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Groups, part 1

Examples of Groups, D2·n, Sn

Properties of Orders

Subgroups

This material represents §3.1.1-3.1.4 from the course notes.



Roadmap

Our goal now, and for the next three or so weeks, is to develop the
basic theory of groups.

Our focus will be on viewing groups as arising very naturally
as the set of symmetries of a geometric or algebraic object,
carrying the natural operation of composition.

As such, the idea of a group action (a group acting on a set)
will be the centerpiece of our discussion in this chapter.

After this, we will focus on understanding the behavior of the
group action of the automorphism group Aut(F ) on a field F :
this is the heart of Galois theory.



Groups, I

Here is the formal definition of a group:

Definition

A group is a set G together with a binary operation ? that satisfies
the three axioms [G1]-[G3]:

[G1] The operation ? is associative: g ? (h · k) = (g ? h) ? k for
any elements g , h, k in G .

[G2] There is a (two-sided) identity element e: e ? g = g = g ? e
for any element g in G .

[G3] Every element has a (two-sided) inverse: for any g in G ,
there exists g−1 in G with g ? g−1 = e = g−1 ? g.

We will establish some basic group properties before discussing
examples.



Groups, II

Like with rings, certain groups will also possess additional
properties, though there is only one term that we introduce now:

Definition

If a group satisfies axiom [G4], we say it is an abelian group:

[G4] The operation ? is commutative: g ? h = h ? g for any
elements g , h in G .

A group that is not abelian is called non-abelian.

Rarely, abelian groups are also called commutative groups.

The term “abelian” is named after Neils Henrik Abel, who
was a foundational figure in the study of groups; it is stylized
in lowercase (rather than in uppercase as “Abelian”) in honor
of the depth of his contribution.



Groups, III

Some conventions regarding group notation:

We will frequently omit the symbol for the group operation ?
and simply write gh for g ? h.

We will also write the operation as · or + when it represents
multiplication or addition in a ring, and write 1 or 0 for the
corresponding identity elements respectively.

In an abelian group, we often write the group operation
“additively” using the addition symbol (+), denote the
identity element as 0, and denote additive inverses with minus
signs (−).



Groups, IV

Because the group operation is associative, we do not need to
specify the order in which the multiplications are performed when
we have more than 2 terms, and can simply write expressions like
ghk without needing to use parentheses to distinguish between
(gh)k and g(hk).

Technically, this statement requires a proof; it is
straightforward though tedious to use induction on the
number of terms in the product to establish that all such
products are equal to the one where the order is composed
left-to-right, as in ((gh)k)l .
If g ∈ G , for any positive integer n we define g0 = e,
gn = g ? g ? · · · ? g︸ ︷︷ ︸

n terms

, and g−n = g−1 ? g−1 ? · · · ? g−1︸ ︷︷ ︸
n terms

.

In an additive abelian group we would write instead
ng = g + g + · · ·+ g︸ ︷︷ ︸

n terms

for n > 0.



Groups, V

Another definition we record now:

Definition

If G is a group, the order of G , denoted as |G | or #G , is the
cardinality of G as a set.



Groups, VI

Like with rings, we have various properties of group arithmetic:

Proposition (Basic Arithmetic in Groups)

Let G be a group. The following properties hold in G :

1. The identity element e is unique, and e−1 = e.

2. G has left and right cancellation: for any g , h, k in G , either
of gh = gk or hg = kg implies h = k.

3. Inverses are unique. Also, a one-sided inverse of g is
automatically a two-sided inverse of g .

4. For any g , h ∈ G , (gh)−1 = h−1g−1, and (g−1)−1 = g.

5. For any g ∈ G and any integers m, n, we have gm+n = gmgn,
gmn = (gm)n, and (gn)−1 = g−n.

These are all straightforward from the definition.



Examples of Groups, I

Examples:

1. Any ring R forms an abelian group under its addition
operation +, as follows immediately from the ring axioms.

This group is known as the additive group of R.
Thus for example, (Z,+), (Z/mZ,+), (F [x ],+), and
(Mn×n(F ),+) are all groups. The identity element is 0,
and inverses are simply additive inverses.

2. If F is a field and V is an F -vector space, then (V ,+) is an
abelian group, as follows immediately from the vector space
axioms.



Examples of Groups, II

Examples:

3. If R is any ring with 1, then the collection of units in R,
denoted R×, forms a group under multiplication ·.

This group is known as the multiplicative group of R.
Explicitly, this follows because multiplication is
associative, the multiplicative identity 1 is a unit, and the
product and multiplicative inverse of units are units.
If R is commutative, then (R×, ·) is an abelian group.

4. As a special case of the above, (Z/mZ)×, the collection of
residue classes in Z/mZ relatively prime to m, forms an
abelian group under multiplication.



Examples of Groups, III

Examples:

5. The set GLn(F ) of invertible n× n matrices with entries in the
field F , forms a group under multiplication.

This is a special case of (3), since GLn(F ) is the
collection of units in the ring Mn×n(F ) of n × n matrices
with entries in F .
When n ≥ 2 this group is non-abelian.
If F = Fq is a finite field, we can compute the order of
this group by observing that an n × n matrix is invertible
precisely when its rows are linearly independent.
Once we have chosen the first k rows, the (k + 1)st row
has qn − qk possible choices (it must be linearly
independent from the first k rows).
This holds for each row, so
#GLn(F ) = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).



Examples of Groups, IV

Examples:

6. The set G = {e}, with operation e · e = e, is a group called
the trivial group.

7. The integers do not form a group under multiplication,
because 0 has no multiplicative inverse.

More generally, no ring (except the trivial ring) will form
a group under multiplication, since 0 cannot have a
multiplicative inverse in any ring where 1 6= 0.



Examples of Groups, V

Examples:

8. The set V4 = {e, a, b, c} with identity e, and other
multiplications given by a2 = b2 = c2 = 1, ab = ba = c,
ac = ca = b, and bc = cb = a, forms a group.

This group is called the Klein 4-group (in German,
“Viergruppe”), and is an abelian group of order 4.
It is straightforward (although tedious) to verify that
multiplication is associative. In this group, every element
is its own inverse.



Examples of Groups, VI

Examples:

9. For any positive integer n, if ζn = e2πi/n, then the set
G = {1, ζn, ζ2n , . . . , ζn−1n } forms a group under multiplication.

This group consists of the solutions to the equation
xn − 1 = 0 in C, and is called the group of nth roots of
unity.
Explicitly: associativity is inherited from C, the identity
element is 1, and (ζkn )−1 = ζn−kn for any 0 ≤ k ≤ n − 1.
For example, when n = 4, we obtain the multiplicative
group G = {1, i ,−1,−i}.



Examples of Groups, VII

Examples:

10. The set Q8 = {1,−1, i ,−i , j ,−j , k ,−k} forms a group under
the multiplication relations i2 = j2 = k2 = −1, ij = −ji = k ,
ki = −ik = j , and jk = −kj = i .

This group is called the quaternion group, and is a
non-abelian group of order 8.
It is straightforward (although tedious) to verify that the
multiplication is associative, and clearly 1 is an identity
element.
Furthermore, 1 and −1 are their own multiplicative
inverses, while the inverses of i , j , k are −i ,−j ,−k
respectively.



Examples of Groups, VIII

Examples:

11. Let S be a set and S−1 be the set of symbols s−1 for s ∈ S .
We define a word to be a finite string of symbols from
S ∪ S−1 ∪ e, and define two words to be equivalent if there is
a finite sequence of cancellations from se = s = es,
es−1 = s−1 = s−1e, ss−1 = e = s−1s transforming one into
the other. The set of equivalence classes forms a group under
concatenation of strings.

This group is called the free group on S .
It is rather tedious to verify all of the technical details for
this construction of free groups (it is rather like the
situation for polynomial rings).
The idea of a free group is that it is free of any relations
between the elements from the set S , and possesses the
minimal features required to be a group.



Examples of Groups, IX

Examples:

11. A few more words about free groups.

As an example, if S = {a, b}, then some elements of the
free group on S are ababa−1b, aaa, and e.

As examples of equivalences, we have
aaa = aa−1aaa = abbb−1b−1aa and
aa−1b−1bbb−1 = aa−1b−1b = aa−1 = e.

In this group, for example, (ababa−1b)(b−1ab) =
ababa−1bb−1ab = ababa−1ab = ababb.

Likewise, we have (abba−1)−1 = ab−1b−1a−1.

Free groups are quite important in topology, since they
show up as fundamental groups of wedges of circles.

For us, free groups will show up implicitly later when we
discuss generators and presentations of groups.



Examples of Groups, X

We can also construct new groups using Cartesian products.

Proposition (Cartesian Products of Groups)

If (G , ?) and (H, ◦) are groups, then the Cartesian product G × H
is also a group, with operation performed componentwise:
(g1, h1)4(g2, h2) = (g1 ? g2, h1 ◦ h2).
The identity element is eG×H = (eG , eH) and inverses are given by
(g , h)−1 = (g−1, h−1).
The group G × H has order |G | · |H|, and is abelian if and only if
both G and H are abelian.

Each of these properties is quite straightforward.

Example: The Cartesian product Q8 × (Z/5Z) is a non-abelian
group of order 8 · 5 = 40.



Dihedral Groups, I

As we briefly outlined, groups arise naturally from studying
symmetries of objects.

Among the simplest objects in geometry are regular n-gons,
whose associated symmetry group is called the dihedral group,
and denoted D2·n.

Many authors denote this group as Dn (emphasizing the
geometric flavor of the group), but in group theory literature
the notation D2n (emphasizing the elements of the group) is
more common. We adopt the notation D2·n as a sort of
compromise1 between these two.

1In the supposed words of Henry Clay as paraphrased by Larry David and/or
George R.R. Martin, “A good compromise is when both parties are dissatisfied.”



Dihedral Groups, II

So: D2·n is the symmetry group of the regular n-gon.

Geometrically, these symmetries are the possible ways to move
an n-gon around in space (rotating or reflecting it) and then
placing it back on top of itself so that all of the vertices and
edges line up.

For example, for n = 4 (corresponding to the symmetries of a
square), one possibility is to rotate the square π/2 radians
counterclockwise in the plane around its center.

Another possibility is to reflect the square about one of its
diagonals (in fact there are two such maps).



Dihedral Groups, III

If we label the vertices of the n-gon 1, 2, . . . , n, then we can
identify all of these symmetries by their corresponding
permutations of the vertices.

For example, if we label the vertices of the square as 1, 2, 3, 4
counterclockwise, then a counterclockwise rotation of π/2
radians would correspond to the permutation σ with
σ(1) = 2, σ(2) = 3, σ(3) = 4, and σ(4) = 1.

The collection of symmetries D2·n of the regular n-gon is a
group under composition, as follows: if g and h are both
elements of D2·n, we define g · h to be the symmetry obtained
by first applying h, and then g (i.e., by function composition).

This operation is associative since function composition is
associative, the identity element is the identity transformation,
and the inverse of a symmetry g is the symmetry g−1 that
reverses all of the rigid motions of g .



Dihedral Groups, IV

There are 2n elements of D2·n:

Proposition (Order of D2·n)

For any integer n ≥ 3, the dihedral group D2·n has order 2n.

Proof:

The vertex labeled 1 can be moved to any of the n vertices,
and then the vertex labeled 2 must go to one of the 2 vertices
adjacent to it. But once we have fixed the locations of
vertices 1 and 2, then all of the other vertices’ locations are
determined uniquely. Thus, |D2·n| ≤ 2n.

On the other hand, we can explicitly list 2n distinct
symmetries: there are the n possible rotations
counterclockwise about the center by 2πk/n radians for
0 ≤ k ≤ n − 1, and there are also n possible reflections about
a line through the center of the n-gon.



Dihedral Groups, V

We can give a more concrete description of the elements in D2·n in
terms of particular rotations and reflections.

Explicitly, let r represent the counterclockwise rotation of the
n-gon by 2π/n radians: as a permutation, we have r(1) = 2,
r(2) = 3, ... , r(n − 1) = n, and r(n) = 1.

Then rk represents a counterclockwise rotation by 2πk/n
radians, so the elements {e, r , r2, . . . , rn−1} are distinct, and
rn = e.

Also, let s represent the reflection of the n-gon across the line
through vertex 1 and the center of the n-gon.

As a permutation, we have s(1) = 1, s(2) = n, s(3) = n − 1,
... , and s(n) = 2. It is then easy to see that s2 is the identity
element, and that s 6= r i for any i , since the only power of r
that fixes vertex 1 is the identity element.



Dihedral Groups, VI

Now we claim that D2·n = {e, r , r2, . . . , rn−1, s, sr , sr2, . . . , srn−1}.
To see this, note that {s, sr , sr2, . . . , srn−1} are distinct, since
sr i = sr j would imply r i−j = e by cancellation, and they are
also all distinct from the elements {e, r , r2, . . . , rn−1} since
sr i = r j would imply s = r j−i by cancellation.

To describe the multiplication of any two elements in this list,
we first observe that rs = sr−1 (so in particular, D2·n is always
non-abelian). This relation can be visualized geometrically,
since rotating and then reflecting is equivalent to reflecting
and then rotating in the opposite direction.

Alternatively, we can compute rs(1) = r(1) = 2 and
rs(2) = r(n) = 1, and also sr−1(1) = s(n) = 2 and
sr−1(2) = s(1) = 2. Then since rs and sr−1 agree on vertices
1 and 2, they agree on all vertices, so they are equal.

Then by an easy induction, we see that r i s = sr−i for all i .



Dihedral Groups, VII

To summarize the discussion, the dihedral group
D2·n = {e, r , r2, . . . , rn−1, s, sr , sr2, . . . , srn−1}, where r and s are
elements satisfying the relations rn = s2 = e and rs = sr−1.

Using these relations (and the ancillary fact that r i s = sr−i

for any i) we can compute the product of any two elements in
D2·n.

For example, in D2·7, we have the following:
(sr5)(r4) = sr9 = sr2,
(r4)(sr5) = sr−4(r5) = sr , and
(sr2)(sr) = s(r2s)r = s(sr−5)r = s2r−4 = r3.



Symmetric Groups, I

Another natural class of groups arises from “symmetries” of sets.

To illustrate the idea, observe that the set S3 of permutations
of the set A = {1, 2, 3} (formally, the set of bijections of S
with itself) forms a group under composition.

Note that there are a total of 3! = 6 such bijections.

A relatively inconvenient way to represent these maps is to
write a list of the elements of the domain and codomain
vertically: thus the map f with f (1) = 2, f (2) = 3, and

f (3) = 1 would be written as

(
1 2 3
2 3 1

)
.

In this notation, the 6 elements of S3 are(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,(

1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)
.



Symmetric Groups, II

To compute the product of two elements in S3, we can simply
trace the behavior of each element of {1, 2, 3} under the
corresponding composition of functions.

For example, if g =

(
1 2 3
2 1 3

)
and h =

(
1 2 3
3 1 2

)
, to

compute the product gh we observe that (i) h sends 1 to 3,
and g sends 3 to 3, so gh sends 1 to 3, (ii) h sends 2 to 1,
and g sends 1 to 2, so gh sends 2 to 2, and (iii) h sends 3 to
2, and g sends 2 to 1, so gh sends 3 to 1.

So gh =

(
1 2 3
3 2 1

)
. Similarly, hg =

(
1 2 3
1 3 2

)
, so we

see in particular that S3 is non-abelian.

It is very tedious to verify that these operations actually form
a group using this explicit description (checking associativity,
for example, requires 63 individual calculations).



Symmetric Groups, III

We can clarify matters by generalizing this idea to arbitrary sets.

Proposition (Symmetric Groups)

If A is any set, the set of bijections from A to itself forms a group
under function composition. This group is the
symmetric group on the set A and is denoted SA.

Proof:

The group operation is well-defined because the composition
of two bijections is also a bijection.

[G1] follows because function composition is associative, [G2]
follows because the identity map is a bijection, and [G3]
follows because the inverse of a bijection is also a bijection.



Symmetric Groups, IV

Some remarks:

If A is a finite set of cardinality n, then |SA| = n!, since
bijections on a finite set are the same as injections, and there
are clearly n! injections from A to itself (the first element has
n possible destinations, the second then has n − 1, etc.).

If A is infinite, then clearly |SA| =∞ (though I suppose one
may need the axiom of choice for this).

We will primarily be interested in the case where
A = {1, 2, . . . , n}, in which case we will write the group as Sn,
the symmetric group on n objects.



Symmetric Groups, V

We want a convenient way to describe the elements in Sn.

We can achieve this by writing permutations in terms of
cycles (a1 a2 . . . ak).

Explicitly, the cycle (a1 a2 . . . ak) is the permutation σ with
σ(a1) = a2, σ(a2) = a3, ... , σ(ak−1) = ak , and σ(ak) = a1,
where all other elements are mapped to themselves.

This permutation “cycles” the elements a1, a2, . . . , ak one
step forward (whence the name).

Thus, for example, inside S4 the cycle (2 1 4) is the
permutation with σ(2) = 1, σ(1) = 4, σ(4) = 2, σ(3) = 3.



Symmetric Groups, VI

Definition

The length of a cycle is the number of elements it contains. A
cycle of length k is called a k-cycle, and 2-cycles are often called
transpositions.

Not every permutation can be written as a single cycle, but it is
not hard to see that every permutation can be written as a product
of disjoint cycles (i.e., cycles having no elements in common).

For example, the permutation with σ(1) = 3, σ(2) = 4,
σ(3) = 1, σ(4) = 2 can be written as the product (1 3) (2 4).

Such a representation is called the cycle decomposition of σ.



Symmetric Groups, VII

We can give a procedure for computing the cycle decomposition of
an arbitrary permutation σ:

Start with the smallest number x not contained in one of the
cycles we have identified, and repeatedly apply σ until we
obtain a repeated element.

In other words, we evaluate a1 = x , a2 = σ(a1), a3 = σ(a2),
a4 = σ(a3), ... until the list repeats.

It is easy to see that the first repeated value will always be x
(since ai = aj implies σ(ai−1) = σ(aj−1) so that ai−1 = aj−1
since σ is a bijection).

Thus, we obtain a cycle (x a2 . . . ak) containing x .

We repeat this process until we have identified the cycles
containing every element in {1, 2, . . . , n}.

It is not hard to show that this algorithm always decomposes σ as
a product of disjoint cycles.



Symmetric Groups, VIII

Example: Find the cycle decomposition of the permutation σ ∈ S6

with σ(1) = 3, σ(2) = 5, σ(3) = 4, σ(4) = 1, σ(5) = 2, σ(6) = 6.

We start with n = 1: we compute σ(1) = 3, σ(3) = 4, and
σ(4) = 1. This gives the cycle (1 3 4).

The smallest number not yet used is n = 2: then σ(2) = 5
and σ(5) = 2, so we obtain the cycle (2 5).

The smallest number not yet used is n = 6: since σ(6) = 6 we
obtain the cycle (6).

Since we have used all 6 elements in cycles, we see that the

cycle decomposition of σ is (1 3 4)(2 5)(6) .



Symmetric Groups, VIII

Example: Find the cycle decomposition of the permutation σ ∈ S6

with σ(1) = 3, σ(2) = 5, σ(3) = 4, σ(4) = 1, σ(5) = 2, σ(6) = 6.

We start with n = 1: we compute σ(1) = 3, σ(3) = 4, and
σ(4) = 1. This gives the cycle (1 3 4).

The smallest number not yet used is n = 2: then σ(2) = 5
and σ(5) = 2, so we obtain the cycle (2 5).

The smallest number not yet used is n = 6: since σ(6) = 6 we
obtain the cycle (6).

Since we have used all 6 elements in cycles, we see that the

cycle decomposition of σ is (1 3 4)(2 5)(6) .



Symmetric Groups, IX

The notation for cycle decompositions is not unique.

For example, the cycle (1 3 4) corresponds to the same
permutation as the cycle (3 4 1), and the cycle decomposition
(1 3 4)(2 5)(6) is the same as (2 5)(6)(1 3 4).

We typically will adopt the convention of writing the cycles
with the smallest element first, and ordering the cycles in
increasing order of their first element.

Under this convention, it follows by a straightforward
induction argument that the cycle decomposition is unique,
and that the algorithm we described earlier will compute it.

We will also usually omit 1-cycles when we write cycle
decompositions, with the convention always being that any
unlisted elements are fixed (i.e., mapped to themselves).

Thus, we would simply write (1 3 4)(2 5) ∈ S6 and omit the
1-cycle (6).



Symmetric Groups, X

We can also compute products using cycle decompositions, with
the important remark that the products of cycles are read
right-to-left, since they are representing compositions of functions.

Just to reiterate: products of cycles are read right-to-left!
This is because cycles are permutations of a set, so they are
composed the way functions are.

We can compute the cycle decomposition of a product by
tracing what happens to each element 1, 2, . . . , n under each
of the cycles from right-to-left, and then using the cycle
decomposition algorithm.



Symmetric Groups, XI

Example: If g = (1 3 4)(2 5) and h = (1 2)(3 5) inside S5, compute
the cycle decomposition of gh.

Since h sends 1 to 2, and g sends 2 to 5, the composition gh
sends 1 to 5.

To compute the next element in the cycle containing 1 we
need to determine where gh sends 5. Since h sends 5 to 3,
and g sends 3 to 4, we see that gh sends 5 to 4.

Continuing, we see gh(4) = g(4) = 1, which completes a
cycle (1 5 4).

Also, since gh(2) = g(1) = 3 and gh(3) = g(5) = 2, we get
another cycle (2 3).

Since we have exhausted all of the elements in the set, that
means the cycle decomposition of gh is (1 5 4)(2 3) .



Symmetric Groups, XI

Example: If g = (1 3 4)(2 5) and h = (1 2)(3 5) inside S5, compute
the cycle decomposition of gh.

Since h sends 1 to 2, and g sends 2 to 5, the composition gh
sends 1 to 5.

To compute the next element in the cycle containing 1 we
need to determine where gh sends 5. Since h sends 5 to 3,
and g sends 3 to 4, we see that gh sends 5 to 4.

Continuing, we see gh(4) = g(4) = 1, which completes a
cycle (1 5 4).

Also, since gh(2) = g(1) = 3 and gh(3) = g(5) = 2, we get
another cycle (2 3).

Since we have exhausted all of the elements in the set, that
means the cycle decomposition of gh is (1 5 4)(2 3) .



Symmetric Groups, XII

Example: The six elements in S3 have respective cycle
decompositions 1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2).

We can compute, for example, (1 2)(1 3) = (1 3 2), by tracing
what happens to each element from right to left in each of
the cycles. (Explicitly, these tracings would look something
like 1→ 3→ 3, 3→ 1→ 2, and 2→ 2→ 1.)

Similarly, (1 3)(1 2) = (1 2 3), (1 3 2)(1 2) = (2 3), and
(1 2)(1 3 2)(1 3) = (2 3) as well.

As a final remark we observe that any two disjoint cycles commute,
and so (by a trivial induction) two permutations with disjoint cycle
decompositions will also commute.



Orders of Elements, I

If g is an element of G , the powers of g , namely
{. . . , g−2, g−1, e, g , g2, . . . } play an important role in
understanding the behavior of multiplication by g .

Definition

If g is an element of the group G , the order of g , written |g |, is
the smallest positive integer n such that gn = e, if such an n
exists. If gn 6= e for any positive integer n, we say |g | =∞.

If G is a finite group, then every element of G has finite order.

Specifically, since the set of powers {e, g , g2, . . . } must be
finite, there must exist a < b with ga = gb; cancelling ga

yields gb−a = e.



Orders of Elements, II

Examples:

1. The order of the identity element in any group is always 1.

2. Inside G = {1, i ,−1,−i}, the element −1 has order 2 since
(−1)2 = 1 but −1 6= 1. Similarly, both i and −i have order 4.

3. Inside (Z,+), the order of every nonidentity element is ∞,
whereas inside (Z/7Z,+), the order of every nonidentity
element is 7.

4. Inside (C×, ·), the order of ζ6 = e2πi/6 is 6, while the order of
2 is ∞.

5. Inside (Z/11Z)×, the powers of 2 are

{1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1}. We see that 2
10

= 1 but no
lower power is equal to 1, so the order of 2 is 10 inside Z/11Z.



Orders of Elements, III

Examples:

6. Inside GL2(Q), the order of A =

[
0 1
−1 −1

]
is 3, since A3 is

the identity matrix, but neither A nor A2 is. The order of

B =

[
1 1
0 1

]
is ∞, since Bn =

[
1 n
0 1

]
.

7. Inside GL2(F7), the order of B =

[
1 1
0 1

]
is 7.

8. Every nonidentity element in the group (Z/pZ)n, the
Cartesian product of n copies of Z/pZ, has order p.

9. Inside Sn, the order of any k-cycle is k .



Orders of Elements, IV

We have various properties of order:

Proposition (Properties of Order)

Suppose G is a group and g , h ∈ G . Then the following hold:

1. If gn = e for some n > 0, then g has finite order and the
order of g divides n.

2. If g has order k, then ga = gb if and only if k divides b − a.
If g has infinite order, then ga 6= gb for a 6= b.

3. If g has order k, then gn has order k/ gcd(n, k). In particular,
if n and k are relatively prime, then gn also has order k.

4. If gn = e and gn/p 6= e for any prime divisor p of n, then g
has order n.

5. If gh = hg, g has order n, h has order m, and m and n are
relatively prime, then gh has order mn.
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Proofs:

1. If gn = e for some n > 0, then g has finite order and the
order of g divides n.

If gn = e for some n > 0, then gk = e for some minimal
positive integer k by the well-ordering axiom of Z.

Now let k be the order of u and apply the division
algorithm to write n = qk + r with 0 ≤ r < k .

Then we have g r = gn(gk)−q = e · e−q = e.

If r were not zero, then we would have g r = e with
0 < r < k, which contradicts the definition of order.

Thus r = 0, meaning that k divides n.
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Proofs:

2. If g has order k , then ga = gb if and only if k divides b − a.
If g has infinite order, then ga 6= gb for a 6= b.

If b − a = dk then gb−a = (gk)d = ed = e, and then
multiplying by ga yields gb = ga.

Conversely, if ga = gb then gb−a = e, and so by (1) we
conclude k divides b − a.

For the second statement, if ga = gb with a 6= b, then
gb−a = e = ga−b so gn = e for n = |b − a|; then by (1),
g would have finite order.
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Proofs:

3. If g has order k , then gn has order k/ gcd(n, k). In particular,
if n and k are relatively prime, then gn also has order k .

Let d = gcd(n, k): then (gn)k/d = (gk)n/d = en/d = e,
so the order of gn cannot be larger than k/d .

Furthermore, if e = (gn)a = gna, the result above implies
that k divides na, so that k/d divides (n/d)a.

But since k/d and n/d are relatively prime, this implies
k/d divides a, and so a ≥ k/d .

Thus, the order of gn is equal to k/d as claimed. The
second statement is simply the case d = 1.
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Proofs:

4. If gn = e and gn/p 6= e for any prime divisor p of n, then g
has order n.

Suppose g has order k .

Then by (1), k must divide n.

If k < n, then there must be some prime p in the prime
factorization of n that appears to a strictly lower power
in the factorization of k: then k divides n/p.

But then gn/p would be an integral power of gk = e, so
that gn/p = e, which is a contradiction. Thus, k = n.
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Proofs:

5. If gh = hg , g has order n, h has order m, and m and n are
relatively prime, then gh has order mn.

If gh = hg then by a trivial induction every power of g
commutes with every power of h.

Then we can observe that
(gh)mn = (gn)m(hm)m = emen = e, so gh has some
finite order d ≤ mn.

Since (gh)d = e, e = en = (gh)dn = (gn)dwdn = wdn, so
by (1), m divides dn.

Then since m and n are relatively prime, this implies m
divides d . By a symmetric argument, n divides d .

Since m and n are relatively prime, this means mn divides
d , and so the only possibility is d = mn.
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We will warn that this last item fails essentially completely in
non-abelian groups.

For example, in S5, the element (1 2) has order 2, the element
(1 3 4) has order 3, but the product (1 2)(1 3 4) = (1 3 4 2) has
order 4.

Also in S5, (1 2)(3 4) has order 2 and (1 3 5) has order 3, but
the product (1 2)(3 4)(1 3 5) = (1 4 3 5 2) has order 5.

For a third example, in the matrix group GL2(R), the matrices

g =

[
1 0
1 −1

]
and h =

[
1 1
0 −1

]
both have order 2, but

the product matrix gh =

[
1 1
1 2

]
has infinite order.
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We will be able to say more about orders of elements in particular
groups later, once we discuss cosets. For now we record a few
basic observations about element orders in dihedral and symmetric
groups:

In the dihedral group D2·n, since rn = e but rk 6= e for
0 < k < n, we see that |r | = n.

Then by our results above on orders, the order of rk is
n/ gcd(k, n).

Also, since (srk)2 = s(rks)rk = s(sr−k)rk = s2 = e, we see
that

∣∣srk
∣∣ = 2 for any k .
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We noted earlier that in Sn, the order of any n-cycle
σ = (a1 a2 . . . an) is n.

In particular, we can see that every nonidentity element in S3

has order 2 or 3.

Furthermore, in Sn, if a lies in a k-cycle for the permutation
τ , then τn(a) = a only when k divides n, since σk(a1) = ak .

Thus, the order of τ is the least common multiple of the
lengths of the cycles in its cycle decomposition.

For example, the powers of τ = (1 3 5)(2 6) ∈ S6 are
τ2 = (1 5 3), τ3 = (2 6), τ4 = (1 3 5), τ5 = (1 5 3)(2 6), and
τ6 = 1, so τ indeed has order 6.
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As we have seen (in the examples of S3 and (Z/pZ)n), even when
the order of G is composite it is possible that all its nonidentity
elements have prime order.

We can therefore only expect a general existence result for
elements of prime order:

Theorem (Cauchy’s Theorem)

Suppose G is a group and p is a prime dividing |G |. Then there
exists an element of G of order p.
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Proof:

Consider the set S of ordered p-tuples of elements
(g1, g2, . . . , gp) in G such that g1g2 · · · gp = e.

Since gp = (gp−1 · · · g2g1)−1, there are exactly |G |p−1 such
p-tuples, so the cardinality of S is divisible by p.

Also observe that if (g1, g2, . . . , gp) ∈ S then any cyclic
permutation, such as (g2, . . . , gp, g1), is also in S . If not all
the elements in the tuple are equal, then there are p distinct
cyclic permutations of this tuple in S , while if all elements are
equal there is only 1, namely (g , g , . . . , g).

Thus, since #S is divisible by p, and the number of tuples of
the first type is divisible by p, the number of tuples of the
second type must be divisible by p.

In particular, there must be at least one tuple (g , g , . . . , g)
with g 6= e: then gp = e so g is an element of order p.



Subgroups, I

Like with subrings, subfields, and vector subspaces, we have a
natural notion of subgroup:

Definition

If G is a group, we say a subset S of G is a subgroup if it also
possesses the structure of a group, under the same operations as G .

Associativity is automatically inherited, so we only need to check
nonemptiness and closure under the group operation and inverses:

Proposition (Subgroup Criterion)

A subset S of G is a subgroup if and only if S contains the identity
of G and is closed under the group operation of G and inverses.
Equivalently, S is a subgroup if and only if eG ∈ S and for any
g , h ∈ S, the element gh−1 ∈ S.
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Proof:

By definition, S must be closed under the group operation.

By [G2] in S , there must be an identity element eS in S with
the property that geS = g for every g ∈ S .

However, by the cancellation law in G , since geS = g = geG ,
we see that eS = eG , so S must contain the identity of G .

Likewise, in order for [G3] to hold in S , we require that for
every g ∈ S , it must have an inverse g−1S . Since
gg−1S = eS = eG = gg−1G by cancellation in G we must have
g−1S = g−1G , which is to say, the inverse of g must be in S .

Conversely, if S contains the identity of G and is closed under
the group operation and inverses, then it is also a group.
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Proof (second statement):

For the second statement, if S is a subgroup then eG ∈ S and
for any g , h ∈ S we must have h−1 ∈ S and then gh−1 ∈ S .

Conversely, if eG ∈ S and gh−1 ∈ S for any g , h ∈ S , setting
g = eG implies that h−1 ∈ S so S is closed under inverses.

Then for any k ∈ S , setting h = k−1 and using the fact that
(k−1)−1 = k implies that gh−1 = gk ∈ S so S is closed under
the group operation, hence is a subgroup.



Subgroups, IV

As for subfields and subrings, intersections of subgroups yield
subgroups:

Corollary (Intersection of Subgroups)

The intersection of an arbitrary collection of subgroups of G is also
a subgroup of G .

Proof:

Let S =
⋂

i∈I Gi where the Gi are subgroups of G . Then by
the subgroup criterion, eG ∈ Gi for all i ∈ I , so S contains eG .

Furthermore, for any g , h ∈ S we have g , h ∈ Gi for all i .
Thus, gh−1 ∈ Gi for all i by the subgroup criterion, so
gh−1 ∈ S so S is a subgroup.
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Examples:

1. For any group G , the sets {e} and G are always subgroups of
G . The subgroup {e} is called the trivial subgroup.

2. The set (Q+, ·) of positive rational numbers under
multiplication is a subgroup of (C, ·) since it satisfies the
subgroup criterion.

3. The set (Z≥0,+) of nonnegative integers under addition is
not a subgroup of (Z,+) since it is not closed under inverses.

4. The set of odd integers together with 0, under addition, is not
a subgroup of (Z,+) since it is not closed under addition.

5. The set (SLn(F ), ·) of matrices with coefficients in F having
determinant 1 is a subgroup of (GLn(F ), ·).

Explicitly, det(In) = 1, and if det(A) = det(B) = 1, then
det(AB) = det(A−1) = 1 by determinant properties.
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We have an important general subgroup:

Definition

If G is a group, the center Z (G ) is the subgroup consisting of all
of elements G that commute with every other element of G.
Explicitly, Z (G ) = {a ∈ G : ag = ga for all g ∈ G}.

The center Z (G ) is a subgroup of G .

It contains the identity, and if a, b ∈ Z (G ) and g ∈ G , then
(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab) so that
ab ∈ Z (G ), and also
ga−1 = a−1(ag)a−1 = a−1(ga)a−1 = a−1g so that
a−1 ∈ Z (G ).

The group G is abelian if and only if Z (G ) = G .
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Examples:

1. The center of the dihedral group D2·4 is {e, r2} since both of
these elements commute with all the other elements of the
group (powers of r all commute with one another, and also
(r2)(srk) = (r2s)rk = (sr2)rk = (srk)(r2)), but no other
elements do (since srk = rks implies srk = sr−k so that
r2k = e, and also r(srk) = srk−1 while (srk)r = srk+1).

2. The center of the symmetric group S3 is {1}, since one may
verify that none of the 2-cycles commutes with any of the
3-cycles.



Subgroups, VIII

We also have an important subgroup of Sn:

Definition

For a positive integer n, we define the subgroup An of Sn to be all
the elements in Sn that can be written as the product of an even
number of transpositions (not necessarily disjoint transpositions).
This subgroup is called the alternating group on n objects.

We can see that An is a subgroup of Sn:

The identity is the empty product of 0 transpositions.

An is closed under multiplication since the product of two
even numbers of transpositions is clearly also of that form.

An is closed under inverses since the inverse of a transposition
is itself, so the inverse of a product of an even number of
transpositions is also the product of an even number of
transpositions.



Subgroups, IX

It is not hard to see that every permutation in Sn is a product of
some number of transpositions.

Explicitly, since for any n-cycle we can write
(a1 a2 . . . an) = (a1 an)(a1 an−1) · · · (a1 a2) as a product of
n − 1 transpositions.

Thus, An contains every cycle of odd length, along with the
product of any two cycles of even length. Thus, by taking
products of such elements, we see that An contains every
permutation whose cycle decomposition contains an even
number of cycles of even length.

We will prove later that these are all of the permutations in
An, and that there are precisely n!/2 such elements.

For example, we have A3 = {1, (1 2 3), (1 3 2)}, and also
A4 = {1, {1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3),
(2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.



Summary

We introduced groups and their basic properties.

We discussed basic examples of groups, including the dihedral
groups D2·n and the symmetric groups Sn.

We discussed properties of orders.

We discussed subgroups.

Next lecture: More groups.


