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Lecture #10 ∼ October 15th, 2020

Separability, Transcendence

Separability of Elements and Extensions, part 2

Transcendental Extensions

This material represents §2.4.2-2.4.3 from the course notes.



Recall, I

Definition

If F is a field of characteristic p, and every element of F is a pth
power (i.e., F p = F ) then we say F is a perfect field. (Fields of
characteristic 0 are also considered perfect fields.)

Proposition (Separability and Perfect Fields)

If F is a perfect field, then every irreducible polynomial in F [x ] is
separable. Inversely, if F is not perfect, then there exists an
irreducible inseparable polynomial in F [x ].



Recall, II

We extended separability and inseparability to algebraic elements
by considering their minimal polynomials:

Definition

If K/F is an algebraic extension, then α ∈ K is separable over F if
α is algebraic over K and its minimal polynomial m(x) over F is a
separable polynomial.
We say K/F itself is separable if every α ∈ K is separable over F ,
and K/F is inseparable if it is not separable.

Definition

If K/F is a field extension, then α ∈ K is
purely inseparable over F if α is algebraic over K and its minimal
polynomial m(x) over F has only α as a root.
We say K/F itself is purely inseparable if every α ∈ K is purely
inseparable over F .



Recall, III

Proposition (Properties of Inseparability)

Let L/K and K/F be field extensions of characteristic p. Then

1. If q(x) ∈ F [x ] is an irreducible inseparable polynomial, then

q(x) = qsep(xpk

) for a unique positive integer k and a unique
irreducible separable polynomial qsep(x) ∈ F [x ].

2. The element α ∈ K/F is purely inseparable if and only if there

exists some positive integer k such that αpk ∈ F .

3. The extension K/F is purely inseparable if and only if the minimal

polynomial of each α ∈ K over F is of the form mα(x) = xpk − d
for some k ≥ 0 and some d ∈ F .

4. K/F is purely inseparable iff K/F is algebraic and the only elements
of K separable over F are the elements of F .

5. L/F is purely inseparable iff L/K and K/F are purely inseparable.

6. Composites of purely inseparable extensions are purely inseparable.

7. If K/F has finite degree and K = F (α1, . . . , αk), then K/F is
purely inseparable if and only if each αi is purely inseparable over F .



Recall, IV

Proposition (Properties of Separability, Part 1)

Let L/K and K/F be field extensions. Then

1. The algebraic element α is separable over F if and only if there
are [F (α) : F ] different embeddings of F (α)/F into F/F .

2. If K/F has finite degree, then there are at most [K : F ]
different embeddings of K/F into F/F .

3. If α is algebraic over F , then α is separable over F if and only
if F (α) is separable over F .

4. If L/F is separable, then L/K and K/F are separable.



Recall, V

Proposition (Properties of Separability, Part 2)

Let L/K and K/F be field extensions. Then

5. If [K : F ] is finite, then K/F is separable if and only if there
are exactly [K : F ] different embeddings of K/F into F/F .

6. If K/F is separable, then α is separable over K if and only if
α is separable over F .

7. If K/F has finite degree and K = F (α1, . . . , αk), then K/F is
separable if and only if each αi is separable over F .

8. If L/K and K/F are separable, then L/F is separable.

9. The composite of separable extensions is separable.



Separable and Inseparable Degrees, I

Using the properties of separable extensions we can define the
“separable closure” of F inside K/F :

Definition

If K/F is a field extension, we define the
maximal separable extension F sep of F inside K to be the
composite of all separable extensions of F inside K .

The elements of F sep consist of all α ∈ K that are separable over
F .

All such elements are in this composite since F (α)/F is
separable by property (3) of separable extensions

From this observation, we can see that F sep is indeed the
largest subfield of K that is separable over F , whence the
name.



Separable and Inseparable Degrees, II

By the observation on the previous slide, since F sep is the largest
subfield of K that is separable over F any element of K not in F sep,
that any element of K not in F sep is inseparable over F hence also
over F sep.

So, by property (4) of purely inseparable extensions, this
means K/F sep is purely inseparable.

Indeed, F sep is the only subfield E of K that is separable over
F such that K/E is purely inseparable.

This is merely because any proper subfield of F sep will not
have the property that K/E is purely inseparable, since there
exist elements of K not in E that are not purely inseparable
over E (namely, any element of F sep not in E ).



Separable and Inseparable Degrees, II

Using this maximal separable subextension, we can define a notion
of separable and inseparable degree for extensions:

Definition

If K/F is algebraic, the separable degree [K : F ]sep is defined to be
the degree [F sep : F ], while the inseparable degree [K : F ]insep is
defined to be the degree [K : F sep].

The product of the separable degree and the inseparable
degree is the regular degree [K : F ].

Also, since composites and separable extensions of separable
extensions are separable, the separable degree (and hence also
the inseparable degree) is multiplicative in towers.

From our properties of purely inseparable extensions, the
inseparable degree [K : F ]insep is either ∞ or a power of the
characteristic.



Separable and Inseparable Degrees, IV

For simple extensions, we can calculate the separable and
inseparable degree using the minimal polynomial of a generator:

Proposition (Separable Degree of Simple Extension)

Suppose α is algebraic over F with minimal polynomial
m(x) = msep(xpk ) where k is a nonnegative integer and msep(x) is

a separable polynomial. Then F sep = F (αpk ), so that
[F (α) : F ]sep = deg(msep) and [F (α) : F ]insep = pk .

The idea is to verify that F (αpk ) is separable over F , and that K is

purely inseparable over F (αpk ), since these two properties together
characterize F sep.



Separable and Inseparable Degrees, V

Proof:

Observe that αpk is a root of msep since

msep(αpk ) = m(α) = 0, so αpk is separable over F .

Thus, F (αpk ) is separable over F by property (3) of separable
extensions.

Furthermore, since K/F (αpk ) is generated by α, and

αpk ∈ F (αpk ), by properties (3) and (7) of purely inseparable

extensions we see that K/F (αpk ) is purely inseparable.

But this means F (αpk ) must be F sep by the uniqueness
property we noted above.

For the degree calculations we have [F (αpk ) : F ] = deg(msep)

since msep is the minimal polynomial of αpk over F , and also

[F (α) : F (αpk )] = pk since xpk − αpk is the minimal

polynomial of α over F (αpk ).



Separable and Inseparable Degrees, IV

Example: For F = Fp(t) and K = F (α) where α is a root of the
irreducible polynomial q(x) = x2p − txp + t, find the separable and
inseparable degrees of K/F .

Note that m(x) = msep(xp) where msep(x) = x2 − tx + t.

Thus, [K : F ]sep = 2 and [K : F ]insep = p.

Note that q is irreducible in F [x ] since it is Eisenstein at t.

Explicitly, F sep is the quadratic extension of F generated by a
root of msep(x) = x2 − tx + t.



Separable and Inseparable Degrees, IV

Example: For F = Fp(t) and K = F (α) where α is a root of the
irreducible polynomial q(x) = x2p − txp + t, find the separable and
inseparable degrees of K/F .

Note that m(x) = msep(xp) where msep(x) = x2 − tx + t.

Thus, [K : F ]sep = 2 and [K : F ]insep = p.

Note that q is irreducible in F [x ] since it is Eisenstein at t.

Explicitly, F sep is the quadratic extension of F generated by a
root of msep(x) = x2 − tx + t.



Separable and Inseparable Degrees, V

Example: For F = Fp(xp, yp) and K = Fp(x , y), find the separable
and inseparable degrees of K/F .

We have an intermediate field E = Fp(xp, y) = F (y).

The element y is a root of the polynomial q(Y ) = Y p − yp in
F [Y ]. This polynomial is purely inseparable and irreducible
since y 6∈ F , so we have [E : F ]sep = 1 and [E : F ]insep = p.

Then, the element x is a root of the polynomial
p(X ) = X p − xp in E [X ]. This polynomial is likewise purely
inseparable and irreducible since x 6∈ E , so we have
[K : E ]sep = 1 and [K : E ]insep = p.

Thus, we see [K : F ]sep = 1 and [K : F ]insep = p2.

This particular field extension is an important source of
counterexamples and we will return to analyze it further in a
month or so.



Separable and Inseparable Degrees, V
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Transcendence, I

As our final topic in the basic theory of field extensions, we will
discuss a bit more about the structure of transcendental extensions.

If K/F is any field extension, let E be the field of elements
algebraic over F inside K . Then, since algebraic extensions of
algebraic extensions are algebraic, any element of K/E not in
E must be transcendental over F .

Our goal is to describe how to analyze this “transcendental
part” of the extension.

To describe the elements of K , the idea is to identify a
minimal set of independent generators for K/E , in analogy
with the situation in vector spaces.

Here, however, we do not merely need the generators to be
linearly independent, but rather algebraically independent,
meaning that there are no algebraic relations between them.



Transcendence, II

Definition

Let K/F be a field extension. We say a subset S of K is
algebraically dependent over F if there exists a finite subset
{s1, . . . , sn} ∈ S and a nonzero polynomial p ∈ F [x1, . . . , xn] such
that p(s1, . . . , sn) = 0.
If there exists no such p for any finite subset of S, we say S is
algebraically independent.

The general idea here is that a set of elements is algebraically
dependent if they satisfy some algebraic (i.e., polynomial) relation
over F .



Transcendence, III

Examples:

1. Over Q, the set {π, π2} is algebraically dependent, since
p(x , y) = x2 − y has p(π, π2) = 0.

2. Over Q, the set { 3
√

2} is algebraically dependent, since
p(x) = x3 − 2 has p( 3

√
2) = 0.

3. More generally, the set {α} is algebraically independent over
F if and only if α is transcendental over F .

4. Over R, the set {x + y , x2 + y2} is algebraically independent
(here we are of course assuming that x and y are independent
indeterminates).

5. The empty set is trivially algebraically independent.



Transcendence, IV

Examples:

6. Over R, the set {x + y , x2 + y2, x3 + y3} is algebraically
dependent, since p(a, b, c) = a3 − 3ab + 2c has
p(x + y , x2 + y2, x3 + y3) = 0.

7. If x1, . . . , xn are indeterminates inside F (x1, . . . , xn), the
function field in n variables, then the set {x1, . . . , xn} is
algebraically independent over F .

8. Over Q, the set {1 + x3, x + x2} is algebraically dependent,
since p(a, b) = a + 3b − 3ab − a2 − b3 has
p(1 + x3, x + x2) = 0.



Transcendence, V

The notion of algebraic independence generalizes the notion of
linear independence, and as such the two concepts are related in
various ways.

It is easy to see that any subset of an algebraically
independent set is algebraically independent, while any set
containing an algebraically dependent set is algebraically
dependent.

Also, we observe that linear dependence is a special type of
algebraic dependence; namely, a set is linearly dependent
precisely when it is algebraically dependent where the
polynomial p is linear.

We have already defined the algebraic notion of the span of a
set S : it is simply the subfield generated by S .



Transcendence, VI

We might therefore hope to define a “transcendence basis” to be
an algebraically independent set that generates the extension K/F .

Unfortunately, such a set need not exist: for example,
Q(
√

2)/Q has no such set, because there are no
transcendental elements at all.

The correct analogy is instead to observe that a basis for a
vector space is a maximal linearly independent set (which was
the object we used Zorn’s lemma to construct).



Transcendence, VII

Definition

Let K/F be a field extension. A transcendence base for K/F is an
algebraically independent subset S of K that is maximal in the set
of all algebraically independent subsets of K .

Remark: The term “transcendence basis” is also used
occasionally. We will prefer to use the word “base” to keep a
distinction between a basis of a vector space and a
transcendence base of a field extension.

By a straightforward Zorn’s lemma argument (homework
problem inbound!), every extension has a transcendence base.



Transcendence, VIII

Examples:

1. The empty set ∅ is a transcendence base for Q(
√

2)/Q.

2. More generally, K/F is algebraic if and only if ∅ is a
transcendence base.

3. The set {x} is a transcendence base for F (x) over F .

4. The set {x2020} is a transcendence base for F (x) over F .
(This is not immediately obvious, but intuitively, )



Transcendence, IX

Here are some of the fundamental properties of transcendence
bases, many of which are analogous to properties of vector spaces:

Proposition (Properties of Transcendence Bases, Part 1)

Suppose K/F is a field extension and S is a subset of K .

1. If S is algebraically independent and α ∈ K , then S ∪ {α} is
algebraically independent over F if and only if α is
transcendental over F (S).

2. S is a transcendence base of K/F if and only if K is algebraic
over F (S).

3. If T is a subset of K such that K/F (T ) is algebraic, then T
contains a transcendence base of K/F .

4. If T is an algebraically independent subset of K , then T can
be extended to a transcendence base of K/F .



Transcendence, X

Here are some of the fundamental properties of transcendence
bases, many of which are analogous to properties of vector spaces:

Proposition (Properties of Transcendence Bases, Part 2)

Suppose K/F is a field extension and S is a subset of K .

5. If S = {s1, . . . , sn} is a transcendence base for K/F and
T = {t1, . . . , tm} is any algebraically independent set, then
there is a reordering of S, say {a1, . . . , an}, such that for each
1 ≤ k ≤ m, the set {t1, t2, . . . , tk , ak+1, . . . , an} is a
transcendence base for K/F .

6. If S is a (finite) transcendence base for K/F , then any subset
T of K having larger cardinality than S must be algebraically
dependent.

7. Any two transcendence bases S and T for K/F have the
same cardinality.



Transcendence, XI

1. If S is algebraically independent and α ∈ K , then S ∪ {α} is
algebraically independent over F if and only if α is
transcendental over F (S).

Proof:

This is the algebraic analogue of the statement that if S is
linearly independent, then S ∪ {α} is linearly independent if
and only if α is not in the span of S .

Suppose S ∪ {α} is algebraically dependent.

Then there exists si ∈ S and p ∈ F [x ] with
p(α, s1, . . . , sn) = 0 and p 6= 0.

View p as a polynomial in its first variable with coefficients in
F [s1, . . . , sn]: there must be at least one term involving α, as
otherwise p would give an algebraic dependence in S .

Then α is the root of a nonzero polynomial with coefficients
in F [s1, . . . , sn] ⊆ F (S), so it is algebraic over F (S).



Transcendence, XII

1. If S is algebraically independent and α ∈ K , then S ∪ {α} is
algebraically independent over F if and only if α is
transcendental over F (S).

Proof (conversely):

Conversely, suppose that α is algebraic over F (S). Then α is
the root of some nonzero polynomial with coefficients in F (S).

Each coefficient of this polynomial is an element of F (S);
clearing denominators yields a nonzero polynomial p with
coefficients in F [s1, . . . , sn] for the elements si ∈ S that
appear in these coefficients.

This polynomial yields an algebraic dependence in S ∪ {α}.



Transcendence, XIII

2. If S is algebraically independent and α ∈ K , then S ∪ {α} is
algebraically independent over F if and only if α is
transcendental over F (S).

Proof:

This follows from (1) and the maximality of transcendence
bases.

Specifically, S is a transcendence base if and only if no
elements in K can be adjoined to S while preserving algebraic
independence.

By (1), this is equivalent to saying that all elements in K are
algebraic over F (S).



Transcendence, XIV

3. If T is a subset of K such that K/F (T ) is algebraic, then T
contains a transcendence base of K/F .

Proof:

By Zorn’s lemma, there must be a maximal algebraically
independent subset of T .

But a maximal element M in this collection must be a
transcendence base for K/F : if β ∈ K then β must be
algebraic over K/F (M) by the maximality of M, and then M
is a transcendence base by (2).



Transcendence, XV

4. If T is an algebraically independent subset of K , then T can
be extended to a transcendence base of K/F .

Proof:

This is the analogue of the fact that every linearly
independent subset can be extended to a basis.

The proof follows from a similar Zorn’s lemma argument.



Transcendence, XVI

5. If S = {s1, . . . , sn} is a transcendence base for K/F and
T = {t1, . . . , tm} is any algebraically independent set, then
there is a reordering of S , say {a1, . . . , an}, such that for each
1 ≤ k ≤ m, the set {t1, t2, . . . , tk , ak+1, . . . , an} is a
transcendence base for K/F .

Proof:

This is the analogue of the replacement theorem, and the
proof proceeds inductively in essentially the same way.

I will skip this one, since I think we’ve all suffered enough
(and also I skipped the replacement theorem for vector spaces
anyway).



Transcendence, XVII

6. If S is a (finite) transcendence base for K/F , then any subset
T of K having larger cardinality than S must be algebraically
dependent.

Proof:

If S = {s1, . . . , sn} is finite, apply the replacement theorem
(5) to S and T .

At the end of the replacement, the result is that {t1, . . . , tn}
is a transcendence base.

But then by (2), any additional element of T would be
algebraic over {t1, . . . , tn}, contradicting the algebraic
independence of T .



Transcendence, XVIII

7. Any two transcendence bases S and T for K/F have the
same cardinality.

Proof:

If the bases are infinite the result is immediate.

Otherwise, suppose S has finite cardinality n.

Apply (6): then T ’s cardinality m must satisfy m ≤ n, since
T is algebraically independent and S is a transcendence base.

But also, (6) requires n ≤ m since S is algebraically
independent and T is a transcendence base.

So m = n as claimed.



Transcendence, XIX

The result of the last part of the proposition shows that any two
transcendence bases have the same cardinality.

In analogy with the situation for vector spaces, this cardinality
behaves somewhat like an extension degree:

Definition

Let K/F be a field extension. The transcendence degree of K/F ,
denoted trdeg(K/F ), is the cardinality of any transcendence base
of K/F .



Transcendence, XX

The key property of transcendence degree is that it is additive in
towers:

Theorem (Transcendence in Towers)

If L/K/F is a tower of extensions, then
trdeg(L/F ) = trdeg(L/K ) + trdeg(K/F ).

The idea here is quite simple: we want to show that the union of
transcendence bases for K/F and L/K gives a transcendence base
for L/F .



Transcendence, XXI

Proof:

First suppose that both trdeg(K/F ) and trdeg(L/K ) are
finite, and let S = {s1, . . . , sn} and T = {t1, . . . , tm} be
transcendence bases for K/F and L/K . Then S ∩T = ∅ since
each ti is transcendental over K .

Furthermore, K is algebraic over F (S), so K (T ) is algebraic
over F (T )(S) = F (S ∪ T ) by our results on algebraic
extensions.

Then since L is algebraic over K (T ), we deduce that L is
algebraic over F (S ∪ T ), also by our results on algebraic
extensions.

Thus, by property (3) of transcendence bases, S ∪ T contains
a transcendence base of L/F .



Transcendence, XXII

Proof (continued):

Finally, we claim S ∪T is algebraically independent over F , so
suppose that p(s1, . . . , sn, t1, . . . , tm) = 0 for some
p ∈ F [x1, . . . , xn, y1, . . . , ym].

Separate monomial terms to write p(s1, . . . , sn, t1, . . . , tm) = 0
as a sum

∑
fi (s1, . . . , sn)gi (t1, . . . , tm) = 0 with

fi ∈ F [x1, . . . , xn] and gi ∈ F [y1, . . . , ym].

Now, since T is algebraically independent over F (S) ⊆ K , all
of the fi (s1, . . . , sn) must be zero (as elements of K ). But
since S is algebraically independent over F , that means all of
the polynomials fi (x1, . . . , xn) must be zero (as polynomials).

This means p is the zero polynomial, and so S ∪ T is
algebraically independent.



Transcendence, XXIII

Fields that are generated by a transcendence base are particularly
convenient:

Definition

The extension K/F is purely transcendental if K = F (S) for some
transcendence base S of K/F .

Equivalently, K/F is purely transcendental when it is
generated (as a field extension) by an algebraically
independent set.

If S = {s1, . . . , sn}, then the purely transcendental extension
K = F (S) is ring-isomorphic to the function field
F (x1, . . . , xn) in n variables: it is not hard to check that the
map sending si to xi is an isomorphism.



Transcendence, XXIV

If K/F has transcendence degree 1 or 2 and E/F is an
intermediate extension, then in fact E is also purely transcendental.

The degree-1 case is a theorem of Lüroth, while the degree-2
case is a theorem of Castelnuovo.

In higher degrees, there do exist extensions that are not purely
transcendental, but it is not easy to verify this fact.



Transcendence, XXV

Since any extension K/F has a transcendence base S , property (2)
of transcendence bases implies that K/F is an algebraic extension
of the purely transcendental extension F (S)/F .

This shows that any field extension can be written as an
algebraic extension of a purely transcendental extension.

One might wonder whether it is possible to reverse the order
and put the algebraic piece first: the answer turns out to be
no, for reasons related to algebraic geometry.

For example, if F is algebraically closed (e.g., C) any example
of a transcendental extension that is not purely transcendental
cannot have the order reversed, since there are no algebraic
extensions of C.



Transcendence, XXVI

One example of such a field is the elliptic function field
C(t,
√

t3 + t).

This field arises as the function field of the elliptic curve
y2 = x3 + x .

The relationship between these two follows from the fact that
C(t,
√

t3 + t) ∼= C[x , y ]/(y2 − x3 − x).

We have barely scratched the surface of what can be said
here, but as a closing remark I will note that much of
elementary algebraic geometry is concerned with
understanding these connections between algebraic properties
of function fields and geometric properties of varieties.

To hear (much) more about all of this, take Math 5112 and
then learn algebraic geometry!



Where Do We Go From Here?, I

Let me now preview where we are headed.

Now that we’ve discussed transcendental extensions, our
overarching goal is to study the structure of algebraic field
extensions and (more or less equivalently) the roots of
polynomials.

So far we have taken a very element-centric approach: we
have focused primarily on elements of extensions and how to
compute things in terms of generators.

However, one of the main principles of the modern approach
to algebra is that we really should be studying
(structure-preserving) maps.



Where Do We Go From Here?, II

In fact, in some sense we have already been studying maps (i.e.,
ring homomorphisms) on fields.

As noted before, if ϕ : F1 → F2 is a ring homomorphism, then
ker F1 is an ideal of F1.

Since there are not so many ideals of F1, this means either ϕ
is the zero map (not so exciting) or is one-to-one.

In the latter case, ϕ yields an isomorphism of F1 with its
image inside F2, which is to say, it gives an embedding of F1

inside F2.

If we imprecisely think of F1 as actually being equal to its
image, then this merely says F2 is a field extension of F1.



Where Do We Go From Here?, III

If we allow ourselves to feel comfortable with the field extension
part of this discussion, we’re still left with having to think about
the nature of the isomorphism of ϕ : F1 → imϕ.

Equivalently, what we need to understand is the structure of
isomorphisms of F1 with itself look like.

We give a special name to an isomorphism of an object with
itself: it is called an automorphism.



Where Do We Go From Here?, IV

Definition

If F is a field, a (ring) isomorphism σ : F → F of F with itself is
called a field automorphism of F .

Our interest in field automorphisms comes from the fact that they
naturally act on roots of polynomials.

Specifically, suppose σ : K → K is a field automorphism that
fixes the subfield F of K .

If p(x) ∈ F [x ] and p(α) = 0, then
p(σ(α)) = σ(p(α) = σ(0) = 0, since σ fixes all of the
coefficients of p since they are in F .

This means σ(α) is also a root of p(x).



Where Do We Go From Here?, V

The fundamental idea of Galois theory is to exploit field
automorphisms to study fields. To do this, we first need to
understand the automorphisms themselves:

Question

If F is a field, what does the set of field automorphisms σ : F → F
look like? What are its properties? Does it have any kind of nice
structure?



Where Do We Go From Here?, VI

Some relevant observations in the direction of those questions:

The identity map is an automorphism of F .

If σ and τ are automorphisms of F , then so is the composition
σ ◦ τ .

Composition of automorphisms of F is associative (it is, after
all, just function composition).

If σ is an automorphism of F , then so is its inverse σ−1.

The point here is that the set of automorphisms of F naturally
forms a group under function composition.

So, we now take a detour to develop basic group theory, which will
give us the tools we need to understand field automorphisms.



Where Do We Go From Here?, VI
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If σ and τ are automorphisms of F , then so is the composition
σ ◦ τ .

Composition of automorphisms of F is associative (it is, after
all, just function composition).

If σ is an automorphism of F , then so is its inverse σ−1.

The point here is that the set of automorphisms of F naturally
forms a group under function composition.

So, we now take a detour to develop basic group theory, which will
give us the tools we need to understand field automorphisms.



Summary

We discussed separability and inseparability for field extensions.

We discussed transcendental extensions and formulated the notion
of transcendence degree.

Next lecture: Groups.


