : CP(gi )] is also a multiple of p.

Hence it cannot be equal to 1, so #Z (P) > 1.
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The fact that p-groups have a nontrivial center is very useful. One
consequence is that groups of order p2 must be abelian:

Corollary (Groups of Order p2)

If p is a prime, then every group of order p2 is abelian. Moreover,
there are two such groups, up to isomorphism: Z/p2Z and
(Z/pZ)× (Z/pZ).
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Proof:

Suppose G has order p2. Then since Z (G ) is not trivial, its
order is either p or p2.

If #Z (G ) = p2 then G = Z (G ) and G is abelian.

If #Z (G ) = p then G/Z (G ) has order p, so it is cyclic. Then
by problem 2 from this week’s homework, G is again abelian.

Now, by Lagrange’s theorem, every nonidentity element of G
must have order p or p2.

If there is an element of order p2, then G ∼= Z/p2Z.

Otherwise, every element has order p.

Pick any g of order p and h 6∈ 〈g〉 and note G = 〈g , h〉.
Define ϕ : (Z/pZ)× (Z/pZ)→ G that maps (a, b) 7→ hagb.

It is easy to see that ϕ is a surjective group homomorphism,
so by counting, it is an isomorphism.

So, G is isomorphic to Z/p2Z or to (Z/pZ)× (Z/pZ).



Abelian Groups, I: They’re The Nice Ones

That classification was very pleasant. Unfortunately, it turns out to
be quite a bit harder to classify p-groups of larger orders.

However, we can still do quite a bit if we restrict our attention
to abelian groups.

Abelian groups are much nicer, and so we could hope to be
able to write them all down in some sort of nice way.

That is what we will do now: give a classification theorem
involving abelian groups.

We might hope to be able to decompose every abelian group
as a direct product of “nice” groups (e.g., cyclic groups), like
we did with groups of order p2.

This is roughly what we will show. But...



Abelian Groups, II: They’re Harder Than You Think

... this is harder than it might seem, however, because there are all
sorts of unpleasantly large abelian groups, and it can be hard to
tell them apart.

For example, you might reasonably think that R and C are
different as groups. (They certainly are different as fields.)

However, in fact R and C are isomorphic as additive groups.

This may seem odd, but in fact, it’s because they’re
isomorphic as Q-vector spaces (they have the same
dimension). So, as additive groups, we have C ∼= R.

But of course, we also know that C ∼= R× R (geometry!).

So we obtain the bizarre fact that R ∼= R× R as groups.

This is a bit of a problem if we are trying to decompose things
as direct products.



Abelian Groups, III: Yes, Even The Nice Ones

In fact, even Q, one of the nicest fields there is, has an additive
group structure that is worse than you think it is.

It is not so hard to see, in fact, that Q does not decompose as
a direct product of two subgroups in a nontrivial way.

Explicitly: if it did, we would have two nonzero subgroups G
and H such that G ∩ H = 0, since inside G × H we have
(G × e) ∩ (e × H) = (e, e).

But any two nonzero subgroups of Q have a nontrivial
intersection: if p/q ∈ G and r/s ∈ H, then pr ∈ G ∩ H.

So Q does not decompose as a direct product of subgroups.



Abelian Groups, IV: So What Can We Do?

This may be dispiriting, unless you were paying attention when I
said we’d prove a classification theorem.

The common thread in the examples I gave (namely, R and
Q) is that these groups are not finitely generated.

The additive group Z[i ] of Gaussian integers, however, is
finitely generated (by 1 and i), and in fact Z[i ] ∼= Z× Z as a
group.

So perhaps we can still hope that finitely generated abelian
groups will behave nicely.

This turns out to be the case!



Finitely Generated Abelian Groups, I

Our classification, broadly stated, is as follows:

Theorem (Finitely Generated Abelian Groups)

If G is a finitely generated abelian group, then G is isomorphic to a
direct product of cyclic groups.

We will in fact give two different, more precise, statements of this
theorem. As some illustrations of the general idea:

Z/120Z ∼= (Z/3Z)× (Z/5Z)× (Z/8Z)

(Z/64Z)× ∼= (Z/2Z)× (Z/16Z).

Z[ 3
√

2] ∼= Z× Z× Z.



Abelian Groups Finitely Generated, II

The main idea of the proof is essentially row-reduction.

Specifically, we consider the various relations among the
generators, and then use elementary row and column
operations in the resulting “relations matrix” to convert the
relations into an essentially diagonal form.

We can then read off the structure of the group as a direct
product of cyclic groups.

The approach we give is really a special case of the general
classification of modules over principal ideal domains1, and
essentially the same method can be adapted to prove that
more general classification2.

1A PID is an integral domain in which every ideal is principal.
2The classification of modules over PIDs gives an easy proof of the

existence and uniqueness of the rational canonical form (mentioned earlier) and
also the Jordan canonical form of a matrix. Take Math 5112 to learn more.



Abelian Finitely Generated Groups, III

First, a lemma:

Lemma

If G is a finitely generated abelian group, then G is finitely
presented. In other words, G has a presentation with finitely many
generators and finitely many relations.

The content here is that any collection of relations between the
generators can always be reduced to a finite set.

We will remark that the result is not true for nonabelian groups.

Here is a nonabelian finitely generated that is not finitely
presented: 〈a, b, t|tabiat−1 = baib, i ∈ Z〉. It is of course not
easy to establish that this group is not finitely presented.



Abelian Generated Finitely Groups, IV

Proof:

Induct on number of generators n.

For the base case n = 1, we appeal to our characterization of
cyclic groups, which can all be described using ≤ 1 relation.

For the inductive step, suppose any abelian group with n
generators is finitely presented.

Suppose G is abelian and has n + 1 generators g1, . . . , gn, h,
where we write G as an additive group.

Since G is abelian, any such relation has the form
ah + b1g1 + · · ·+ bngn = 0 for some a, bi ∈ Z.



Abelian Groups Generated Finitely, V

Proof (continued):

Consider the set of all possible tuples (a, b1, . . . , bn) ∈ Zn+1

for all possible relations ah + b1g1 + · · ·+ bngn = 0 between
the generators h, g1, . . . , gn.

This set is a subgroup of Zn+1 since it contains the zero
vector and is closed under subtraction, since the difference of
two relations is also a relation.

The set of first coordinates of these tuples (i.e., the possible
coefficients of h in all possible relations) is a subgroup of Z.

If the subgroup is the trivial subgroup (0), then h does not
appear in any relations: thus, all relations involve elements in
the subgroup 〈g1, . . . , gn〉, and so by the inductive hypothesis
we may reduce the collection to a finite set.



Generated Finitely Abelian Groups, VI

Proof (continued more):

Otherwise, suppose the subgroup is dZ with d > 0. Then
there exists a relation (*) of the form
dh + e1g1 + · · ·+ engn = 0, and the coefficient of h in every
other relation is a multiple of d .

We may then eliminate h from every other relation by
subtracting an appropriate multiple of the relation (*).

Then, just as before, all of the remaining relations lie in the
subgroup 〈g1, . . . , gn〉, so by the inductive hypothesis we may
reduce the collection to a finite set.

Adjoining the relation dh + e1g1 + · · ·+ engn = 0 then yields a
finite set of relations that generate all relations, as claimed.



Finitely Abelian Generated Groups, VII

We can now give the proof of one version of the theorem, using a
similar idea as that used in the lemma:

Theorem (Finitely Generated Abelian Groups: Invariant Factors)

If G is a finitely generated abelian group, then there exists a
unique nonnegative integer r (the rank of the group G ) and a
unique list of positive integers a1, . . . , ak such that a1|a2| · · · |ak
such that G ∼= Zr × (Z/a1Z)× · · · × (Z/akZ).

We will prove the existence of this decomposition. The uniqueness
will follow from the second version, which we do after this one.

The ideas are similar to the ones we used in proving the lemma.



Generated Groups Abelian Finitely, VIII

Proof:

Suppose G is a finitely generated abelian group, written
additively.

By the lemma, G has a presentation with finitely many
generators and finitely many relations: suppose the generators
are g1, . . . , gn and the relations are
ri : a1,ig1 + · · ·+ a1,ngn = 0 for each 1 ≤ i ≤ m.

Then we obtain a “relations matrix” A = {ai ,j}1≤i≤m,1≤j≤n.



Groups Abelian Finitely Generated, IX

Proof (more):

We may perform various elementary row and column
operations on the relations matrix. Specifically:

1. We may interchange two rows.
2. We may interchange two columns: this corresponds to

changing the order of the generators.
3. We may negate a row.
4. We may negate a column: this corresponds to replacing a

generator with its inverse.
5. We may add an integer multiple of one row to another:

this does not change the subgroup the relations generate.
6. We may add an integer multiple of one column to

another: this corresponds to a change of variables in the
generators (g , h 7→ g , h + ag).

None of these operations changes the isomorphism type of G .



Finitely Abelian Groups Generated, X

Proof (more still):

Now perform the Euclidean algorithm on the upper left entry
of A with the other entries in the first row, and then the first
column, to obtain a matrix of the form

A′ =


c1 0 · · · 0
0 b2,2 · · · b2,n
...

...
. . .

...
0 bm,2 · · · bm,n

.

Now repeat the procedure on the lower (m − 1)× (n − 1)
matrix, iteratively, to obtain a “diagonal” matrix

D =

 c1
. . .

cl

. (It is not actually diagonal since m

need not equal n.)



Groups Finitely Abelian Generated, XI

Proof (even more still):

We can then copy c2, . . . , cl into the top row of the matrix
and perform the Euclidean algorithm on them, placing the
resulting gcd a1 in the upper-left entry, and then remove the
rest of the entries in the top row.

By construction, we see that a1 divides all of the entries of the
matrix.

By repeating this procedure, we obtain a relations matrix

D ′ =


a1

. . .

ak
0

. . .

 , where a1|a2| · · · |ak .



Generated Abelian Groups Finitely, XII

Proof (even yet more still):

Now, each step leaves the isomorphism type of G unchanged.

Therefore, we see that G is isomorphic to the group with
presentation

〈
h1, . . . , hn | ha1

1 = e, . . . , hak
k = e

〉
.

It is easy to see this is a presentation of
(Z/a1Z)× · · · × (Z/akZ)× Zn−k .

Thus, G is isomorphic to a direct product of cyclic groups of
the claimed form.



Finitely Groups Generated Abelian, XIII

To illustrate, suppose G = 〈x , y , z | − 6x + 3y = 0, 10x + 5y = 0〉.

Then the relations matrix is

[
−6 3 0
10 5 0

]
.

Now 6 I you can do row and column operations:[
−6 3 0
10 5 0

]
−→[calculations go here]−→

[
1 0 0
0 60 0

]
.

The relations matrix now has the desired form, so we can read
off the presentation: it is 〈p, q, r |p = 0, 60q = 0〉.
This describes the group (Z/1Z)× (Z/60Z)× Z, or
equivalently, Z× (Z/60Z).



Generated Abelian Finitely Groups, XIV

The cyclic factors in this decomposition of G are called the
invariant factors of G .

We next describe how we can break each of the cyclic factors
in the decomposition into prime powers. (The answer is the
Chinese remainder theorem.)

We will use this observation to establish a different form of
the classification theorem (using “elementary divisors”), which
is easier to use to establish the uniqueness.

It is also easier to use the elementary divisor form to classify
the abelian groups of a given order.

We will discuss how to do all of these things next time.



Summary

We discussed groups acting on themselves by conjugation and
derived some useful facts from studying this action.

We gave a classification of finitely-generated abelian groups and
discussed some related facts.

Next lecture: More abelian groups, Sylow’s theorems.


