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This material represents §3.2.3-3.3.2 from the course notes.



Quotients and Homomorphisms, I

Like with rings, we also have various natural connections between
normal subgroups and group homomorphisms.

To begin, observe that if ϕ : G → H is a group
homomorphism, then kerϕ is a normal subgroup of G .

In fact, I proved this fact earlier when I introduced the kernel,
but let me remark again: if g ∈ kerϕ, then for any a ∈ G ,
then ϕ(aga−1) = ϕ(a)ϕ(g)ϕ(a−1) = ϕ(a)ϕ(a−1) = e. Thus,
aga−1 ∈ kerϕ as well, and so by our equivalent properties of
normality, this means kerϕ is a normal subgroup.

Thus, we can use homomorphisms to construct new normal
subgroups.



Quotients and Homomorphisms, II

Equally importantly, we can also do the reverse: we can use normal
subgroups to construct homomorphisms.

The key observation in this direction is that the map
ϕ : G → G/N associating a group element to its residue class
/ left coset (i.e., with ϕ(a) = a) is a ring homomorphism.

Indeed, the homomorphism property is precisely what we
arranged for the left cosets of N to satisfy:
ϕ(a · b) = a · b = a · b = ϕ(a) · ϕ(b).

Furthermore, the kernel of this map ϕ is, by definition, the set
of elements in G with ϕ(g) = e, which is to say, the set of
elements g ∈ N.

Thus, kernels of homomorphisms and normal subgroups are
precisely the same things.



Quotients and Homomorphisms, III

Let us summarize these observations:

Proposition (Projection Homomorphisms)

If N is a normal subgroup of G , then the map ϕ : G → G/N
defined by ϕ(a) = a = aN is a surjective group homomorphism
called the projection homomorphism from G to G/N.

Proof:

We have ϕ(a · b) = a · b = a · b = ϕ(a) · ϕ(b), so ϕ is a
homomorphism. Also, ϕ is surjective, essentially by definition:
any residue class in G/N is of the form gN for some g ∈ G ,
and then ϕ(g) = gN.



Quotients and Homomorphisms, IV

We also get the analogous statement of the first isomorphism
theorem:

Theorem (First Isomorphism Theorem)

If ϕ : G → H is a group homomorphism, then kerϕ E G and
G/ kerϕ is isomorphic to imϕ.

Intuitively, ϕ is a surjective homomorphism ϕ : G → imϕ.

To turn it into an isomorphism, we must “collapse” its kernel
to a single element: this is precisely what the quotient group
G/ kerϕ represents.

The proof is the same as for rings: we simply write down the
isomorphism and verify it is well-defined and is an isomorphism.



Quotients and Homomorphisms, V

Proof:

Let N = kerϕ. We have already shown that N is a normal
subgroup of G , so now we will construct a homomorphism
ψ : G/N → imϕ, and then show that it is injective and
surjective.

The map is defined as follows: for any residue class
gN ∈ G/N, we define ψ(gN) = ϕ(g).

To see ψ is well-defined, suppose that g ′ ∈ gN is some other
representative of the coset gN. Then g ′ = gn for some n ∈ N,
so ψ(g ′N) = ϕ(g ′) = ϕ(gn) = ϕ(g)ϕ(n) = ϕ(g) = ψ(gN)
since n ∈ kerϕ, so ψ is well-defined.



Quotients and Homomorphisms, VI

Proof (continued):

It is then easy to see ψ is a homomorphism, since
ψ(a · b) = ϕ(ab) = ϕ(a)ϕ(b) = ψ(a)ψ(b).

Next, we see that ψ(g) = e precisely when ϕ(g) = e, which is
to say g ∈ ker(ϕ) = N, so that g = e. Thus, the only element
in kerψ is e, so ψ is injective.

Finally, if h is any element of imϕ, then by definition there is
some g ∈ G with ϕ(g) = h: then ψ(g) = h, meaning that ψ
is surjective.

Since ψ is a homomorphism that is both injective and
surjective, it is an isomorphism.



Quotients and Homomorphisms, VII

By using the first isomorphism theorem, we can construct
isomorphisms of groups.

In order to show that G/N is isomorphic to a group H, we
search for a surjective homomorphism ϕ : G → H whose
kernel is N.

As a particular application, we can obtain the other
isomorphism theorems using the first isomorphism theorem.



Quotients and Homomorphisms, VIII

Example: Show that Z/2020Z is isomorphic to
(Z/20Z)× (Z/101Z) as a group.

We seek a surjective homomorphism
ϕ : Z→ (Z/20Z)× (Z/101Z) whose kernel is 50Z.

Once this idea is suggested, it is not hard to come up with a
candidate, namely, ϕ(a) = (a mod 20, a mod 101).

This map is easily seen to be a group homomorphism, and its
kernel is {k ∈ Z : 20|k and 101|k} = 2020Z since 20 and 101
are relatively prime.

Thus, we get an isomorphism ϕ̃ : Z/2020Z→ im(ϕ).
However, since the domain of ϕ̃ has cardinality 2020, the
image must also, so in fact ϕ̃ is surjective, hence an
isomorphism.



Quotients and Homomorphisms, VIII
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Quotients and Homomorphisms, IX

Theorem (Second Isomorphism Theorem)

If A E G and B is any subgroup of G , then
AB = {ab : a ∈ A, b ∈ B} is a subgroup of G , A ∩ B is a normal
subgroup of B, and (AB)/B is isomorphic to A/(A ∩ B).

Theorem (Third Isomorphism Theorem)

If H and K are normal subgroups of G with H ≤ K , then H E K ,
(K/H) E (G/H), and (G/H)/(K/H) is isomorphic to G/K .

Theorem (Fourth Isomorphism Theorem)

If N E G , there is an inclusion-preserving bijection between the
subgroups A of G containing N and the subgroups A = A/N of
G/N. This bijection preserves the subgroup lattice structure, in the
sense that it respects indexes, joins, intersections, and normality.



Quotients and Homomorphisms, X

[2nd isom thm]: Show (AB)/B is isomorphic to A/(A ∩ B).

[3rd isom thm]: Show (G/H)/(K/H) is isomorphic to G/K .

[4th isom thm]: If N ≤ A, show that A↔ A/N preserves the
subgroup lattice structure of G , in the sense that it respects
indexes, joins, intersections, and normality.



Quotients and Homomorphisms, XI

Example: We showed that N =
〈
r2
〉

is normal in G = D2·4, and
that the quotient G/N is isomorphic to the Klein 4-group.



Quotients and Homomorphisms, XII

Example: We showed that N = 〈−1〉 is normal in G = Q8, and
that the quotient G/N is isomorphic to the Klein 4-group.



Quotients and Homomorphisms, XIII

Example: Identify explicitly the residue classes in
(Z/20Z)/(5Z/20Z), and identify the quotient group.

By the third isomorphism theorem, the quotient is isomorphic
to Z/5Z.

We can work this out explicitly by noting that for G = Z/20Z
and H = 5Z/20Z, we have elements G = {0, 1, . . . , 19} and
H = {0, 5, 10, 15}.
So there are indeed five cosets of H, namely
0 + H = {0, 5, 10, 15}, 1 + H = {1, 6, 11, 16},
2 + H = {2, 7, 12, 17}, 3 + H = {3, 8, 13, 18}, and
4 + H = {4, 9, 14, 19}.
The arithmetic of these residue classes is exactly the same as
the arithmetic in Z modulo 5.
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Group Actions, I

We initially motivated the idea of a group as arising naturally from
collections of symmetries of geometric or algebraic objects.

We can make this interaction more precise using group
actions, which formalize the notion of a group “acting on” a
set in a way that is compatible with the structure of the group.

If we think of a group as a collection of symmetries of an
object (and we think of the object as a set), each element of
the group will behave as a function from the set to itself, and
function composition will agree with the group operation.

Furthermore, the identity element of the group will act as the
identity function, and inverses in the group will act as the
corresponding inverse function.



Group Actions, II

These requirements lead to the definition of a group action.

Definition

If G is a group and A is a set, a (left) group action of G on A is a
function from G × A to A, written as g · a, such that

[A1] The action is compatible with the group operation:
g1 · (g2 · a) = (g1g2) · a for any g1, g2 ∈ G and a ∈ A.

[A2] The identity acts as the identity map: e · a = a for all a ∈ A.

There is also a notion of a right group action, which is a function
from A× G to A whose [A1] statement is (a · g2) · g1 = a · (g2g1)
and whose [A2] statement is a · e = a.

Left and right group actions can be interchanged by observing that
if g · a yields a left action, then a · g−1 yields a right action.



Group Actions, III

Examples:

1. (Sn): If A = {1, 2, . . . , n}, then Sn acts on A via permutation.
Explicitly, the action is σ · a = σ(a).

For example, if n = 5 we have (1 2 3 4) · 1 = 2,
(1 2 3)(4 5) · 4 = 5, and (2 5 1)(3 4) · 5 = 1.

For [A1] we have
σ · (τ · a) = σ · (τ(a)) = σ(τ(a)) = (στ)(a) = (στ) · a by
the definition of the group action in Sn as function
composition.

For [A2] we have 1 · a = a for all a ∈ A by the definition
of the identity permutation.



Group Actions, IV

Examples:

2. (D2·n): If A = {V1,V2, . . . ,Vn} is the set of vertices of a
regular n-gon (labeled counterclockwise), then D2·n acts on A
by the geometric interpretation we used to define D2·n.

For example, we have r · V1 = V2, r · V2 = V3, ... ,
r · Vn−1 = Vn, and r · Vn = V1, and s · V1 = V1,
s · V2 = Vn, s · V3 = Vn−1, ... , and s · Vn = V2.

The verification that this actually is a group action
follows from the analysis we did in originally describing
D2·n from its geometric definition.



Group Actions, V

Examples:

3. (Vector Space Multiplication): If A = V is an F -vector space,
then we have a group action G = F× on V via scalar
multiplication.

Explicitly, using ? for the group action, we have
α ? v = αv for every v ∈ A and α ∈ G .
Axioms [A1] and [A2] follow in this case by the
corresponding axioms for vector spaces.

4. (Trivial Action): If G is any group and A is any set, then the
trivial group action with g · a = a for all g ∈ G and a ∈ A is a
group action of G on A.

It is easy to see that the trivial action satisfies both [A1]
and [A2].



Group Actions, VI

Examples:

5. (Left-Multiplication Action): If G is any group, then the
left-multiplication action of G on itself is defined via
g · a = ga for any g ∈ G and a ∈ G .

The underlying set in this case is A = G .

For [A1], we have
g1 · (g2 · a) = g1 · (g2a) = g1(g2a) = (g1g2)a = (g1g2) · a
by associativity in G .

For [A2], we have e · a = ea = a by the identity property
in G .



Group Actions, VII

Examples:

6. (Conjugation Action): If G is any group, then the
conjugation action of G on itself is defined via g · a = gag−1

for any g ∈ G and a ∈ G .

Here we also take the underlying set to be A = G .

For [A1], we have g1 · (g2 · a) = g1 · (g2ag−12 ) =
g1g2(ag−12 )g−11 = (g1g2)a(g1g2)−1 = (g1g2) · a.

For [A2], we have e · a = eae−1 = a.



Group Actions, VIII

Examples:

7. (Automorphisms) For an algebraic object X , which for us will
be a group, ring, vector space, or field, the set of
automorphisms of X (the isomorphisms of X with itself) act
on the set of elements of A.

This example, in the category of fields, is really the
reason we are discussing groups in the first place.

For [A1], we need only observe that function composition
is (by definition) the composition operation in the group.

For [A2], the identity map (trivially) acts as the identity.

Other algebraic(ish) objects whose automorphism one
can also fruitfully discuss include sets (yielding symmetric
groups, as we discussed), modules, graphs, and algebras.



Group Actions, IX

Notice that we did not include as part of the definition of group
action that inverses in the group act as the corresponding inverse
function

In fact, it actually follows from [A1] and [A2].

Explicitly, by [A1] and [A2], for any g ∈ G we have
g−1 · (g · a) = (g−1g) · a = e · a = a and also
g · (g−1 · a) = (gg−1) · a = e · a = a: thus, g−1 acts as the
inverse function of g .

For each g ∈ G , we obtain a map σg : A→ A given by
σg (a) = g · a; the calculation above shows that σg is a
bijection with inverse σg−1 .

Thus, under the group action, each element g ∈ G is
associated with a bijection σg from A to itself, which is an
element of the permutation group SA.



Group Actions, X

In fact, axiom [A1] tells us that the association of an element
g ∈ G with the associated permutation a 7→ g · a of A is a group
homomorphism from G to SA.

Explicitly, for any a ∈ A, we have
σg1g2(a) = (g1g2) · a = g1 · (g2 · a) = σg1(σg2(a)), and thus
σg1g2 = σg1 ◦ σg2 as functions.

Conversely, any group homomorphism from G to SA yields a
group action of G on A: [A1] follows by the same calculation
performed above, while [A2] follows by the observation that
any homomorphism from G to SA must map the identity of G
to the identity of SA.



Group Actions, XI

Together, our observations show that a group action of G on A is
the same as a group homomorphism from G to SA.

The idea, in other words, is that each element of G acts by
permuting the elements of A in a way that is consistent with
the group operation in G .

We can get some additional information by looking at the kernel of
this homomorphism.

Definition

The kernel of the group action of G on A is the kernel of the
associated homomorphism from G to SA, namely, the set of g ∈ G
with g · a = a for all a ∈ A. The group action is faithful if its
kernel consists of only the identity element.



Group Actions, XII

Examples:

1. The action of D2·n on the vertices of an n-gon is faithful, as is
the action of Sn on {1, 2, . . . , n} and the action of F× on an
F -vector space V .

2. The kernel of the trivial action of G on A is all of G , and is
thus not faithful if G is not the trivial group.

3. The kernel of the left-multiplication action of G on itself is
{e} (by cancellation), and is therefore faithful.

4. The kernel of the conjugation action of G on itself is its
center Z (G ). If Z (G ) = {e} then the action is faithful, and
otherwise it is not faithful.



Group Actions, XIII

If a group action is faithful, then the associated homomorphism
from G to SA is injective.

Then, by the first isomorphism theorem, we see that G is
isomorphic to its image in SA.

Applying this observation in particular to the left-multiplication
action of G on itself (which is faithful, as we noted on the last
slide) yields the following theorem:

Theorem (Cayley’s Theorem)

Every group is isomorphic to a subgroup of a symmetric group.
Furthermore, if |G | = n, then G is isomorphic to a subgroup of Sn.



Group Actions, XIV

Historically, groups were initially conceived as being permutation
groups (i.e., subsets of symmetric groups), and it was only later
that the axiomatic definition we used was adopted.

Cayley’s theorem, then, indicates that the historical and
modern conceptions of a group are equivalent.

Although the historical definition is more concrete, the
axiomatic approach has the advantage of not requiring us to
specify a particular symmetric group of which G is a
subgroup, and makes many other tasks (e.g., involving
homomorphisms and isomorphisms) much easier to handle.



Group Actions, XV

Example: For G = Q8 = {1,−1, i ,−i , j ,−j , k ,−k}, if we label the
elements {1, 2, 3, 4, 5, 6, 7, 8} in that order, then i corresponds to
the permutation (1 3 2 4)(5 7 6 8) and j corresponds to the
permutation (1 5 2 6)(3 8 4 7).

Thus, since Q8 is generated by i and j , we see that the
subgroup of S8 generated by (1 3 2 4)(5 7 6 8) and
(1 5 2 6)(3 8 4 7) is isomorphic to Q8.

If desired, we could write down the corresponding actions for
the other elements of Q8 to identify all 8 permutations in this
isomorphic copy of Q8 inside S8.



Group Actions, XVI

We will mention that, even though a group G of order n
necessarily embeds into Sn, it is certainly possible for G to be
isomorphic to a subgroup of a smaller symmetric group.

For example, since the action of D2·4 on the four vertices of
the square is faithful, we see that S4 contains a subgroup
isomorphic to D2·4.

Explicitly, this subgroup is generated by the images of r and s,
which by the original convention we took, would be (1 2 3 4)
and (2 4), respectively.

If instead we used the left-multiplication of D2·4 on itself, we
would instead realize D2·4 as (isomorphic to) a subgroup of S8.



Group Actions, XVII

If we have a (nontrivial) action of G on A, we can often obtain
important structural information about G and about A by studying
the group action.

Definition

If G acts on A, then for any a ∈ A the stabilizer of a is the set
Ga = {g ∈ G : g · a = a} of elements of g fixing a.

The stabilizer is a subgroup of G :

Clearly e ∈ Ga by [A2], and if g , h ∈ Ga then
(gh) · a = g · (h · a) = g · a = a by [A1], and also
a = e · a = (g−1g) · a = g−1 · (g · a) = g−1 · a so g−1 ∈ Ga.



Group Actions, XVIII

Examples:

1. For the action of Sn on {1, 2, . . . , n} by permutation, the
stabilizer of n is the collection of all permutations that fix n.
Since such permutations can permute {1, 2, . . . , n − 1}
arbitrarily, this stabilizer is isomorphic to Sn−1.

2. For the action of D2·n on the vertices {V1, . . . ,Vn} of a
regular n-gon, the stabilizer of any vertex Vi consists of the
identity map along with the reflection along the line passing
through the center of the n-gon and Vi .

3. For the left-multiplication action of G on itself, the stabilizer
of any a ∈ G consists of only the identity (by cancellation).

4. For the conjugation action of G on itself, the stabilizer of any
element a ∈ G consists of all elements g ∈ G such that
gag−1 = a, which is to say, all elements g ∈ G with ga = ag
(i.e., all elements of G that commute with a).



Group Actions, XIX

We also have a related notion of the orbit of an element under the
action of G :

Definition

If G acts on A, then the orbits of G acting on A are the
equivalence classes of the equivalence relation on A given by a ∼ b
if there exists g ∈ G with b = g · a.
If there is a single orbit (namely, A itself) then we say the action of
G on A is transitive.

It is straightforward to verify that ∼ is indeed an equivalence
relation, so it makes sense to speak of its equivalence classes.



Group Actions, XX

Explicitly, the orbits are the sets G · a = Oa = {g · a : g ∈ G} for
the various elements a ∈ A.

The set G · a is the orbit of a under G , and (per the
definition) is the subset of A that can be obtained by starting
at a and applying an element of G .

The term “orbit” is intended to connote the idea that the
action of G sends a to various different places, and the orbit
of a is the collection of all the places that a can go.



Group Actions, XXI

Examples:

1. For the action of Sn on {1, 2, . . . , n} by permutation, for
σ = (1 2 3 . . . n) we have σ · 1 = 2, σ · 2 = 3, ... , and
σ · n = 1, so there is a single orbit consisting of the entire set
{1, 2, . . . , n}. This means the action is transitive.

2. The left-multiplication action of G on itself is transitive, since
for any g , h ∈ G we have (hg−1) · g = h.

3. For the conjugation action of G = S3 on itself, there are three
orbits: {e}, {(1 2), (1 3), (2 3)}, and {(1 2 3), (1 3 2)}.



Group Actions, XXII

There is an incredibly important combinatorial relation between
orbits and stabilizers:

Proposition (Orbit-Stabilizer Theorem)

If G acts on the set A, then the number of elements in the orbit
Oa is equal to [G : Ga], the index of the stabilizer of a.

This result is very intuitive:

The orbit counts how many different places that G can send
the element a. The stabilizer measures how many elements of
g must send a to itself.

The idea is then that if G moves a to many different places,
then few elements of G can send a to itself.

It is analogous to the nullity-rank theorem: if T has a large
image, then few elements can be mapped to zero.



Group Actions, XXIII

Proof:

We will show that there is a bijection between elements
b ∈ Oa and the left cosets bGa of the stabilizer Ga.

Consider the map f : G → A with f (g) = g · a.

Then for any g , h ∈ G , we see that f (g) = f (h) iff g · a = h · a
iff a = g−1 · (h · a) = (g−1h) · a iff g−1h ∈ Ga iff gGa = hGa.

Therefore, for any b ∈ Oa with b = g · a, we see that the fiber
f −1(b) of the map f is precisely the left coset gGa.

This means that f yields a bijection between the left cosets of
Ga with the elements of the orbit Oa of a.

The claimed result then follows immediately because the
number of left cosets of Ga equals [G : Ga], as we showed
previously.



Group Actions, XXIV

The orbit-stabilizer theorem has a number of important
applications in enumerative combinatorics, since it provides a way
to enumerate orbits under group actions in a convenient way.

We will also make use of the orbit-stabilizer theorem in our
analysis of groups – in particular, we will obtain a number of
useful consequences by analyzing the orbits and stabilizers of
the conjugation action of G on itself.

To illustrate, we reinterpret the proof of Cauchy’s theorem using
the orbit-stabilizer theorem:

The idea was to look at the cycling action of Z/pZ on ordered
p-tuples of elements (g1, g2, . . . , gp) such that g1 · · · gp = e.

The possible sizes of an orbit, by the orbit-stabilizer theorem,
are the possible indices of the stabilizer, which are 1 and p.

We then immediately obtain Cauchy’s theorem by counting
the total number of tuples, grouped together in orbits.



Polynomial Invariants and An, I

Our primary interest in groups, and in group actions in particular,
is to use them to study field extensions. An important action that
will be relevant to our work is the action of Sn and its subgroups
on polynomials.

The idea is that if we have n variables x1, x2, . . . , xn, then Sn acts
on the set of variables by permuting their indices. We can then
extend this action to the polynomial ring F [x1, x2, . . . , xn] in n
variables with coefficients from F by having permutations act
variable-by-variable in each monomial term.



Polynomial Invariants and An, II

Example:

8. (Sn on Polynomials): If F is a field and x1, x2, . . . , xn are
independent variables, then Sn acts on the polynomial ring
F [x1, x2, . . . , xn] via “index permutation” of the variables.
Explicitly, given a polynomial p(x1, x2, . . . , xn) and σ ∈ Sn, the
action of σ is σ · p(x1, x2, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)).

It is easy to see that this definition yields a group action,
since σ1 · (σ2 · p)) = σ1 · p(xσ2(1), . . . , xσ2(n)) =
p(xσ1σ2(1), . . . , xσ1σ2(n)) = (σ1σ2) · p, and
1 · p = p(x1, . . . , xn) = p.
As an example, with n = 4 and
p(x1, x2, x3, x4) = (x1 − 2x2x4)(4x3

3 − x2
4 ) then for

σ = (1 2 3 4) we have σ · p = (x2 − 2x3x1)(4x3
4 − x2

1 ).



Polynomial Invariants and An, III

Example: Let G = S3 act by index permutation on F [x1, x2, x3].

1. Calculate σ · (x2
1x2x3 + 3x1x2) where σ = (1 3 2).

2. Find the orbit and stabilizer of the polynomials x1x2 and x2
1x2

under the action of G .

We have σ · (x2
1x2x3 + 3x1x2) = x2

3x1x2 + 3x3x1.

The orbit of x1x2 is {x1x2, x1x3, x2x3}.
The stabilizer of x1x2 is {1, (1 2)}.
The orbit of x2

1x2 is {x2
1x2, x1x2

2 , x
2
1x3, x1x2

3 , x
2
2x3, x2x2

3}.
The stabilizer of x2

1x2 is {1}.
Note in each case that the size of the orbit times the size of
the stabilizer is 6 = #G , as dictated by the orbit-stabilizer
theorem.
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theorem.
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We will do much more when we study the roots of degree-3 and
degree-4 polynomials. For now, we will use this action to study the
alternating group An:

For a fixed n, define the polynomial

D =
∏

1≤i<j≤n
(xi − xj).

For example, when n = 3, D = (x1 − x2)(x1 − x3)(x2 − x3).

Now consider the action of Sn on D via index permutation, so
that for σ ∈ Sn we have σ(D) =

∏
1≤i<j≤n(xσ(i) − xσ(j)).

For example, with n = 3 and σ = (1 2 3) we have
σ(D) = (x2 − x3)(x2 − x1)(x3 − x1) = −D.
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We have D =
∏

1≤i<j≤n(xi − xj).

As with the example on the last slide, it is in fact true that
any permutation σ ∈ Sn will map D either to D or to −D.

This follows by noting that each term in the product for D
will appear in σ(D), except possibly with the variables in the
other order, which is true because σ is an injective map on the
set of

(n
2

)
unordered pairs (a, b) with a 6= b, and is therefore a

bijection on this set.

Thus, by collecting all the signs, we see that D and σ(D) are
the same except up to a product of some number of −1 terms.
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In the language of group actions, the observations on the previous
slide amount to noting that the group Sn acts via index
permutation on the set {+D,−D}.

Our goal now is to prove that An is the stabilizer of D.

Since there is only one orbit of Sn acting on {+D,−D} (since
there obviously exists a permutation interchanging +D and
−D), the orbit-stabilizer theorem will then immediately imply
that [Sn : An] = 2, and thus that #An = n!/2.
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Definition

For σ ∈ Sn we define the sign sgn(σ) of σ to be +1 if σ(D) = D
and −1 if σ(D) = −D. We call a permutation σ even if
sgn(σ) = 1 and odd if sgn(σ) = −1.

Example: In G = S4, find the signs of σ = (1 2 4) and τ = (1 3).

Here,
D = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

Then
σ ·D = (x2 − x4)(x2 − x3)(x2 − x1)(x4 − x3)(x4 − x1)(x3 − x1)
= (−1)4D = D. So sgn(σ) = 1.

Likewise,
τ ·D = (x3 − x2)(x3 − x1)(x3 − x4)(x2 − x1)(x2 − x4)(x1 − x4)
= (−1)3D = −D. So sgn(τ) = −1.
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Since Sn acts on the set A = {+D,−D}, as we just showed, we
obtain a group homomorphism from Sn into the permutation group
SA
∼= {±1}. This tells us that the sign map is actually a group

homomorphism:

Proposition (Sign Map is a Homomorphism)

The sign map is a group homomorphism sgn : Sn → {±1}.
Equivalently, sgn(τσ) = sgn(τ)sgn(σ) for all σ, τ ∈ Sn.

Example: In G = S4, verify sgn(στ) = sgn(σ)sgn(τ) for
σ = (1 2 4) and τ = (1 3).

We have στ = (1 2 4)(1 3) = (1 3 2 4), so στ · D
= (x3 − x4)(x3 − x2)(x3 − x1)(x4 − x2)(x4 − x1)(x2 − x1)
= (−1)5D = −D.

So sgn(στ) = −1 = (1)(−1) = sgn(σ)sgn(τ) as claimed.
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It is possible to give direct proofs that the sign map is a group
homomorphism.

However, these proofs are usually very lengthy and technical.

One fairly standard approach is to count the number of
“inversions”, pairs (i , j) with i < j but σ(i) > σ(j). Each
inversion contributes a factor of −1 to the action of σ on D,
and so the sign of σ is (−1) to the number of inversions of σ.

Another approach is to show that the sign map is the same as
the determinant of the associated permutation matrix M
having a 1 in the entries (i , σ(i)) for each i and 0s elsewhere.

Then the fact that the sign map is a group homomorphism
follows from the fact that determinants of matrices are
multiplicative (which is, of course, another standard fact that
is frustratingly difficult to prove from scratch!).
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When I defined An last week, I noted that An contains all of the
even permutations. Using the sign map we can prove that there
are no other elements in An, and also compute the order of An and
show that it is a normal subgroup of Sn:

Theorem (Alternating Group)

The alternating group An is the kernel of the sign map and is
therefore is a normal subgroup of Sn. Explicitly, An consists of all
even permutations, and has order n!/2.
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We will first prove an easy lemma:

Lemma (Transpositions are Odd)

Every transposition in Sn is an odd permutation.

Proof:

First, observe that sgn((1 2)) = −1 since the permutation
(1 2) only flips the sign of the single term x1 − x2 in D.

Then for any transposition (i j), if we set σ = (1 i)(2 j) then
σ(1 2)σ = (i j).

Since the sign map is a homomorphism we have
sgn((i j)) = sgn(σ(1 2)σ) = sgn(σ) · (−1) · sgn(σ) = −1.

Thus, all transpositions are odd permutations.
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Theorem (Alternating Group)

The alternating group An is the kernel of the sign map and is
therefore is a normal subgroup of Sn. Explicitly, An consists of all
even permutations, and has order n!/2.

Proof:

Since the sign map is a homomorphism, for transpositions
σ1, . . . , σk we have sgn(σ1 · · ·σk) = (−1)k by the lemma.

So, ker(sgn) consists of the permutations that are a product
of an even number of transpositions, which is precisely how
we defined An. Thus, An is the kernel of the sign map and
consists of all even permutations.

Furthermore, since sgn is surjective since sgn((1 2)) = −1, we
see Sn/An

∼= im(sgn) has order 2, so |An| = |Sn| /2 = n!/2.
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Our argument also gives an easy way to compute the sign of a
general permutation from its cycle decomposition.

Specifically, since a k-cycle can be written as the product of
k − 1 transpositions, the sign of a k-cycle is the opposite of
the parity of k.

Thus for example, 3-cycles are even while 8-cycles are odd.

Then we see that a permutation is even whenever it has an
even number of even-length cycles, and it is odd when it has
an odd number of even-length cycles.

We also see that even permutations are the product of an
even number of transpositions, while odd permutations are
those that are the product of an odd number of transpositions
(whence the terminology), and that no permutation is both
even and odd (since the sign map is well-defined).



Summary

We discussed the isomorphism theorems for groups.

We introduced the notion of a group action and discussed some
basic properties of group actions.

We introduced the action of Sn on polynomials by index
permutation and used it to establish some properties of An.

Next lecture: Conjugation actions, finitely-generated abelian
groups.


