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Subgroups, I

Like with subrings, subfields, and vector subspaces, we have a
natural notion of subgroup:

Definition

If G is a group, we say a subset S of G is a subgroup if it also
possesses the structure of a group, under the same operations as G .

Associativity is automatically inherited, so we only need to check
nonemptiness and closure under the group operation and inverses:

Proposition (Subgroup Criterion)

A subset S of G is a subgroup if and only if S contains the identity
of G and is closed under the group operation of G and inverses.
Equivalently, S is a subgroup if and only if eG ∈ S and for any
g , h ∈ S, the element gh−1 ∈ S.
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Proof:

By definition, S must be closed under the group operation.

By [G2] in S , there must be an identity element eS in S with
the property that geS = g for every g ∈ S .

However, by the cancellation law in G , since geS = g = geG ,
we see that eS = eG , so S must contain the identity of G .

Likewise, in order for [G3] to hold in S , we require that for
every g ∈ S , it must have an inverse g−1S . Since
gg−1S = eS = eG = gg−1G by cancellation in G we must have
g−1S = g−1G , which is to say, the inverse of g must be in S .

Conversely, if S contains the identity of G and is closed under
the group operation and inverses, then it is also a group.



Subgroups, III

Proof (second statement):

For the second statement, if S is a subgroup then eG ∈ S and
for any g , h ∈ S we must have h−1 ∈ S and then gh−1 ∈ S .

Conversely, if eG ∈ S and gh−1 ∈ S for any g , h ∈ S , setting
g = eG implies that h−1 ∈ S so S is closed under inverses.

Then for any k ∈ S , setting h = k−1 and using the fact that
(k−1)−1 = k implies that gh−1 = gk ∈ S so S is closed under
the group operation, hence is a subgroup.
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As for subfields and subrings, intersections of subgroups yield
subgroups:

Corollary (Intersection of Subgroups)

The intersection of an arbitrary collection of subgroups of G is also
a subgroup of G .

Proof:

Let S =
⋂

i∈I Gi where the Gi are subgroups of G . Then by
the subgroup criterion, eG ∈ Gi for all i ∈ I , so S contains eG .

Furthermore, for any g , h ∈ S we have g , h ∈ Gi for all i .
Thus, gh−1 ∈ Gi for all i by the subgroup criterion, so
gh−1 ∈ S so S is a subgroup.



Subgroups, V

Examples:

1. For any group G , the sets {e} and G are always subgroups of
G . The subgroup {e} is called the trivial subgroup.

2. The set (Q+, ·) of positive rational numbers under
multiplication is a subgroup of (C, ·) since it satisfies the
subgroup criterion.

3. The set (Z≥0,+) of nonnegative integers under addition is
not a subgroup of (Z,+) since it is not closed under inverses.

4. The set of odd integers together with 0, under addition, is not
a subgroup of (Z,+) since it is not closed under addition.

5. The set (SLn(F ), ·) of matrices with coefficients in F having
determinant 1 is a subgroup of (GLn(F ), ·).

Explicitly, det(In) = 1, and if det(A) = det(B) = 1, then
det(AB) = det(A−1) = 1 by determinant properties.



Subgroups, VI

We have an important general subgroup:

Definition

If G is a group, the center Z (G ) is the subgroup consisting of all
of elements G that commute with every other element of G.
Explicitly, Z (G ) = {a ∈ G : ag = ga for all g ∈ G}.

The center Z (G ) is a subgroup of G .

It contains the identity, and if a, b ∈ Z (G ) and g ∈ G , then
(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab) so that
ab ∈ Z (G ), and also
ga−1 = a−1(ag)a−1 = a−1(ga)a−1 = a−1g so that
a−1 ∈ Z (G ).

The group G is abelian if and only if Z (G ) = G .



Subgroups, VII

Examples:

1. The center of the dihedral group D2·4 is {e, r2} since both of
these elements commute with all the other elements of the
group (powers of r all commute with one another, and also
(r2)(srk) = (r2s)rk = (sr2)rk = (srk)(r2)), but no other
elements do (since srk = rks implies srk = sr−k so that
r2k = e, and also r(srk) = srk−1 while (srk)r = srk+1).

2. The center of the symmetric group S3 is {1}, since one may
verify that none of the 2-cycles commutes with any of the
3-cycles.



Subgroups, VIII

We also have an important subgroup of Sn:

Definition

For a positive integer n, we define the subgroup An of Sn to be all
the elements in Sn that can be written as the product of an even
number of transpositions (not necessarily disjoint transpositions).
This subgroup is called the alternating group on n objects.

We can see that An is a subgroup of Sn:

The identity is the empty product of 0 transpositions.

An is closed under multiplication since the product of two
even numbers of transpositions is clearly also of that form.

An is closed under inverses since the inverse of a transposition
is itself, so the inverse of a product of an even number of
transpositions is also the product of an even number of
transpositions.
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It is not hard to see that every permutation in Sn is a product of
some number of transpositions.

Explicitly, since for any n-cycle we can write
(a1 a2 . . . an) = (a1 an)(a1 an−1) · · · (a1 a2) as a product of
n − 1 transpositions.

Thus, An contains every cycle of odd length, along with the
product of any two cycles of even length. Thus, by taking
products of such elements, we see that An contains every
permutation whose cycle decomposition contains an even
number of cycles of even length.

We will prove later that these are all of the permutations in
An, and that there are precisely n!/2 such elements.

For example, we have A3 = {1, (1 2 3), (1 3 2)}, and also
A4 = {1, {1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3),
(2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
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If S is a subset of a group, it need not necessarily be a subgroup.
We can, however, formulate a notion of “smallest subgroup”
containing S , using the same idea as what we did for fields:

Definition

If G is a group and S is a subset of G , the set 〈S〉, the
subgroup generated by S, is the intersection of all subgroups of G
containing S.

This definition is well-posed since the intersection of a
collection of subgroups is also a subgroup, as we showed last
time.

While this definition is useful for proving things, we would like
a more concrete description of what the elements in this
subgroup 〈S〉 actually are.
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Here is a more explicit description of 〈S〉:
If g1, g2, . . . , gn ∈ S , then since S is closed under
multiplication and inverses, we see that any “word” in the gi
and their inverses (namely, any product whose terms are all
among the gi and their inverses, like g1g−13 g1g4 or
g8g−12 g4g4g4) is contained in S .

Conversely, the collection of such finite words does in fact
form a subgroup, since the identity element is a finite word,
the product of any two finite words is also a finite word, and
the inverse of a finite word is also a finite word via the formula
(h1h2 · · · hd)−1 = h−1d · · · h

−1
2 h−11 .

We will remark that if S is the empty set, then 〈S〉 = {e}.
This agrees with the explicit description of 〈S〉 as the
collection of all possible words if we adopt the usual
convention that an empty product is the identity element.
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Definition

If G is a group and S is a subset of G with G = 〈S〉, we say G is
generated by S.
If G is generated by a finite set, we say G is finitely generated.

A generating set is the group analogue of a spanning set for a
vector space.

The point is that every element in the group G can be built up
from the elements of S using only the group operations.
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Examples:

1. The group (Z,+) is generated by {1}, since the subgroup 〈1〉
contains all positive and negative multiples of 1, and zero,
hence is the entire group.

2. From our explicit description of the dihedral group
D2·n = {e, r , r2, . . . , s, sr , sr2, . . . }, we can see that D2·n is
generated by {r , s}.

3. The group (Q,+) is generated by the infinite set
{1, 1/2, 1/3, 1/4, . . . } since any rational number p/q ∈ Q is
equal to p(1/q). In fact (Q,+) is not finitely generated: if S
is any finite set of generators, and p is any prime not dividing
any of the generators’ denominators, then 1/p is not in the
subgroup 〈S〉.



Generation of Groups, V

We would like (whenever possible) to find a small set of generators
for G , since we can then describe all of the elements of G in terms
of this small set of generators.

Of course, simply knowing a list of generators of G does not
say very much about the actual structure of G , because there
may be numerous relations between these generators.

For example, in D2·n, the generators r and s satisfy the
relations rn = e, s2 = e, and rs = sr−1.
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In fact, inside D2·n the relations rn = e, s2 = e, and rs = sr−1

imply all other possible relations between r and s.

To see this, consider any group generated by elements r and s
such that rn = e, s2 = e, and rs = sr−1.

Any element in this group is a finite product of terms
r , s, r−1, s−1, and by using r−1 = rn−1 and s−1 = s each
product can be rewritten to use only r and s.

By using the third relation to move all s terms to the left of
all r terms, we see any element is in fact of the form sarb,
and then we may reduce the exponents so that a ∈ {0, 1} and
b ∈ {0, 1, . . . , n − 1} using the first two relations.

Thus, we see that any such group must have at most 2n
elements, but since D2·n already has 2n elements, there
cannot be any further “collapsing”.
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We will be interested in searching for generators and relations that
describe the structure of other groups.

Definition

If G is a group generated by S, and there is some collection of
relations R1,R2, . . . ,Rn, . . . among the elements of S (and their
inverses, and the identity e) that imply any other such relation, we
call this collection of generators and relations a presentation of G ,
and write G = 〈S |R1,R2, . . . ,Rn, . . . 〉.

Explicitly, a “relation” is an equation in the elements of S , the
inverses of the elements in S , and the identity e.

By rearranging, we can always write any relation in the form
[word] = e, for some word (i.e., finite product of elements) in
S ∪ S−1.
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Examples:

1. From our analysis above, a presentation of D2·n is
D2·n =

〈
r , s | rn = s2 = e, rs = sr−1

〉
.

2. A presentation of (Z/mZ,+) is Z/mZ = 〈a | am = e〉. Note
that we have written the presentation multiplicatively (the
generator a corresponds to the element 1 ∈ Z/mZ, with
e = 0).

3. A presentation of (Z,+) is given by 〈a | ∅〉. The generator a
corresponds to the element 1 ∈ Z, which satisfies no relation.

4. A presentation of the free group on the set {a, b} is 〈a, b | ∅〉:
there are two generators but no relations between them.
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Examples:

5. A presentation of the quaternion group Q8 is
Q8 =

〈
i , j | i4 = e, i2 = j2, ij = ji−1

〉
.

It is not hard to see that i and j generate Q8 and satisfy
the three indicated relations.

Conversely, the relations i2 = j2 and i4 = e imply j4 = e,
and by similar logic as in the dihedral groups we can
write every element in the form iajb.

By replacing i2 with j2 if necessary, and using
i4 = j4 = e, we can always take a ∈ {0, 1} and
b ∈ {0, 1, 2, 3}.
Thus, this presentation describes a group of order at
most 8. Thus, it is a presentation of Q8, as claimed.
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Although presentations seem very convenient, they are quite a bit
trickier than they might seem.

1. For a finite group, we can (necessarily) give a presentation
with finitely many relations, although this is not so obvious to
prove.

2. It is possible, for infinite groups, that there may be infinitely
many independent relations among its elements, even if the
group itself is finitely generated.

3. In general, if G has a presentation with a finite number of
generators and relations, we say it is finitely presented.
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Given a presentation, it is often very difficult to tell whether two
given elements (written in terms of the generators) of the group
are necessarily equal.

More precisely, the problem of deciding whether two words are
equal in an arbitrary presentation is known as the
word problem for groups.

It has in fact been proven that there exists a finitely presented
group G such that the word problem is undecidable in G ,
meaning that it is not possible to construct an algorithm that
always answers the question correctly in a finite amount of
time.



Presentations of Groups, VI

Worse still, it is quite difficult even to determine whether a given
presentation contains any elements other than the identity (i.e.,
whether the presentation is merely describing the trivial group).

For example, the presentation
〈
r , s | r4 = s2 = e, rs = sr−1

〉
describes D2·4, a group of order 8.

On the other hand, the very similar presentation〈
r , s | r4 = s2 = e, rs = sr2

〉
turns out to describe a group of

order 2, since in this group one has r = rs2 = (rs)s = sr2s
= (sr)rs = (sr)sr2 = s(rs)r2 = s(sr2)r2 = s2r4 = e.

As another example, the presentation 〈x , y | x2 = y3 = (xy)4〉
describes a group of order 24, whereas the very similar
presentation 〈x , y | x3 = y3 = (xy)4〉 describes an infinite
group!
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We will also mention that we have not given a rigorous
development of presentations as abstract groups.

Perhaps unsurprisingly, given the description in terms of
words, the formal definition uses free groups.

We will briefly mention how this works after we discuss
quotient groups.
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The simplest nontrivial case of group generation is where S = {g}:
then 〈S〉 = {. . . , g−2, g−1, e, g , g2, . . . } is just the powers of g .

Definition

A group G is cyclic if it is generated by a single element: in other
words, if there exists some g ∈ G such that
G = 〈g〉 = {. . . , g−2, g−1, e, g , g2, . . . }.

Examples:

Z/mZ and Z, under addition, are both cyclic groups
generated by 1.

The group {1, ζn, . . . , ζn−1n } of nth roots of unity is cyclic,
generated by ζn.

The subgroups {1, r , r2, . . . , rn−1} and {e, srk} for any k are
cyclic subgroups of D2·n.
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Cyclic groups are abelian, as powers of g commute with each other.

If G is cyclic with generator g of infinite order, then ga 6= gb

for any a 6= b as we have previously noted, and so
G = {. . . , g−2, g−1, e, g , g2, . . . } has infinitely many
elements.

On the other hand, if H is cyclic with generator g having finite
order n, then ga = gb if and only if a ≡ b (mod n). Thus in
fact G = {e, g , g2, . . . , gn−1} so that G contains n elements.

In both cases, we see that the order of G is equal to the order
of its generator g : thus, the two uses of “order”, one referring
to elements and the other referring to groups, are related in a
very natural way.

Also from our results on order, if g has order n then the order
of gk in H is then n/ gcd(k, n), and so H is generated by any
element of the form gd for d relatively prime to n.
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The subgroups of cyclic groups have a particularly nice structure,
in that they are all cyclic also:

Proposition (Subgroups of Cyclic Groups)

Suppose that G = 〈g〉 is a cyclic group.

1. Every subgroup of G is cyclic.

2. If |g | =∞, then every subgroup of G can be uniquely written
as
〈
gd
〉

for some nonnegative integer d. All of these
subgroups are distinct.

3. If |g | = n, then every subgroup of G can be uniquely written
as
〈
gd
〉

for some nonnegative integer d dividing n, and this
subgroup has order n/d. All of these subgroups are distinct.

4. Subgroups of the listed forms have 〈ga〉 ⊆
〈
gb
〉

if and only if
a divides b.
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Proofs:

1. Every subgroup of G is cyclic.
Suppose G = 〈g〉 is cyclic and H is a subgroup of G .

If h = gk is any element of H, then g |k| is also in H, since
it is either equal to h or to h−1 (and H is a subgroup).

Since g0 = e is always in H, we see H is completely
characterized by the set S = {n > 0 : gn ∈ H}.
If S = ∅ the result is trivial; otherwise S is nonempty, so
by the well-ordering axiom S has a minimal element d .

Then H contains gd hence
〈
gd
〉
.

If h = ga is any other element of H, if we divide to write
a = qd + r , we would have g r = ga(gd)−q ∈ H, so by
minimality of d we must have r = 0.

This means h = ga = (gd)q and so h is in
〈
gd
〉
.

Thus, H ⊆
〈
gd
〉

hence H =
〈
gd
〉
.
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Proofs:

2. If |g | =∞, then every subgroup of G can be uniquely written
as
〈
gd
〉

for some nonnegative integer d . All of these
subgroups are distinct.

If |g | =∞ then since all the powers of g are distinct, the
subgroups 〈ga〉 and

〈
gb
〉

are distinct because the set of
multiples of a is distinct from the set of multiples of b for
any positive a 6= b.
Since every subgroup is cyclic, these are all of the
subgroups.
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Proofs:

3. If |g | = n, then every subgroup of G can be uniquely written
as
〈
gd
〉

for some nonnegative integer d dividing n, and this
subgroup has order n/d . All of these subgroups are distinct.

If |g | = n, suppose H =
〈
gd
〉

where d is minimal and
positive.
If we write n = q′d + r ′ by the division algorithm, then
g r ′ = gn(gd)−q

′ ∈ H, so by minimality of d we must
have r = 0, meaning that d divides n.
Then the order of

〈
gd
〉

is the same as the order of gd ,
which is n/ gcd(d , n) = n/d .
All of these subgroups are then clearly distinct because
their orders are distinct.

4. Subgroups of the listed forms have 〈ga〉 ⊆
〈
gb
〉

if and only if
a divides b.

Immediate.
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Example: List the subgroups of Z/18Z and their orders.

The subgroups are as follows:

1. 〈1〉 = {0, 1, 2, . . . , 17}, order 18.

2. 〈2〉 = {0, 2, 4, . . . , 16}, order 9.

3. 〈3〉 = {0, 3, 6, 9, 12, 15}, order 6.

4. 〈6〉 = {0, 6, 12}, order 3.

5. 〈9〉 = {0, 9}, order 2.

6. 〈18〉 = 〈0〉 = {0}, order 1.
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Example: List the subgroups of Z/18Z and their orders.

The subgroups are as follows:

1. 〈1〉 = {0, 1, 2, . . . , 17}, order 18.

2. 〈2〉 = {0, 2, 4, . . . , 16}, order 9.

3. 〈3〉 = {0, 3, 6, 9, 12, 15}, order 6.

4. 〈6〉 = {0, 6, 12}, order 3.

5. 〈9〉 = {0, 9}, order 2.

6. 〈18〉 = 〈0〉 = {0}, order 1.
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Just to keep you on your toes, I’ll now throw in something very
interesting (and useful) about multiplicative groups that arise from
fields:

Theorem (Cyclic Groups and Fields)

If F is a finite field, then the group of units F× is cyclic. More
generally, if G is any finite subgroup of the group of units in any
field (finite or not), then G is cyclic.

Example: The group (Z/7Z)× is cyclic of order 6. Indeed, 3 is a
generator, since its powers are {1, 3, 2, 6, 4, 5}.
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Our proof is nonconstructive: we will establish the existence of an
element in G having order |G | without explicitly finding one.

Such an element is called a primitive root in the context of
Z/mZ or finite fields.

In fact, no constructive algorithm is known for finding a
primitive root in Fp that is appreciably faster than merely
testing the elements 2, 3, ... until a primitive root is identified.

We start with a lemma:

Lemma

Suppose G is a finite subgroup of the group of units in a field F . If
M is the maximal order among all elements in G , then the order of
every element in G divides M.
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Proof (of lemma):

Let M be the maximal order of all units in G .

Suppose g has order M, and let h be any other element of
order k .

If k does not divide M, then there is some prime q which
occurs to a higher power qf in the factorization of k than the
corresponding power qe dividing M.

By properties of orders, the element gqf has order M/qf , and
the element hk/qe has order qe .

Since these two orders are relatively prime and gh = hg (since
these are elements in a field), we see that the element

gqf · hk/qe has order M · qf−e .

This is a contradiction because this element’s order is larger
than M. Thus, k divides M as claimed.
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Proof (of theorem):

Let M be the maximal order of all units in G .

Then any element of order M generates a subgroup of G
having M elements, so M ≤ |G |.
Furthermore, by the lemma, we know that all elements in G
have order dividing M, so the polynomial p(x) = xM − 1 has
|G | roots in F [x ].

But by unique factorization in F [x ], this is impossible unless
M ≥ |G |, since a polynomial of degree M can only have at
most M roots in F [x ].

Hence we conclude M = |G |, meaning that some element has
order |G |.
This element is then a generator of G and so G is cyclic.
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Example: The unit group G of F3[x ]/(x2 + x + 2) is cyclic of order
8.

With some calculation, we can see that x is a generator of G .

Explicitly, we can compute x2 ≡ 2x + 1 so that x4 ≡ 2, and
thus x8 ≡ 1.

By our results on orders, this implies that x has order 8 inside
G (its order must divide 8, but it does not divide 4), so it is a
generator.
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We now formalize the notion of when two groups have identical
structures, which captures the same idea as with rings:

Definition

Let (G , ?) and (H, ◦) be groups. A group isomorphism ϕ from G
to H is a bijective function ϕ : G → H such that
ϕ(g1 ? g2) = ϕ(g1) ◦ ϕ(g2) for all g1 and g2 in G .

If there is an isomorphism ϕ : G → H, we say G and H are
isomorphic, and write G ∼= H.

We usually suppress the notation for the group operations and
write the condition simply as ϕ(g1g2) = ϕ(g1)ϕ(g2).
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Examples:

1. If R and S are rings, any ring isomorphism ϕ : R → S yields a
group isomorphism of the groups (R,+) and (S ,+), and also
(when restricted to the respective unit groups) yields a group
isomorphism of (R×, ·) with (S×, ·).

2. For G = Z/6Z and H = (Z/2Z)× (Z/3Z), the map
ϕ : G → H defined via ϕ(n mod 6) = (n mod 2, n mod 3) is
an isomorphism of groups, since we have previously shown it
is a ring isomorphism.

3. For G = (R,+) and H = (R+, ·), the map ϕ : G → H defined
via ϕ(x) = ex is a group isomorphism from G to H.

The map respects the group operation since
ex+y = exey , and it is a bijection since it has an inverse
map ϕ−1(x) = ln(x).
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Examples:

3. For G = D2·3 and H = S3, the map ϕ : G → H defined by
associating a symmetry of the equilateral triangle with its
associated permutation on the labeled vertices of the triangle
is a group isomorphism.

The geometric description implies that it respects the
group operations, and it is a bijection because it is
injective and both groups have order 6.
Alternatively, of course, one could write down all the
operations explicitly and just check.
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We have various properties of isomorphisms:

Proposition (Properties of Isomorphisms)

If G ,H,K are any groups, the following hold:

1. The identity map I : G → G is an isomorphism from G to G .
2. If ϕ : G → H is an isomorphism, then so is ϕ−1 : H → G .
3. If ϕ : G → H and ψ : H → K are isomorphisms, then so is the

composition ψϕ : G → K .
4. If ϕ : G → H is an isomorphism and g ∈ G , then ϕ(eG ) = eH

and ϕ(gn) = ϕ(g)n for any n ∈ Z. In particular, |g | = |ϕ(g)|.
5. If ϕ : G → H is an isomorphism, then gh = hg if and only if
ϕ(g)ϕ(h) = ϕ(h)ϕ(g). In particular, G is abelian if and only
if H is abelian.

6. If ϕ : G → H is an isomorphism and K is any subset of G ,
then K is a subgroup of G if and only if the set
ϕ(K ) = {ϕ(k) : k ∈ K} is a subgroup of H.
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Proofs:

(1)–(4), establishing that group isomorphism is an equivalence
relation and that isomorphisms preserve the identity, follow
the same way as for rings.

The fact that ϕ(gn) = ϕ(g)n follows from a trivial induction.
Then |g | = |ϕ(g)| follows from this and the fact that ϕ
preserves the identity.

Preservation of commutativity (5) is immediate from the
definition.

Finally, since isomorphisms preserve all of the properties
needed to check the subgroup criterion, (6) follows easily.
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In order to show that two given groups are isomorphic, we
essentially need to construct an isomorphism between them, which
can often be difficult to do.

More specifically, it has been shown that the isomorphism
problem for groups (given two groups, decide whether or not
they are isomorphic) is undecidable.

Even if we are handed an isomorphism, actually verifying that
it is an isomorphism can be very time-consuming.
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On the other hand, it is often easier to show that two given groups
cannot be isomorphic to one another, if one of the properties of
isomorphisms fails.

For example, the group D2·4 is not isomorphic to S3, because
the former has order 8 and the latter has order 6, and so there
cannot even exist a bijection between their underlying sets of
elements.

In a similar way we can see that D2·4 is not isomorphic to
Z/8Z, because the latter is abelian and the former is not;
likewise, S3 is not isomorphic to Z/6Z.

Also, D2·4 is not isomorphic to Q8, because there are 5
elements of order 2 in D2·4 (namely, r2 and srk for 0 ≤ k ≤ 3)
but only 1 element of order 2 in Q8 (namely, −1).



Group Isomorphisms, VIII

A fundamental goal of group theory is to classify (up to
isomorphism) all of the groups of a given order.

By extending arguments like the ones given above, one can
show, for example, that the five groups D2·4, Q8, Z/8Z,
(Z/4Z)× (Z/2Z), and (Z/2Z)× (Z/2Z)× (Z/2Z) are
nonisomorphic groups of order 8.

It turns out that any group of order 8 must be isomorphic to
one of these five, but to prove this fact only from the results
we have developed so far would be very difficult.



Group Isomorphisms, IX

A first step towards such a classification is to classify cyclic groups,
which turns out to be extremely easy:

Proposition (Isomorphism and Cyclic Groups)

Any two cyclic groups of the same order are isomorphic. More
explicitly, any cyclic group of order n is isomorphic to Z/nZ and
any infinite cyclic group is isomorphic to Z.

Here, we only need to show the second statement; it implies the
first one because isomorphism is an equivalence relation.



Group Isomorphisms, X

Proof:

First suppose G = 〈g〉 = {e, g , g2, . . . , gn−1} is cyclic of order
n, and consider the map ϕ : Z/nZ→ G with ϕ(a) = ga.

This map is well-defined because gn = e implies that ga = gb

whenever a ≡ b (mod n), it is clearly surjective and hence a
bijection (since both sets have the same size), and
ϕ(a + b) = ga+b = gagb = ϕ(a)ϕ(b).

Thus, ϕ is an isomorphism.

Now suppose G = 〈g〉 = {. . . , g−2, g−1, e, g , g2, . . . } is an
infinite cyclic group.

Consider the map ϕ : Z→ G defined via ϕ(a) = ga.

This map is injective (since ga 6= e for any a 6= 0), surjective
(by definition of 〈g〉), and
ϕ(a + b) = ga+b = gagb = ϕ(a)ϕ(b), so ϕ is an isomorphism.



Group Homomorphisms, I

Now we examine homomorphisms:

Definition

Let (G , ?) and (H, ◦) be groups. A group homomorphism ϕ from
G to H is a function ϕ : G → H such that
ϕ(g1 ? g2) = ϕ(g1) ◦ ϕ(g2) for all g1 and g2 in G .

Examples:

1. Every isomorphism is a homomorphism (of course).

2. Any ring homomorphism ϕ : R → S is automatically a group
homomorphism on the underlying additive and multiplicative
groups.

3. As special cases we have the projection maps ϕ : Z→ Z/mZ
and ϕ : F [x ]→ F [x ]/p.



Group Homomorphisms, II

Examples:

4. The map ϕ : (Z/nZ)→ D2·n given by ϕ(a) = ra is a group
homomorphism: it is well-defined because a ≡ b (mod n)
implies ra = rb because rn = e, and also
ϕ(a + b) = ra+b = rarb = ϕ(a)ϕ(b). This map is injective
but not surjective.

5. If G is the additive abelian group of all smooth real-valued
functions, the derivative map D : G → G given by D(f ) = f ′

is a group homomorphism, since
D(f + g) = (f + g)′ = f ′ + g ′ = D(f ) + D(g).

6. Let G and H be any groups. The “trivial map” z : G → H
given by z(g) = eH for every g ∈ G is a group
homomorphism.

7. If H is a subgroup of G , the inclusion map ι : H → G given by
ι(h) = h is a group homomorphism.



Group Homomorphisms, III

Many of the properties we established for isomorphisms also hold
for homomorphisms (using the same proofs).

Proposition (Properties of Homomorphisms)

If G ,H,K are any groups, the following hold:

1. If ϕ : G → H and ψ : H → K are homomorphisms, then so is
the composition ψϕ : G → K .

2. If ϕ : G → H is a homomorphism and g ∈ G , then
ϕ(eG ) = eH and ϕ(gn) = ϕ(g)n for any n ∈ Z.

Proofs: Straightforward.



Group Homomorphisms, IV

If we do not have any structural information about the nature of
the map ϕ, it can be difficult to verify the homomorphism
condition, since it would seem that we would need to verify the
condition separately for every pair of elements in G .

However, if we have a set of generators for G , we can express
all of the other elements in terms of the generators, and so it
is reasonable to think that we can reduce the calculation to
one involving only the generators.

Explicitly, suppose that G is generated by the set S . If
g1g2 · · · gn = eG is any relation with the gi ∈ S ∪ S−1, then
applying ϕ to both sides yields ϕ(g1)ϕ(g2) · · ·ϕ(gn) = eH :
this means that the images of the generators must satisfy the
same relation in H.



Group Homomorphisms, V

Conversely, suppose G is generated by S = {si}, and ϕ(si ) = ri .

Then every element in G can be written as a product of the
elements in S ∪ S−1 so the values of ϕ(si ) determine the
value of ϕ(g) for every g ∈ G .

Furthermore, if the elements ri satisfy all of the same relations
as the elements si , then (one can show) ϕ will be well-defined,
and it is immediate that ϕ is then a group homomorphism.

Thus, if G is generated by S = {si} satisfying a collection of
relations, and elements ri ∈ H have the property that the ri
satisfy the same relations, then there exists a (unique)
homomorphism ϕ : G → H such that ϕ(si ) = ri for each i .

To summarize: if we have a presentation of G , then to verify that
ϕ : G → H is a homomorphism, all we need to do is check that ϕ
respects all of the relations in the presentation.



Group Homomorphisms, VI

Example: Show that there is a group homomorphism
ϕ : D2·3 → S3 with ϕ(r) = (1 2 3) and ϕ(s) = (1 2).

Since D2·3 =
〈
r , s | r3 = s2 = e, rs = sr−1

〉
, by the discussion

above we need only verify the relations.

We see ϕ(r)3 = (1 2 3)3 = 1, ϕ(s)2 = (1 2)2 = 1, and also
that ϕ(r)ϕ(s) = (1 2 3)(1 2) = (1 3) = (1 2)(1 3 2) =
(1 2)(1 2 3)−1 = ϕ(s)ϕ(r)−1.

Since ϕ(r) and ϕ(s) satisfy the required relations, we
conclude that there is such a homomorphism.

In fact, since S3 is generated by ϕ(r) and ϕ(s), ϕ is
surjective, hence a bijection and thus an isomorphism.
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Example: Show that there is a group homomorphism
ϕ : D2·3 → S3 with ϕ(r) = (1 2 3) and ϕ(s) = (1 2).

Since D2·3 =
〈
r , s | r3 = s2 = e, rs = sr−1

〉
, by the discussion

above we need only verify the relations.

We see ϕ(r)3 = (1 2 3)3 = 1, ϕ(s)2 = (1 2)2 = 1, and also
that ϕ(r)ϕ(s) = (1 2 3)(1 2) = (1 3) = (1 2)(1 3 2) =
(1 2)(1 2 3)−1 = ϕ(s)ϕ(r)−1.

Since ϕ(r) and ϕ(s) satisfy the required relations, we
conclude that there is such a homomorphism.

In fact, since S3 is generated by ϕ(r) and ϕ(s), ϕ is
surjective, hence a bijection and thus an isomorphism.
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Example: Show that there is a group homomorphism ϕ : V4 → S4

with ϕ(a) = ϕ(b) = (1 2)(3 4).

Since V4 =
〈
a, b | a2 = b2 = e, ab = ba

〉
, we need only verify

the relations.

We see ϕ(a)2 = ϕ(b)2 = e, and also
ϕ(a)ϕ(b) = (1 2)(3 4)(1 2)(3 4) = ϕ(b)ϕ(a).

Since ϕ(a) and ϕ(b) satisfy the required relations, we
conclude that there is such a homomorphism.



Group Homomorphisms, VII

Example: Show that there is a group homomorphism ϕ : V4 → S4

with ϕ(a) = ϕ(b) = (1 2)(3 4).

Since V4 =
〈
a, b | a2 = b2 = e, ab = ba

〉
, we need only verify

the relations.

We see ϕ(a)2 = ϕ(b)2 = e, and also
ϕ(a)ϕ(b) = (1 2)(3 4)(1 2)(3 4) = ϕ(b)ϕ(a).

Since ϕ(a) and ϕ(b) satisfy the required relations, we
conclude that there is such a homomorphism.



Group Homomorphisms, VIII

As with rings, we also have the same notions of kernel and image
for group homomorphisms:

Definition

If ϕ : G → H is a group homomorphism, the kernel of ϕ, denoted
kerϕ, is the set of elements in G mapped to eH by ϕ. In other
words, kerϕ = {g ∈ G : ϕ(g) = eH}.

Definition

If ϕ : G → H is a group homomorphism, the image of ϕ, denoted
imϕ, is the set of elements in H of the form ϕ(g) for some g ∈ G .



Group Homomorphisms, IX

Examples:

1. The kernel of the reduction homomorphism ϕ : Z→ Z/mZ is
the subgroup mZ.

2. The kernel of the derivative map D is the collection of
constant functions.

3. The kernel of the homomorphism ϕ : V4 → S4 with
ϕ(a) = ϕ(b) = (1 2)(3 4) is {e, ab}. The image is
{1, (1 2)(3 4)}.



Group Homomorphisms, X

We have various properties of the kernel and image:

Proposition (Kernel and Image)

Let ϕ : G → H be a group homomorphism. Then

1. The image imϕ is a subgroup of H.

2. The kernel kerϕ is a subgroup of R. Also, if g ∈ kerϕ, then
aga−1 is in kerϕ for any a ∈ G .

3. The kernel is zero (i.e., kerϕ = {eG}) if and only if ϕ is
injective.

4. The map ϕ is an isomorphism if and only if kerϕ = {eG} and
imϕ = H.
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Proofs:

1. The image imϕ is a subgroup of H.

Since ϕ(eG ) = eH , the image contains eH .

Also, if h1, h2 ∈ imϕ so that ϕ(g1) = h1 and ϕ(g2) = h2

for some g1, g2 ∈ R, then h1h−12 = ϕ(g1g−12 ) is also in
imϕ. Thus imϕ is a subgroup.

2. The kernel kerϕ is a subgroup of R. Also, if g ∈ kerϕ, then
aga−1 is in kerϕ for any a ∈ G .

Since ϕ(eG ) = eH , the kernel contains eG .

Further, if g1, g2 ∈ kerϕ then ϕ(g1g−12 ) = eHe−1H = eH ,
so g1g−12 ∈ kerϕ. Thus kerϕ is a subgroup.

Also, ϕ(aga−1) = ϕ(a)eHϕ(a−1) = ϕ(a)ϕ(a)−1 = eH so
that aga−1 ∈ kerϕ.
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Proofs:

3. The kernel is zero (i.e., kerϕ = {eG}) if and only if ϕ is
injective.

If ϕ(g1) = ϕ(g2), then ϕ(g1g−12 ) = ϕ(g1)ϕ(g2)−1 = eH ,
so g1g−12 ∈ kerϕ.
Thus, if the only element in kerϕ is eG , then we must
have g1g−12 = eG so that g1 = g2.
Conversely, if g ∈ kerϕ and ϕ is injective, then
ϕ(g) = eH = ϕ(eG ) implies g = eG , so kerϕ = {eG}.

4. The map ϕ is an isomorphism if and only if kerϕ = {eG} and
imϕ = H.

This follows from (3), since kerϕ = {eG} is equivalent to
ϕ being injective and imϕ = H is equivalent to ϕ being
surjective.



Motivation for Cosets, I

We would now like to generalize the idea of modular arithmetic
and quotients into the context of groups.

We can give a similar sort of motivation to the development
we gave with ideals of rings.

However, some of the details will be a little bit more difficult
because of the non-commutativity of the group operation.

However, based on the situation with rings, you should be
able to guess that the condition we are searching for is the
same property that kernels possess.



Motivation for Cosets, II

So suppose G is a group and N is a subset of G , whose properties
we intend to characterize in a moment.

Let us say that two elements a, b ∈ G are “congruent modulo
N” if a−1b ∈ N.

Note that this is just the multiplicative version of the
statement b − a ∈ I we used for ideals, but written in the
order (−a) + b instead.

We would like “congruence modulo N” to be an equivalence
relation, which requires

1. a ≡ a (mod N)
2. a ≡ b (mod I ) implies b ≡ a (mod N)
3. a ≡ b (mod N), b ≡ c (mod N) imply a ≡ c (mod N).
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We require

1. a ≡ a (mod N)

2. a ≡ b (mod I ) implies b ≡ a (mod N)

3. a ≡ b (mod N), b ≡ c (mod N) imply a ≡ c (mod N).

(1) says a−1a = eG ∈ N.

(2) says if a−1b ∈ N then b−1a ∈ N. Since b−1a = (a−1b)−1,
this is the same as saying that N is closed under inverses.

(3) says if a−1b ∈ N and b−1c ∈ N, then a−1c ∈ N. Since
a−1c = (a−1b)(b−1c), this is the same as saying that N is
closed under multiplication.

Thus, all of these conditions together are equivalent to saying
that N is a subgroup of G , which seems quite reasonable.



Motivation for Cosets, IV

We would also like congruences to respect the group operation: if
a ≡ c (mod N) and b ≡ d (mod N) then ab ≡ cd (mod N).

The hypotheses are equivalent to saying that there exist
n1, n2 ∈ N such that a−1c = n1 and b−1d = n2, which is to
say, c = an1 and d = bn2.

Then the desired condition is that
(ab)−1(cd) = b−1a−1an1bn2 = b−1n1bn2 is in N, for any
a, b ∈ G and n1, n2 ∈ N.

This condition is a bit unwieldy, but if we set n2 = eG and
b−1 = c , then it reduces to the statement that cn1c−1 ∈ N
for any c ∈ G and any n1 ∈ N.

On the other hand, if cnc−1 ∈ N for every c ∈ G and n ∈ N,
then if we write b−1n1b = n3 ∈ N (by hypothesis) then the
element b−1n1bn2 = n3n2 is then also in N, since N is a
subgroup.
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To summarize, the hypothesis that N is a subgroup and cnc−1 ∈ N
for every c ∈ G and n ∈ N is equivalent to saying that congruences
are an equivalence relation respecting the group operation.

With this condition in hand, we can define residue classes.

Specifically, the residue class a is the collection of all b such
that a ≡ b (mod N): explicitly,
a = {b ∈ G : a−1b ∈ N} = {an : n ∈ N}.
Finally, we can define the group operation on residue classes
via a · b = ab, and observe that this operation is well defined
because congruence respects the group operation.

Explicitly, if a = c and b = d , then ab = cd , because a ≡ c
(mod N) and b ≡ d (mod N) imply that ab ≡ cd (mod N)
per the above discussion.
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With these assumptions, the collection of residue classes
a = aN = {an : n ∈ N} will then have a well-defined group
operation given by a · b = ab.

We will also note that the statement that cnc−1 ∈ N for every
c ∈ G and n ∈ N is equivalent to the statement that for every
c ∈ G , the set cNc−1 = {cnc−1 : n ∈ N} is equal to N itself.

One direction is clear, since if cNc−1 = N for every c ∈ G ,
then certainly cnc−1 ∈ N for every c ∈ G and n ∈ N.

On the other hand, if cnc−1 ∈ N for every c ∈ G and n ∈ N,
then cNc−1 ⊆ N for all c . In particular, plugging in c−1 for c
yields c−1Nc ⊆ N, which is equivalent to N ⊆ cNc−1: thus
we must have cNc−1 = N for all c ∈ G .



Motivation for Cosets, VII

Next time, we will examine more closely the properties of the sets
aH for a ∈ G and H a subgroup of G : these sets are called
left cosets of H.

We will then go through the details of quotient groups and analyze
the properties of normal subgroups, the subgroups for which
cNc−1 = N for all c ∈ G .



Summary

We discussed generators and presentations of groups.

We discussed the structure of cyclic groups.

We discussed group isomorphisms and homomorphisms.

We introduced the motivation behind the definition of cosets.

Next lecture: Cosets, normal subgroups, and quotients.


