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This material represents §3.2.1-3.2.2 from the course notes.



Motivation for Cosets, I

We would now like to generalize the idea of modular arithmetic
and quotients into the context of groups.

We can give a similar sort of motivation to the development
we gave with ideals of rings.

However, some of the details will be a little bit more difficult
because of the non-commutativity of the group operation.

However, based on the situation with rings, you should be
able to guess that the condition we are searching for is the
same property that kernels possess.



Motivation for Cosets, II

So suppose G is a group and N is a subset of G , whose properties
we intend to characterize in a moment.

Let us say that two elements a, b ∈ G are “congruent modulo
N” if a−1b ∈ N.

Note that this is just the multiplicative version of the
statement b − a ∈ I we used for ideals, but written in the
order (−a) + b instead.

We would like “congruence modulo N” to be an equivalence
relation, which requires

1. a ≡ a (mod N)
2. a ≡ b (mod I ) implies b ≡ a (mod N)
3. a ≡ b (mod N), b ≡ c (mod N) imply a ≡ c (mod N).



Motivation for Cosets, III

We require

1. a ≡ a (mod N)

2. a ≡ b (mod I ) implies b ≡ a (mod N)

3. a ≡ b (mod N), b ≡ c (mod N) imply a ≡ c (mod N).

(1) says a−1a = eG ∈ N.

(2) says if a−1b ∈ N then b−1a ∈ N. Since b−1a = (a−1b)−1,
this is the same as saying that N is closed under inverses.

(3) says if a−1b ∈ N and b−1c ∈ N, then a−1c ∈ N. Since
a−1c = (a−1b)(b−1c), this is the same as saying that N is
closed under multiplication.

Thus, all of these conditions together are equivalent to saying
that N is a subgroup of G , which seems quite reasonable.



Motivation for Cosets, IV

We would also like congruences to respect the group operation: if
a ≡ c (mod N) and b ≡ d (mod N) then ab ≡ cd (mod N).

The hypotheses are equivalent to saying that there exist
n1, n2 ∈ N such that a−1c = n1 and b−1d = n2, which is to
say, c = an1 and d = bn2.

Then the desired condition is that
(ab)−1(cd) = b−1a−1an1bn2 = b−1n1bn2 is in N, for any
a, b ∈ G and n1, n2 ∈ N.

This condition is a bit unwieldy, but if we set n2 = eG and
b−1 = c , then it reduces to the statement that cn1c−1 ∈ N
for any c ∈ G and any n1 ∈ N.

On the other hand, if cnc−1 ∈ N for every c ∈ G and n ∈ N,
then if we write b−1n1b = n3 ∈ N (by hypothesis) then the
element b−1n1bn2 = n3n2 is then also in N, since N is a
subgroup.



Motivation for Cosets, V

To summarize, the hypothesis that N is a subgroup and cnc−1 ∈ N
for every c ∈ G and n ∈ N is equivalent to saying that congruences
are an equivalence relation respecting the group operation.

With this condition in hand, we can define residue classes.

Specifically, the residue class a is the collection of all b such
that a ≡ b (mod N): explicitly,
a = {b ∈ G : a−1b ∈ N} = {an : n ∈ N}.
Finally, we can define the group operation on residue classes
via a · b = ab, and observe that this operation is well defined
because congruence respects the group operation.

Explicitly, if a = c and b = d , then ab = cd , because a ≡ c
(mod N) and b ≡ d (mod N) imply that ab ≡ cd (mod N)
per the above discussion.



Motivation for Cosets, VI

With these assumptions, the collection of residue classes
a = aN = {an : n ∈ N} will then have a well-defined group
operation given by a · b = ab.

We will also note that the statement that cnc−1 ∈ N for every
c ∈ G and n ∈ N is equivalent to the statement that for every
c ∈ G , the set cNc−1 = {cnc−1 : n ∈ N} is equal to N itself.

One direction is clear, since if cNc−1 = N for every c ∈ G ,
then certainly cnc−1 ∈ N for every c ∈ G and n ∈ N.

On the other hand, if cnc−1 ∈ N for every c ∈ G and n ∈ N,
then cNc−1 ⊆ N for all c . In particular, plugging in c−1 for c
yields c−1Nc ⊆ N, which is equivalent to N ⊆ cNc−1: thus
we must have cNc−1 = N for all c ∈ G .



Cosets, I

Now that we have identified the property we want to use to
construct quotient groups, we examine more closely the properties
of the underlying sets of elements in G :

Definition

If H is a subgroup of G and a ∈ G , the set aH = {ah : h ∈ H} is
called a left coset of H.
We also define the index of H in G , denoted [G : H], to be the
number of distinct left cosets of H in G .

If G is an additive abelian group, we will write left cosets as
a + H; note that this notation is consistent with our prior use
of r + I in rings.



Cosets, II

We also have a symmetric notion of a right coset:

Definition

If H is a subgroup of G and a ∈ G , the set Ha = {ha : h ∈ H} is
called a right coset of H.

If G is abelian, then left and right cosets are the same, but
when G is non-abelian, this need not be the case.

We will see in a moment that the numbers of left cosets and
right cosets are the same, so the definition of the index is
independent of whether we use left or right cosets.

If G is an additive abelian group, we will write (left) cosets as
a + H; note that this notation is consistent with our prior use
of r + I in rings.



Cosets, III

Examples:

1. Let H = {1, (1 3)} in G = S3. Find the left and right cosets
of H in G and compute [G : H].

There are three left cosets of H in G : explicitly, they are
1H = (1 3)H = {1, (1 3)},
(1 2)H = (1 3 2)H = {(1 2), (1 3 2)}, and
(2 3)H = (1 2 3)H = {(2 3), (1 2 3)}.
Thus, here we have [G : H] = 3.
There are also three right cosets of H in G : explicitly,
they are H1 = H(1 3) = {1, (1 3)},
H(1 2) = H(1 2 3) = {(1 2), (1 2 3)}, and
H(1 3) = H(1 3 2) = {(1 3), (1 3 2)}.
Notice that the left and right cosets are not all equal to
each other; for example, (1 2)H 6= H(1 2).



Cosets, III

Examples:

1. Let H = {1, (1 3)} in G = S3. Find the left and right cosets
of H in G and compute [G : H].

There are three left cosets of H in G : explicitly, they are
1H = (1 3)H = {1, (1 3)},
(1 2)H = (1 3 2)H = {(1 2), (1 3 2)}, and
(2 3)H = (1 2 3)H = {(2 3), (1 2 3)}.
Thus, here we have [G : H] = 3.
There are also three right cosets of H in G : explicitly,
they are H1 = H(1 3) = {1, (1 3)},
H(1 2) = H(1 2 3) = {(1 2), (1 2 3)}, and
H(1 3) = H(1 3 2) = {(1 3), (1 3 2)}.
Notice that the left and right cosets are not all equal to
each other; for example, (1 2)H 6= H(1 2).



Cosets, IV

Examples:

2. Let H = {e, r2} in G = D2·4. Find the left and right cosets of
H in G and compute [G : H].

There are four left cosets of H in G , namely
eH = r2H = {e, r2}, rH = r3H = {r , r3},
sH = sr2H = {s, sr2}, and srH = sr3H = {sr , sr3}.
Thus, we see [G : H] = 4.
There are also four right cosets of H in G , namely
He = Hr2 = {e, r2}, Hr = Hr3 = {r , r3},
Hs = Hsr2 = {s, sr2}, and Hsr = Hsr3 = {sr , sr3}.
Here that the left and right cosets of H are the same,
even though G is not abelian.



Cosets, IV

Examples:

2. Let H = {e, r2} in G = D2·4. Find the left and right cosets of
H in G and compute [G : H].

There are four left cosets of H in G , namely
eH = r2H = {e, r2}, rH = r3H = {r , r3},
sH = sr2H = {s, sr2}, and srH = sr3H = {sr , sr3}.
Thus, we see [G : H] = 4.
There are also four right cosets of H in G , namely
He = Hr2 = {e, r2}, Hr = Hr3 = {r , r3},
Hs = Hsr2 = {s, sr2}, and Hsr = Hsr3 = {sr , sr3}.
Here that the left and right cosets of H are the same,
even though G is not abelian.



Cosets, V

Examples:

3. Let H = {1, (1 2 3), (1 3 2)} in G = S3. Find the left and
right cosets of H in G and compute [G : H].

Then there are two left cosets of H in G , namely
1H = (1 2 3)H = (1 3 2)H = {1, (1 2 3), (1 3 2)} and
(1 2)H = (1 3)H = (2 3)H = {(1 2), (1 3), (2 3)}.
Thus, here we have [G : H] = 2.
In this case, the right cosets are the same as the left
cosets of H: they are
H1 = H(1 2 3) = H(1 3 2) = {1, (1 2 3), (1 3 2)} and
H(1 2) = H(1 3) = H(2 3) = {(1 2), (1 3), (2 3)}.



Cosets, V

Examples:

3. Let H = {1, (1 2 3), (1 3 2)} in G = S3. Find the left and
right cosets of H in G and compute [G : H].

Then there are two left cosets of H in G , namely
1H = (1 2 3)H = (1 3 2)H = {1, (1 2 3), (1 3 2)} and
(1 2)H = (1 3)H = (2 3)H = {(1 2), (1 3), (2 3)}.
Thus, here we have [G : H] = 2.
In this case, the right cosets are the same as the left
cosets of H: they are
H1 = H(1 2 3) = H(1 3 2) = {1, (1 2 3), (1 3 2)} and
H(1 2) = H(1 3) = H(2 3) = {(1 2), (1 3), (2 3)}.



Cosets, VI

Examples:

4. Let H = 2Z = {. . . ,−2, 0, 2, 4, . . . } in G = Z. Find the left
and right cosets of H in G and compute [G : H].

Here the left and right cosets are the same, since G is
abelian.
Using additive notation, we see that the cosets are
0 + H = {. . . ,−2, 0, 2, 4, . . . } and
1 + H = {. . . ,−3, 1, 3, 5, . . . }.
Perhaps unsurprisingly, the cosets are simply the residue
classes 0 and 1 modulo 2, and there are [G : H] = 2 of
them.



Cosets, VI

Examples:

4. Let H = 2Z = {. . . ,−2, 0, 2, 4, . . . } in G = Z. Find the left
and right cosets of H in G and compute [G : H].

Here the left and right cosets are the same, since G is
abelian.
Using additive notation, we see that the cosets are
0 + H = {. . . ,−2, 0, 2, 4, . . . } and
1 + H = {. . . ,−3, 1, 3, 5, . . . }.
Perhaps unsurprisingly, the cosets are simply the residue
classes 0 and 1 modulo 2, and there are [G : H] = 2 of
them.



Cosets, VII

In each of the examples above, all of the cosets had the same size
(which is then the same size as eH = H), and the left cosets
partitioned G . This is true in general:

Proposition (Properties of Cosets)

Let H be a subgroup of G, and g , h ∈ G . Then the following hold:

1. For any a ∈ G , the map f : H → aH defined by f (g) = ag is
a bijection between H and gH.

2. For any a ∈ G , the only left coset of H containing a is aH.

3. Any two left cosets of H in G are either disjoint or identical.
Thus, the left cosets of H in G partition G .

4. For any a, b ∈ G , we have aH = bH if and only if a−1b ∈ H.

All of these properties also hold if we replace left cosets with right
cosets everywhere, and modify the statements accordingly.



Cosets, VIII

1. For any a ∈ G , the map f : H → aH defined by f (g) = ag is
a bijection between H and gH.

Proof:

By definition of aH, the map f is surjective.

On the other hand, f (g1) = f (g2) is equivalent to ag1 = ag2,
which by cancellation implies g1 = g2.

Thus, f is also injective, so it is a bijection.



Cosets, IX

2. For any a ∈ G , the only left coset of H containing a is aH.

Proof:

Clearly aH is a left coset of H containing a since e ∈ H, so we
need to show it is the only one.

If a ∈ bH then by definition a = bh for some h ∈ H.

Then for any h′ ∈ H, since hh′ ∈ H because H is a subgroup,
we see that ah′ = b(hh′) ∈ bH. Thus bH contains aH.

On the other hand, for any bh′′ ∈ bH, since b = ah−1 we can
write bh′′ = a(h−1h′′) ∈ aH because h−1h′′ ∈ H again because
H is a subgroup. Thus, aH contains bH, so they are equal.



Cosets, X

3. Any two left cosets of H in G are either disjoint or identical.
Thus, the left cosets of H in G partition G .

Proof:

Suppose aH and bH are left cosets of H. If they are disjoint
we are done, so suppose they have some common element g .

But then by (2), this means aH = gH = bH, so aH = bH.
The other statement is immediate since any g ∈ G is
contained in the left coset gH.



Cosets, XI

4. For any a, b ∈ G , we have aH = bH if and only if a−1b ∈ H.

Proof:

If aH = bH then since b ∈ aH this means b = ah for some
h ∈ H: then a−1b = a−1ah = h ∈ H.

Conversely, if a−1b ∈ H, then b = ah for some h ∈ H, and so
b ∈ aH. Then by (2), this means bH = aH.

The corresponding arguments for right cosets in place of left cosets
are essentially identical, up to changing the orders of the
multiplications appropriately.



Cosets, XII

These properties seem rather simple, but we can deduce a very
important consequence from them:

Theorem (Lagrange’s Theorem)

If H is a subgroup of G , then #G = #G · [G : H], where if one
side is infinite then both are. In particular, if G is a finite group,
then the order of any subgroup H divides the order of G .

Proof:

By our properties of cosets, each left coset of H has a bijection
with H, and so all of the left cosets have the same cardinality.

Since the left cosets form a partition of G , we may partition
the #G elements into a total of [G : H] left cosets each of
which has size #H.

Thus, #G = #G · [G : H]. The second statement follows
immediately from this relation, since [G : H] is an integer.



Cosets, XIII

Although its proof is seemingly easy, Lagrange’s theorem is an
extremely important tool in unraveling the structure of groups
(particularly, finite groups) since it substantially narrows the
possible orders for subgroups of G , and also orders of elements:

Corollary (Orders of Elements)

If G is a finite group of order n, then for every g ∈ G the order of
g divides n, and gn = e.

Proof:

Let H = 〈g〉 be the cyclic subgroup generated by g .

As we have shown, the order of H is equal to the order of g ,
and by Lagrange’s theorem we see that it divides n.

The second statement follows immediately.



Cosets, XIV

We can use Lagrange’s theorem as a tool to classify groups of very
small order:

Proposition (Groups of Order ≤ 7)

Suppose G is a group. Then the following hold:

1. If G has prime order p, then G is cyclic and isomorphic to
Z/pZ. In particular, any group of order 2, 3, 5, or 7 is cyclic.

2. If G has order 4, then G is abelian and isomorphic either to
Z/4Z or to V4

∼= (Z/2Z)× (Z/2Z).

3. If G has order 6, then G is isomorphic either to Z/6Z or to
S3
∼= D2·3.



Cosets, XV

1. If G has prime order p, then G is cyclic and isomorphic to
Z/pZ. In particular, any group of order 2, 3, 5, or 7 is cyclic.

Proof:

If G is a group of prime order p, consider any nonidentity
element g .

The order of g must divide p, and it cannot be 1 because g is
not the identity.

Thus, g has order p, and then G = 〈g〉 is cyclic.



Cosets, XVI

2. If G has order 4, then G is abelian and isomorphic either to
Z/4Z or to V4

∼= (Z/2Z)× (Z/2Z).

Proof:

If #G = 4 then the order of any nonidentity element must be
2 or 4. If G has an element of order 4 then it is cyclic and
thus isomorphic to Z/4Z.

Otherwise, assume that every nonidentity element has order 2.
Choose any such a and b and let H = 〈a〉 = {e, a}.
Then there are two left cosets of H, so since b 6∈ H, they
must be H and bH. Likewise, there are two right cosets of H,
namely H and Hb.

But since left or right cosets partition G , this means bH = Hb.

Thus, ba = ab and also G = {e, a, b, ab}.
Then the map ϕ : (Z/2Z)× (Z/2Z)→ G given by
ϕ(x , y) = axby is an isomorphism.



Cosets, XVI

3. If G has order 6, then G is isomorphic either to Z/6Z or to
S3
∼= D2·3.

Proof:

If #G = 6, then the order of any nonidentity element must be
2, 3, or 6. If G has an element of order 6 then it is cyclic and
thus isomorphic to Z/6Z.

Otherwise, assume every nonidentity element has order 2 or 3.

By Cauchy’s theorem, there exists a ∈ G of order 3. Let
H = {e, a, a2}.
Since [G : H] = 2 there is exactly one other left coset of H,
say bH = {b, ba, ba2}; these cosets are disjoint, so b 6∈ H.

Since there is also exactly one other right coset of H, which
must contain b since b 6∈ H, it is Hb = {b, ab, a2b}.
Since left or right cosets partition G , this means bH = Hb.



Cosets, XVII

Proof (continued):

Then b2H is also a left coset of H. It cannot equal bH since
(by cancellation) this would imply bH = H, which is false.
Therefore, b2H = H, and so b2 is one of e, a, a2. If b2 were
equal to a then b would have to have order 3, but then we
could write b = b4 = a2, which is impossible. Likewise, b2

cannot equal a2, so we must have b2 = e, so b has order 2.
Also, since bH = Hb, we deduce ab ∈ Hb = {b, ab, a2b}, so
since ab 6= b, we must have either ab = ba or ab = ba2. But
if ab = ba, then since a has order 3 and b has order 2, ab
would have order 6, contradicting our hypothesis.
Thus, ab = ba2, or equivalently, ab = ba−1. Since G = 〈a, b〉
this means G =

〈
a, b : a3 = b2 = e, ab = ba−1

〉
which is the

same as the presentation for the dihedral group D2·3.
By our results on presentations, since G and D2·3 both have
order 6, we conclude that G ∼= D2·3 ∼= S3 as claimed.



Subgroup Lattices, I

We can also use Lagrange’s theorem to simplify calculations
involving subgroups, toward an ultimate goal of writing down all
the possible subgroups of a given group.

A convenient way to organize this information is by drawing the
subgroup lattice of G : we arrange all of the subgroups of G
starting with the smallest subgroups at the bottom, and then draw
paths to indicate immediate containments.



Subgroup Lattices, II

To compute an arbitrary subgroup lattice for a finite group, we
may work as follows:

First, write down all of the cyclic subgroups (i.e., subgroups
generated by a single element).

Next, write down all possible “joins” of two cyclic subgroups
(i.e., the smallest subgroup containing both), which yield all
of the subgroups generated by two elements.

Continue the process by computing all possible joins of three
cyclic subgroups (equivalently, joins of a 2-generator subgroup
with a cyclic subgroup), and so on, until all subgroups have
been obtained.



Subgroup Lattices, III

Here are the subgroup lattices of Z/pnZ for p a prime:



Subgroup Lattices, IV

Here is the subgroup lattice for S3:



Subgroup Lattices, V

Here is the subgroup lattice for Q8:



Subgroup Lattices, VI

Here is the subgroup lattice for D2·4:



Subgroup Lattices, VII

Here is the subgroup lattice for A4:

Notice here that A4 has no subgroup of order 6.



Subgroup Lattices, VIII

The observation on the previous slide gives a counterexample to
the converse of Lagrange’s theorem.

To be more explicit: Lagrange’s theorem tells us that if G is a
finite group, then the only possible orders of a subgroup are
divisors of n.

The point of the example is that for any given divisor of n,
there need not actually be a subgroup having that order.

We will discuss a partial converse to Lagrange’s theorem (namely,
Sylow’s theorems) next week.



Subgroup Lattices, IX

Subgroup lattices are usually a bit more complicated:

[Diagram credit: Tilman Piesk, via wikimedia commons]



Normal Subgroups and Quotient Groups, I

We now continue with our discussion of quotient groups.

As we have already explained, in order to have well-defined
operations on the collection of left cosets of H, we must impose an
additional condition on H:

Definition

If K is a subgroup of G and g ∈ G , we define the
conjugate of K by g gKg−1 as gKg−1 = {gkg−1 : k ∈ K}.
We say g ∈ G normalizes K if gKg−1 = K , and we N is a
normal subgroup of G , written N E G , if all g ∈ G normalize N.

Every subgroup of an abelian group is normal, trivially.



Normal Subgroups and Quotient Groups, II

When G is non-abelian, it is tedious to try to verify that
gKg−1 = K for every g ∈ G .

We can reduce the amount of calculation by observing that if
g , h ∈ G both normalize K , then
(gh)K (gh)−1 = g(hKh−1)g = gKg−1 = K so that gh also
normalizes K , and also by multiplying by g−1 on the left and
g on the right, gKg−1 = K implies K = g−1Kg so that g−1

normalizes K .

Thus, since the identity clearly normalizes K , we see that the
collection of elements normalizing K is a subgroup of G . This
subgroup is called the normalizer of K in G , and is denoted
NG (K ).

Hence, to show K is normal, we need only verify that it is
normalized by a set of generators for G .



Normal Subgroups and Quotient Groups, III

Examples:

1. If H = {e, r2} in G = D2·4, then H is normal in G because
rHr−1 = {e, r2} = H and sHs−1 = {e, sr2s} = {e, r2} = H.

2. If H = {e, s} in G = D2·4, then H is not normal in G because
rHr−1 = {e, rsr−1} = {e, sr2} 6= H.

3. If H = {1, (1 2 3), (1 3 2)} in G = S3, then H is normal in G
because (1 2 3)H(1 2 3)−1 = H since H contains (1 2 3), and
also (1 2)H(1 2)−1 = {1, (1 3 2), (1 2 3)} = H.

4. If H = {1, (1 3)} in G = S3, then H is not normal in G
because (1 2)H(1 2)−1 = {1, (2 3)} 6= H.

5. If H = {1, i ,−1,−i} in G = Q8, then H is normal in G
because iHi−1 = H since i ∈ H, and also
jHj−1 = {1,−i ,−1, i} = H by explicit calculation.



Normal Subgroups and Quotient Groups, IV

Now we can construct quotient groups. When N E G , we will also
write the left coset aN as a.

Theorem (Quotient Groups)

Let N be a normal subgroup of G .
Then the collection of left cosets of N in G forms a group (the
quotient group of G by N, denoted G/N) under the operation
(aN) · (bN) = (ab)N, or, in residue class notation, a · b = ab.
In particular, the identity element is e = eN and inverses are given
by (gN)−1 = g−1N.
Furthermore, we have #(G/N) = [G : N], and also if G is abelian
then so is G/N.



Normal Subgroups and Quotient Groups, V

Proof:

First we must show that the operation is well-defined: that is,
if we choose different elements c ∈ aN and d ∈ bN, then the
coset of cd is the same as that of ab.

To see this, if c ∈ aN then c = an1 for some n1 ∈ N, and
similarly d = bn2 for some n2 ∈ N.

Because xN = yN if and only if x−1y ∈ N, we see that
(ab)N = (cd)N is equivalent to (ab)−1(an1bn2) ∈ N.

We see that (ab)−1(an1bn2) = b−1a−1an1bn2 = (b−1n1b)n2,
and then since b−1n1b ∈ N because b−1 normalizes N, we
conclude that (ab)−1(an1bn2) ∈ N.

Therefore, (ab)N = (cd)N, and so the operation is
well-defined.



Normal Subgroups and Quotient Groups, VI

Proof (continued):

The three group axioms [G1]-[G3] then follow from the
corresponding properties in G .

For [G1] we have
(a · b) · c = ab · c = (ab)c = a(bc) = a · bc = a · (b · c).

For [G2], the multiplicative identity is e, since
a · e = ae = a = ea = e · a.

For [G3], we have a · a−1 = aa−1 = e = a−1a = a−1 · a, so
a−1 = a−1.

For the last statements, by definition #(G : N) is the number
of left cosets of N in G , which is [G : N]. Finally, if G is
abelian then a · b = ab = ba = b · a so G/N is also abelian.



Normal Subgroups and Quotient Groups, VII

Here are some equivalent properties for normality:

Proposition (Normality Conditions)

If N is a subgroup of G , the following are equivalent:

1. N is a normal subgroup of G : gNg−1 = N for all g ∈ G .

2. The collection of left cosets of G forms a group under the
operation (aN)(bN) = abN.

3. gNg−1 ⊆ N for every g ∈ G .

4. gN = Ng for every g ∈ G .

5. Every left coset of G is also a right coset of G , and vice versa.

Condition (3) is usually the easiest to check, and to show (3) it is
only necessary to verify that ginjg

−1
i ∈ N for a set of generators gi

of G and a set of generators nj of N.



Normal Subgroups and Quotient Groups, VIII

Proof:

In our motivation for the definition of normality, we showed
that (2) implies (1) and that (3) implies (1).
Our theorem on quotient groups shows (1) implies (2), and
(1) clearly implies (3). So (1), (2), (3) are equivalent.
(3) =⇒ (4): If gN = Ng then for any n ∈ N there exists
n′ ∈ N with gn = n′g . Thus gng−1 = n′ ∈ N for every g ∈ G
and n ∈ N, which is (3).
(4) =⇒ (1): If gNg−1 = N, multiplying every element in
both sets on the right by g shows gN = Ng , which gives (4).
(4) =⇒ (5): If gN = Ng for all g ∈ G , then every left coset
is a right coset, so (4) implies (5).
(5) =⇒ (4): If every left coset is a right coset, then since gN
is the unique left coset containing g and Ng is the unique
right coset containing g , we must have gN = Ng for every g ,
giving (4).
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Example: For G = S3 and N = 〈(1 2 3)〉, identify the elements of
G/N and determine the structure of G/N.

Since [G : N] = |G | / |N| = 2 there are 2 left cosets of G , so
G/N is a group of order 2. Thus G/N will be isomorphic to
Z/2Z.

We can compute the elements of G/N explicitly as
1N = {1, (1 2 3), (1 3 2)} and (1 2)N = {(1 2), (2 3), (1 3)}.
By the definition of the quotient group structure, we can then
compute [1N][1N] = 1, [1N][(1 2)N] = (1 2)N = [(1 2)N][1N],
and [(1 2)N][(1 2)N] = (1 2)2N = 1N.

Indeed, the structure of G/N is precisely that of Z/2Z.
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Example: For G = Q8 and N = 〈−1〉, identify the elements of
G/N and determine the structure of G/N.

Since [G : N] = |G | / |N| = 4 there are 4 left cosets of G , so
G/N is a group of order 4.

The elements of G/N are 1N = {1,−1}, iN = {i ,−i},
jN = {j ,−j}, and kN = {k ,−k}. The identity element is 1N.

By the definition of the quotient group structure, we can then
compute, for example, (iN)(jN) = ijN = kN, and
(jN)(iN) = jiN = −kN = kN.

Also, we have (iN)2 = i2N = −1N = 1N, and likewise
(jN)2 = 1N and (kN)2 = 1N, so each nonidentity element of
the group has order 2.

From our characterization of the groups of order 4, this tells
us that G/N is isomorphic to the Klein 4-group V4.
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Normal Subgroups and Quotient Groups, XI

Example: For G = Z/12Z and N = 〈6〉, identify the elements of
G/N and determine the structure of G/N.

Since [G : N] = |G | / |N| = 6 there are 6 left cosets of G , so
G/N is a group of order 6.

The elements of G/N are 0 + N = {0, 6}, 1 + N = {1, 7},
2 + N = {2, 8}, 3 + N = {3, 9}, 4 + N = {4, 10}, and
5 + N = {5, 11}.
We can see that k(1 + N) = k + N for any integer k , and so
G/N is a cyclic group (of order 6) generated by 1 + N.

Remark: More generally, if G = 〈g〉 is cyclic and generated by
the element g , it is not hard to see that G/N is cyclic and
generated by g = gN.
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Example: For G = D2·6 and N =
〈
r3
〉
, identify the elements of

G/N and determine the structure of G/N.

Since [G : N] = |G | / |N| = 6 there are 6 left cosets of G , so
G/N is a group of order 6.

The elements of G/N are eN = {e, r3}, rN = {r , r4},
r2N = {r2, r5}, sN = {s, sr3}, srN = {sr , sr4}, and
sr2N = {sr , sr2}.
Note that (rN)3 = r3N = eN and (r2N)3 = r6N = eN so
both rN and r2N have order 3. In a similar way we can see
that sN, srN, and sr2N each have order 2.

From our characterization of the groups of order 6, this tells
us that G/N is isomorphic to D2·3 ∼= S3. (In fact, an explicit
isomorphism with D2·3 can be obtained simply by reading off
the corresponding label from the cosets as labeled above!)
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One of the primary reasons that quotient groups are of interest is
that it is often possible to “piece together” information about N
and G/N to yield information about G .

For example, we will use an argument of this type later to
prove that if p is prime, then every group of order p2 is
abelian, and isomorphic to one of Z/p2Z or (Z/pZ)× (Z/pZ).
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However, even if the isomorphism types of N and G/N are known,
then this information does not uniquely determine the structure of
G .

For example, we have seen that both Q8 and D2·4 have
normal subgroups N of order 2 (isomorphic to Z/2Z), such
that the quotient group by N is isomorphic to the Klein
4-group; nonetheless, Q8 and D2·4 are not isomorphic.

In general, the problem of describing all groups G having a
normal subgroup N isomorphic to a specific group A and with
G/N isomorphic to another specific group B is called the
extension problem for groups.
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Of course, when G is large it can be difficult to understand the
structure of G/N in a useful way. We mention two interesting
examples, however:

1. Every element of the quotient group Q/Z has finite order,
although element orders in this group can be arbitrarily large.
Explicitly, if p/q is in lowest terms then the coset p/q has
order q, since q · p/q = p = 0 but no smaller multiple of p/q
will yield an integer.

2. If p is a prime and G is the group of p-power roots of unity in
C (i.e., the union of the pnth roots of unity for all n ≥ 1) and
N represents the group of pth roots of unity, then G/N is
isomorphic to G itself. Explicitly, one may verify that the map
given by ϕ(ζN) = ζp is well-defined and yields an
isomorphism of G/N with G .
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A common proof technique for establishing structural results about
finite groups is to use induction on |G |, and piece information
together from normal subgroups and quotient groups.

A major obstruction to this type of argument occurs if G possesses
no nontrivial proper normal subgroups:

Definition

A group G is simple if |G | > 1 and the only normal subgroups of G
are {e} and G .

The cyclic groups Z/pZ for p prime are simple, and in fact it
is not hard to see that they are the only abelian simple groups.

Another family of simple groups is given by the alternating
groups An for n ≥ 5. (This is not as easy to prove!)
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A major goal of finite group theory is to classify the finite simple
groups, since they provide a partial analogue to the prime numbers
in that they are the “building blocks” for the construction of
groups from smaller groups.

The classification of finite simple groups was completed (up to
some minor components) in the 1980s, and established that
there are 18 infinite families of finite simple groups, along
with 26 “sporadic” simple groups not belonging to any of
these families, such that every finite simple group is
isomorphic to one of these listed groups.

In total, the classification is estimated to run over 10000
pages, spanning several hundred papers by dozens of
individual authors.



Summary

We introduced cosets and established some of their properties.

We proved Lagrange’s theorem and deduced some of its
consequences.

We discussed subgroup lattices.

We discussed normal subgroups and quotient groups.

Next lecture: The isomorphism theorems, group actions.


