
Math 5111 (Algebra 1)

Lecture #9 ∼ October 8th, 2020

Separability and Inseparability

Separability of Polynomials, part 2

Separability of Elements and Extensions

This material represents §2.4.1-2.4.2 from the course notes.



Recall, I

Last time we discussed algebraic closures and algebraically closed
fields:

Definition

If F is a field, the field F is an algebraic closure of F if F is
algebraic over F and every polynomial in F [x ] splits completely
over F .

Definition

The field F is algebraically closed if every polynomial in F [x ] has a
root in F .

We proved that every field has an algebraic closure that is unique
up to isomorphism, and that algebraic closures are algebraically
closed.



Recall, II

We also introduced the notion of separability for polynomials:

Definition

If F is a field with q ∈ F [x ], and the factorization of
q(x) = c(x − r1)d1(x − r2)d2 · · · (x − rk)dk with the di ≥ 1, we say
that di is the multiplicity of ri .
Furthermore, ri is a simple root if di = 1, and is a repeated root
(or multiple root) if di ≥ 2.
If all of the roots of q are simple, then we say q is separable, and
otherwise q is inseparable.

A separable polynomial is one that has no repeated roots, while an
inseparable polynomial has a repeated root.

In general, separable polynomials are “nice”, while inseparable
polynomials are “not as nice”.



Recall, III

We can detect separability using the derivative:

Proposition (Derivatives and Separability)

Let F be a field and q ∈ F [x ]. Then r is a repeated root of q (in a
splitting field) if and only if q(r) = q′(r) = 0. Furthermore, the
polynomial q(x) is separable if and only if q(x) and q′(x) are
relatively prime in F [x ].

From this criterion, we showed that an irreducible polynomial q(x)
can only be inseparable in characteristic p.



More Separability, I

In positive characteristic, there can exist inseparable irreducible
polynomials (I gave some examples last time). Let’s dig into this a
bit more.

As we noted earlier, over F = F2(t), the polynomial
q(x) = x2 − t is irreducible and also inseparable, because it
has a repeated root t1/2 that is not in F .

In that example, notice that q′(x) = 2x = 0 is identically
zero, so indeed q and q′ have a common divisor of positive
degree (namely, q itself).

Indeed, by degree considerations, the case where q′ is the zero
polynomial is the only case in which we can have an
inseparable irreducible polynomial, since if q′ 6= 0 then since
deg q > deg q′, it is not possible for q to divide q′.



More Separability, II

We are looking for situations where q can divide its derivative q′.

From the definition of derivative, we can see that if

q(x) =
n∑

k=0

anxn then q′(x) =
n∑

k=0

nanxn−1 is zero if and only

if nan = 0 for each n, and this is true precisely when the only
nonzero coefficients of q are in degrees that are divisible by p.

Equivalently, this means that q(x) = s(xp) for some
polynomial s ∈ F [x ].

Thus, there is an inseparable irreducible polynomial over F
precisely when there is a polynomial s ∈ F [x ] with the
property that s(xp) is irreducible.



More Separability, III

To examine this property in more detail requires a (very useful!)
result on field arithmetic in characteristic p:

Proposition (“Freshman” Binomial Theorem)

If the field F has characteristic p > 0, then (a + b)p = ap + bp for
any a, b ∈ F .

Proof:

As you proved on the homework, (a + b)p =
∑p

n=0

(p
n

)
anbp−n.

For each 0 < n < p, the binomial coefficient
(p
n

)
= p!

n!(p−n)! is

an integer divisible by p (there is a p in the numerator but not
in the denominator, and p is prime), so

(p
n

)
= 0 in the field F .

Therefore, all terms in the sum except those for n = 0 and
n = p are zero: thus (a + b)p = ap + bp for any a, b ∈ F .



More Separability, IV

The pth-power map in characteristic p is very important, so I will
tell you its name now:

Definition

If F is a field of characteristic p, the Frobenius endomorphism is
the map ϕ : F → F defined by ϕ(a) = ap.

Trivially, ϕ respects multiplication, and by the freshman
binomial theorem it also respects addition.

Furthermore, ϕ is injective, because ϕ(a) = ϕ(b) implies
ap = bp so that (a− b)p = 0 (since ϕ distributes over
addition, and (−1)p = −1 in Fp for any prime p) and thus
a = b since F is a field.

Thus, the Frobenius map ϕ is an injective ring homomorphism
from F to itself (i.e., an endomorphism).



More Separability, V

The Frobenius endomorphism need not be an isomorphism, since it
does not have to be surjective. However, fields where it is
surjective tend to be nice:

Definition

If F is a field of characteristic p, and every element of F is a pth
power (i.e., F p = F ) then we say F is a perfect field. (Fields of
characteristic 0 are also considered perfect fields.)

Examples:

If F is a finite field, then F is perfect. This follows by the fact
that the Frobenius map is an injective map from a finite set to
itself, hence is also surjective.

The function field F = Fp(t) is not perfect, since the element
t ∈ F is not the pth power of any element of F .



More Separability, VI

The point of this excursion, in our case, is that perfect fields
behave very nicely with respect to separability:

Specifically, as noted earlier, if q is an irreducible inseparable
polynomial, then we must have q(x) = s(xp) for some
polynomial s ∈ F [x ].

By iterating the additivity of ϕ, we can see that
(a0 + a1x + · · ·+ anxn)p = ap0 + ap1xp + · · ·+ apnxnp.

Applying this in reverse, we can see that if all of the
coefficients of s(x) are pth powers in F , then s(xp) is a pth
power, and therefore cannot be irreducible.

This means that any irreducible polynomial over a perfect
field must be separable.



More Separability, VII

More precisely:

Proposition (Separability and Perfect Fields)

If F is a perfect field, then every irreducible polynomial in F [x ] is
separable. Inversely, if F is not perfect, then there exists an
irreducible inseparable polynomial in F [x ].

We showed last time that if q is irreducible, then q is inseparable if
and only if q divides its derivative q′: the point is that they cannot
be relatively prime, but the only possible gcds, which are divisors of
q, are 1 and q up to associates.



More Separability, VIII

Proof:

Every field of characteristic 0 is separable: if q(x) has degree
n, then q′ has degree n − 1 so q cannot divide q′.

So now assume F has characteristic p. Then q still divides q′,
and the only way this can occur is if q′ is zero, meaning that
q(x) = s(xp) for some polynomial s ∈ F [x ].

If F is perfect, then every coefficient of s is a pth power, so
we may write s(x) = ap0 + ap1x + · · ·+ apnxn. But then q(x) =
s(xp) = ap0 + ap1xp + · · ·+ apnxnp = (a0 + a1x + · · ·+ anxn)p is
not irreducible, which is a contradiction.



More Separability, IX

Proof (continuatedly):

Now suppose F is not perfect: then there exists some element
α ∈ F that is not a pth power in F .

Consider q(x) = xp − α: if we set β = α1/p (inside a splitting
field for q) then in F (β) we may write
q(x) = xp − βp = (x − β)p so q is inseparable.

In fact, q is also irreducible in F [x ]: if it had a factorization
q(x) = c(x)d(x) in F [x ]: then up to constant factors in F we
must have c(x) = (x − β)d for some 0 < d < p.

But this cannot happen:
c(x) = xd − dβxd−1 + · · ·+ (−1)dβd , and if dβ ∈ F then
because d 6= 0 in F (since 0 < d < p) we would have β ∈ F .

But this contradicts the assumption that α is not a pth power
in F . Thus, q is an irreducible inseparable polynomial over the
non-perfect field F .



Fun With Finite Fields, I

As an application of our results, we can show that there exists a
finite field with pn elements, and that it is unique up to
isomorphism:

Theorem (Existence and Uniqueness of Finite Fields)

For any prime p and any positive integer n, there exists a finite
field of degree n over Fp, and this field has pn elements.
Furthermore, any two finite fields with pn elements are isomorphic.

This is, in some sense, a strong converse of the result you
established on the homework (that every finite field has a
prime-power number of elements).



Fin With Funite Fields, II

Proof:

Consider the polynomial q(x) = xpn − x over Fp, and let K be
its splitting field.

We see that q′(x) = pnxpn−1 − 1 = −1: thus, q is separable
and so it has precisely pn roots in K .

If r and s are any two roots of q in K , then rp
n

= r and
sp

n
= s. We can then see that (rs)p

n
= rp

n
sp

n
= rs, and

(r − s)p
n

= rp
n − sp

n
= r − s, and if r 6= 0 then

(r−1)p
n

= (rp
n
)−1 = r−1.

These three calculations show that if r and s are roots of q,
then so are rs, r − s, and r−1. Together with the trivial
observations that 0 and 1 are roots of q, this says that the set
of roots of q is a subfield of K .



Fields With Finite Fun, III

Proof (additionally):

But since K is generated (as a field) by the set of roots of q,
this means that the set of roots is all of K .

So: the splitting field of q(x) = xpn − x over Fp is merely the
set of roots of q, so #K = pn.

Thus, we have shown the existence of a finite field with pn

elements, as required.

Also, as you saw on the homework, if K/F has dimension k ,
then the number of elements of K/F is (#F )n = pk .

So this also tells us that [K : Fp] = n.



Fine Finite Field Funs, IV

Now we interject with a quick lemma:

Lemma

If K is a field with #K = pn, then rp
n−1 = 1 for all nonzero r ∈ K .

Proof (of lemma):

Let S = {u1, . . . , upn−1} be the set of nonzero elements of K .

For any nonzero r ∈ K , multiplication by r is an injective
function on S (since r is in fact a unit), hence is a bijection.

Thus, the elements {ru1, . . . , rupn−1} are the same as the
elements {u1, . . . , upn−1}, though possibly in a different order.

In particular, the products of these collections of elements are
equal: so, rp

n−1(u1 · · · upn−1) = u1 · · · upn−1 so cancelling the
units u1, . . . , upn−1 yields rp

n−1 = 1, as claimed.

This is really just Lagrange’s theorem applied inside the group F×,
by the way. (We will get there in a few weeks, don’t worry!)



Fine Finite Field Fumblings, V

Proof (back to the theorem again):

Now we establish the uniqueness up to isomorphism: so
suppose K is a finite field with pn elements.

By the lemma, this means rp
n−1 = 1 for all nonzero r ∈ K .

Equivalently, this says that every element in K (including 0) is
a root of the polynomial q(x) = xpn − x .

Thus, K is contained in the splitting field for q(x).

But as we have just shown earlier in the proof of this theorem,
the splitting field of xpn − x over Fp already has pn elements,
so it must be equal to K .

Finally, since splitting fields are unique up to isomorphism, K
is unique up to isomorphism. Victory.



Five Fine Fun Finite Field Fumblings, VI

To summarize, our theorem tells us that for any prime p, there is a
finite field K with pn elements, and it is unique up to isomorphism.

This field is the splitting field of q(x) = xpn − x . However,
this description, while very explicit, is not terribly amenable
for computations, since it does not actually give us a
particularly nice way to describe the elements of the field.

If we want a nicer description, we can try running through the
construction of the splitting field, by picking an irreducible
factor f and then adjoining a root by using our polynomial
quotient construction Fp[x ]/(f ).

We might hope that there would be an irreducible factor f of
degree n: if there were, then in fact the field extension
Fp[x ]/(f ) would have degree n hence actually be our field K .

Pleasantly, this is always true, and we will prove it later as an
easy application of Galois theory.



Fabulous Fourth Fun Finite-Field Frobenius Fact, VII

I will also observe here that although it was never mentioned by
name, the Frobenius map ϕp : K → K with ϕp(r) = rp played an
important role in the proof.

Roughly speaking, the first half of the argument boils down to
proving that the n-fold iterate ϕn

p = ϕp ◦ ϕp ◦ · · · ◦ ϕp︸ ︷︷ ︸
n times

is the

identity map on K .

The second half essentially reduces to showing the converse;
namely, that if the n-fold iterate of ϕp is the identity map on
K , then K has pn elements and is unique up to isomorphism.

In light of all this, it may not surprise you to learn that we will be
able to recast most everything one can say about finite fields
purely in terms of properties of the Frobenius map.



Separable and Inseparable Extensions, I

We can also extend these notions of separability and inseparability
to algebraic elements by considering their minimal polynomials:

Definition

If K/F is an algebraic extension, then α ∈ K is separable over F if
α is algebraic over K and its minimal polynomial m(x) over F is a
separable polynomial.
We say K/F itself is separable if every α ∈ K is separable over F ,
and K/F is inseparable if it is not separable.



Separable and Inseparable Extensions, II

Examples:

1. Any algebraic element in an extension of characteristic 0 is
separable, so algebraic extensions of characteristic-0 fields are
separable.

2. More generally, any algebraic element in an extension K/F
where F is a perfect field is separable, so algebraic extensions
of perfect fields are separable.

3. The element t1/2 ∈ F2(t1/2) is not separable over F2(t), since
its minimal polynomial is the inseparable polynomial
p(x) = x2 − t.

4. The element t1/3 ∈ F2(t1/3) is separable over F2(t), since its
minimal polynomial is the separable polynomial p(x) = x3 − t.



Separable and Inseparable Extensions, III

The inverse notion to a separable element is of an inseparable
element that is “as inseparable as possible”, where all of the roots
of its minimal polynomial are the same:

Definition

If K/F is a field extension, then α ∈ K is
purely inseparable over F if α is algebraic over K and its minimal
polynomial m(x) over F has only α as a root.
We say K/F itself is purely inseparable if every α ∈ K is purely
inseparable over F .

From the definition it is not clear that purely inseparable
extensions exist (and of course if F is perfect, they cannot). We
will characterize them in a moment.



Separable and Inseparable Extensions, IV

Examples:

1. The element t1/2 ∈ F2(t1/2) is purely inseparable over F2(t):
its minimal polynomial is the inseparable polynomial
m(x) = x2 − t, which factors as m(x) = (x − t1/2)2 over
F2(t1/2), and this polynomial has only t1/2 as a root.

2. The element t1/5 ∈ F5(t1/25) is purely inseparable over F5(t):
its minimal polynomial is the inseparable polynomial
m(x) = x5 − t, which factors as m(x) = (x − t1/5)5 over
F5(t1/25), and this polynomial has only t1/5 as a root. This
factorization also shows m is irreducible, since no lower power
(x − t1/5)k for 1 ≤ k ≤ 4 actually yields a polynomial with
coefficients in F5(t).



Separable and Inseparable Extensions, IV

Examples:

3. The element t1/25 ∈ F5(t1/25) is purely inseparable over
F5(t): its minimal polynomial is the inseparable polynomial
m(x) = x25 − t, which can be seen to factor as
m(x) = (x − t1/25)25 over F5(t1/25), and this polynomial has
only t1/25 as a root. This polynomial m(x) is irreducible for
the same reason as in the last example. Alternatively, m(x) is
Eisenstein-irreducible with prime t.

I would give more examples, but these are essentially the only kind,
as we will see in a moment.



Purely Inseparable Extensions, I

Proposition (Properties of Inseparability)

Let L/K and K/F be field extensions of characteristic p. Then

1. If q(x) ∈ F [x ] is an irreducible inseparable polynomial, then

q(x) = qsep(xpk

) for a unique positive integer k and a unique
irreducible separable polynomial qsep(x) ∈ F [x ].

2. The element α ∈ K/F is purely inseparable if and only if there

exists some positive integer k such that αpk ∈ F .

3. The extension K/F is purely inseparable if and only if the minimal

polynomial of each α ∈ K over F is of the form mα(x) = xpk − d
for some k ≥ 0 and some d ∈ F .

4. K/F is purely inseparable iff K/F is algebraic and the only elements
of K separable over F are the elements of F .

5. L/F is purely inseparable iff L/K and K/F are purely inseparable.

6. Composites of purely inseparable extensions are purely inseparable.

7. If K/F has finite degree and K = F (α1, . . . , αk), then K/F is
purely inseparable if and only if each αi is purely inseparable over F .



Purely Inseparable Extensions, II

1. If q(x) ∈ F [x ] is an irreducible inseparable polynomial, then

q(x) = qsep(xpk ) for a unique positive integer k and a unique
irreducible separable polynomial qsep(x) ∈ F [x ].

Proof:

As we showed earlier, if an irreducible polynomial q is
inseparable, then q(x) = q1(xp) for some q1 ∈ F [x ].

If q1 is separable, then it must necessarily be irreducible since
otherwise any factorization of q1(x) = f (x)g(x) would give a
factorization of q(x) = q1(xp) = f (xp)g(xp).

Otherwise, if q1 is inseparable, then by the argument above,
we must have q1(x) = q2(xp) for some q2(x) ∈ F [x ].

By iterating this argument (formally, by a trivial induction),
eventually we must obtain a polynomial qk(x) that is

separable and irreducible. Then q(x) = qsep(xpk ) as claimed.



Purely Inseparable Extensions, III

2. The element α ∈ K/F is purely inseparable if and only if there

exists some positive integer k such that αpk ∈ F .

Proof:

First suppose α is purely inseparable and let m(x) ∈ F [x ] be
the minimal polynomial of α over F .

Then m(x) is an irreducible purely inseparable polynomial, so

m(x) = qsep(xpk ) for some separable polynomial qsep by (1).

If qsep had two distinct roots r1 and r2, then (in an
appropriate splitting field) m would have roots s1 and s2

satisfying sp
k

1 = r1 and sp
k

2 = r2.

But since the pth-power map is injective and r1 6= r2, this
would mean that s1 6= s2 and thus that m has two distinct
roots, contradicting the assumption that m was purely
inseparable.



Purely Inseparable Extensions, IV

2. The element α ∈ K/F is purely inseparable if and only if there

exists some positive integer k such that αpk ∈ F .

Proof (furthermore):

Conversely, if αpk ∈ F , then α is a root of the polynomial
q(x) = xpk − αpk = (x − α)p

k
in K [x ].

Then the minimal polynomial of α over F must therefore
divide q, but since q has only one root α, that means m also
has only one root α. Thus, α is purely inseparable.

Notice that this result shows that the examples we gave of
inseparable elements above are essentially the only possible ones.



Purely Inseparable Extensions, V

3. The extension K/F is purely inseparable if and only if the
minimal polynomial of each α ∈ K over F is of the form
mα(x) = xpk − d for some nonnegative integer k and some
d ∈ F .

Proof:

The forward direction follows immediately from (2).

The reverse direction follows from the observation above that
mα(x) = (x −α)p

k
inside K , so mα has only the single root α.



Purely Inseparable Extensions, VI

4. K/F is purely inseparable if and only if K/F is algebraic and
the only elements of K separable over F are the elements of F .

Proof:

If K/F is purely inseparable, then by (3) any α ∈ K has

minimal polynomial of the form mα(x) = xpk − d = (x − α)p
k

in K .

Such a polynomial cannot be separable unless k = 0, in which
case it has the form mα(x) = x − d , implying α ∈ F .

This result is the reason for the terminology of “purely
inseparable”: all elements of the extension, other than the
elements of the ground field F themselves, are inseparable over F .



Purely Inseparable Extensions, VII

4. K/F is purely inseparable if and only if K/F is algebraic and
the only elements of K separable over F are the elements of F .

Proof (conversely):

Conversely, suppose K/F is algebraic and the only elements of
K separable over F are the elements of F .

For any α ∈ K consider its minimal polynomial m(x), which
by hypothesis must be inseparable.

By (1), we have m(x) = msep(xpk ) for some positive integer
k, where msep is separable.

But then the minimal polynomial of αpk is msep(x), which is

separable. Therefore, αpk must be an element of F , and then
α is purely inseparable by (2).

This result is the reason for the terminology of “purely
inseparable”: all elements of the extension, other than the
elements of the ground field F themselves, are inseparable over F .



Purely Inseparable Extensions, VIII

5. L/F is purely inseparable if and only if L/K and K/F are
purely inseparable.

Proof (forwardly):

If L/F is purely inseparable, then by (2), for any α ∈ L\F we

have αpk ∈ F for some positive integer k .

In particular this holds for any α ∈ K\F , so K/F is purely
inseparable.

Furthermore, if α ∈ L\F then since αpk ∈ F we have

αpk ∈ K , so L/K is purely inseparable by (2).



Purely Inseparable Extensions, IX

5. L/F is purely inseparable if and only if L/K and K/F are
purely inseparable.

Proof (reversely):

Conversely, suppose L/K and K/F are purely inseparable.

Then by (2), for any α ∈ L we have αpk1 ∈ K for some k1,

and also if β = αpk1 we have βp
k2 ∈ F for some k2.

But then αpk1+k2 = βp
k1 ∈ F , so by (2) again, this means α is

purely inseparable, so L/F is purely inseparable.



Purely Inseparable Extensions, X

6. The composite of purely inseparable extensions over F is also
purely inseparable over F .

Proof:

Let K be a composite of purely inseparable extensions of F .

Then any γ ∈ K is of the form γ =
p(α1, . . . , αi )

q(αi+1, . . . , αi+j)
∈ K

where α1, . . . , αi , αi+1, . . . , αi+j are purely inseparable over F
and p, q are polynomials with coefficients in F .

By (2), there exist integers k1, . . . , ki+j such that αpkl
l ∈ F for

each 1 ≤ l ≤ i + j . If M = max(kl), then αpM

l ∈ F for each l .

Then γp
M

is a rational function with coefficients from F in

the elements αpM

l ∈ F , so γp
M ∈ F .

Hence by (2), γ is purely inseparable over F , and so K/F is
purely inseparable.



Purely Inseparable Extensions, XI

7. If K/F has finite degree and K = F (α1, . . . , αk), then K/F is
purely inseparable if and only if each αi is purely inseparable
over F .

Proof:

If K/F is purely inseparable, then by (5) each of the
extensions F (αi ) is purely inseparable, so each αi is
inseparable.

Conversely, if each of the F (αi ) is purely inseparable, then by
(6) so is their composite field K = F (α1, . . . , αk).



Purely Inseparable Extensions, XII

8. Every finite-degree purely inseparable extension has degree
equal to a power of p.

Proof:

This follows from applying the degree tower formula to (7)
and by noting that any simple purely inseparable extension has
degree equal to a power of p by (3).



Purely Inseparable Extensions, XIII

In general, separability is nice, while inseparability can often be
inconvenient.

We frequently will want to discuss the various relations
between roots of a particular irreducible polynomial.

If some of the roots are the same, then we can end up with
unintuitive behaviors when we pose questions that involve the
set of roots, since the set will be smaller than we expect.

The point of discussing purely inseparable extensions is to give
you more of an idea of when and where inseparability can
show up, and what happens when it does.



Separable Extensions, I

We will now discuss separable extensions, which do tend to behave
more nicely, but the actual proofs are rather complicated.

In order to establish results about separable extensions, we
will first need to discuss some results about embeddings of
fields into their algebraic closures.

Definition

If K/F is an algebraic extension, an embedding of K/F into F/F
is an injective ring homomorphism σ : K → F such that σ fixes F
(i.e., σ(x) = x for all x ∈ F ).

We call this an embedding because we can think of σ as
(essentially) “pasting” a copy of K/F inside the algebraic closure
F/F .



Separable Extensions, II

Example: Consider the algebraic extension K/Q where
K = Q[x ]/(x2 − 2).

An embedding of K/Q into Q/Q is completely determined by
the image of x .

Since x2 = 2, applying σ yields σ(x)2 = σ(2) = 2 since σ fixes
Q.

This means x must be mapped either to
√

2 or to −
√

2.

Both of these choices work, so we see that there are two
embeddings of K/Q into Q/Q. Note here that x2 − 2 is
irreducible and has degree 2: the possible embeddings
correspond to the roots of the polynomial in Q.



Separable Extensions, III

Example: Consider the algebraic extension K/F where F = F3(t)
and K = F [x ]/(x3 − t). (Morally, K = F (t1/3), but I want to keep
the notation the same as the last example.)

An embedding of K/F into F/F is, like in the last example,
completely determined by the image of x .

Since (x)3 = t, the image of x must be mapped to an element
whose cube is t. But there is only one such element in F ,
namely, t1/3, since x3 − t = (x − t1/3)3 in F .

This means x must be mapped to t1/3, and so there is only
one possible embedding of K/F into F/F .

Note here that the element t1/3 is not separable, so although
its degree over F is 3, there is only 1 possible embedding.



Separable Extensions, IV

As suggested by the examples, counting the number of embeddings
of an extension into the algebraic closure give us a way to detect
separability.

This is the main engine behind the proofs we will give about
separable extensions.

The general idea is to show that the idea of the examples
holds in general for simple extensions, and then to
“bootstrap” to more complicated extensions.



Separable Extensions, V

Proposition (Properties of Separability, Part 1)

Let L/K and K/F be field extensions. Then

1. The algebraic element α is separable over F if and only if there
are [F (α) : F ] different embeddings of F (α)/F into F/F .

2. If K/F has finite degree, then there are at most [K : F ]
different embeddings of K/F into F/F .

3. If α is algebraic over F , then α is separable over F if and only
if F (α) is separable over F .

4. If L/F is separable, then L/K and K/F are separable.



Separable Extensions, VI

Proposition (Properties of Separability, Part 2)

Let L/K and K/F be field extensions. Then

5. If K/F has finite degree, then K/F is separable if and only if
there are exactly [K : F ] different embeddings of K/F into
F/F .

6. If K/F is separable, then α is separable over K if and only if
α is separable over F .

7. If K/F has finite degree and K = F (α1, . . . , αk), then K/F is
separable if and only if each αi is separable over F .

8. If L/K and K/F are separable, then L/F is separable.

9. The composite of separable extensions is separable.



Separable Extensions, VII

1. The algebraic element α is separable over F if and only if there
are [F (α) : F ] different embeddings of F (α)/F into F/F .

Proof:

Suppose α is separable over F , let its minimal polynomial be
m(x) of degree n, and let L be the splitting field of m over F .

As in the examples, σ(α) must also be a root of m(x) inside
F , since m(σ(α)) = σ(m(α)) = σ(0) = 0.

Now let β be any root of m(x).

By the theorem on the uniqueness of splitting fields, the
identity map on F extends to an isomorphism of L with itself
that maps α to β, since the identity map sends the minimal
polynomial of α to the minimal polynomial of β (since they
have the same minimal polynomial m(x)).



Separable Extensions, VIII

1. The algebraic element α is separable over F if and only if there
are [F (α) : F ] different embeddings of F (α)/F into F/F .

Proof:

Restricting this isomorphism to F (α) yields an embedding of
F (α) into F whose image is F (β).

Since any map σ : F (α)→ F fixing F is completely
determined by the value of σ(α), we see that this
correspondence yields a bijection between embeddings of
F (α)/F into F/F with the distinct roots β of m(x).

The result then follows immediately, since α is separable if
and only if m(x) has deg(m) = [F (α) : F ] distinct roots.



Separable Extensions, IX

2. If K/F has finite degree, then there are at most [K : F ]
different embeddings of K/F into F/F .

Proof:

Induct on the number n of generators of K/F .

The case n = 1, where K = F (α1), was shown in (1), since in
this situation the embeddings are in bijection with the distinct
roots of the minimal polynomial m of the generator α1, and
the number of such roots is bounded above by the degree of
m, which equals [K : F ] in this case.



Separable Extensions, X

2. If K/F has finite degree, then there are at most [K : F ]
different embeddings of K/F into F/F .

Proof:

For the inductive step, suppose the result holds for extensions
having k generators and suppose K = F (α1, . . . , αk+1), and
set E = F (α1, . . . , αk), so that K = E (αk+1).

Then any embedding of K/F into E = F is determined by the
image of E , which has at most [E : F ] possible choices by the
induction hypothesis, and the image of αk+1, which has at
most [K : E ], the degree of the minimal polynomial of αk+1

over E , possible choices once the image of E is determined.

Therefore, the number of embeddings is at most
[K : E ] · [E : F ] = [K : F ], as claimed.



Separable Extensions, XI

3. If α is algebraic over F , then α is separable over F if and only
if F (α) is separable over F .

Proof:

Trivially, if F (α)/F is separable then α is separable over F .

Now suppose α is separable over F and suppose there were an
inseparable element β ∈ F (α).

Then by (1), the number nF (β)/F of embeddings of F (β)/F is
strictly less than [F (β) : F ].

Also, by (2), the number of embeddings nF (α)/F (β) of

F (α)/F (β) into F (β) = F is at most [F (α) : F (β)].

Therefore, since any embedding of F (α)/F is determined
uniquely by the embeddings of F (β)/F and F (α)/F (β), the
number of embeddings nF (α)/F of F (α)/F is at most
nF (α)/F (β) · nF (β)/F < [F (α) : F (β)] · [F (β) : F ] = [F (α) : F ].

But since F (α)/F is separable, (1) gives a contradiction.



Separable Extensions, XII

4. If L/F is separable, then L/K and K/F are separable.

Proof:

First suppose that L/F is separable, so that every element of
L is separable over F . Then because K is a subset of L, this
means every element of K is separable over F , so K/F is
separable.

Furthermore, for any α ∈ L, if mF (x) is the minimal
polynomial of α over F , then the minimal polynomial mK (x)
of α over K divides it, since mF (α) = 0 in K .

All roots of mF (x) are distinct since α is separable, so all
roots of mK (x) are also distinct. Thus, L/K is separable.

We will show the converse is true in a bit.



Separable Extensions, XIII

5. If K/F has finite degree, then K/F is separable if and only if
there are exactly [K : F ] different embeddings of K/F into
F/F .

Proof (directly):

Let K = F (α1, . . . , αk) and Ei = F (α1, . . . , αi ) for 0 ≤ i ≤ k.

By (2), the total number of different embeddings of K/F into
F/F is at most [K : F ] by (2).

If K is separable, then by (4), each subextension E (αi+1)/E
is separable, and then by (3), the argument in (1), and a
trivial induction, this means the number of embeddings of
E (αi+1)/F into F/F is [E (αi+1) : E ] · [E : F ] = [E (αi+1) : F ],
since each embedding of E (αi+1)/F is realized by an
embedding of E/F along with an embedding of E (αi+1)/E .

Thus, taking i = k yields that the number of embeddings of
K/F into F/F is equal to [K : F ], as required.



Separable Extensions, XIV

5. If K/F has finite degree, then K/F is separable if and only if
there are exactly [K : F ] different embeddings of K/F into
F/F .

Proof (inversely):

Inversely, if K is not separable, then it contains some
inseparable element β.

Then F (β)/F has fewer than [F (β) : F ] embeddings into F/F
by (1).

Since the number of embeddings of K/F (β) is at most
[K : F (β)] by (2), by the same argument as on the previous
slide, the total number of embeddings of K/F into F is
strictly fewer than [K : F (β)] · [F (β) : F ] = [K : F ].



Separable Extensions, XV

6. If K/F is separable, then α is separable over K if and only if
α is separable over F .

Proof (finite-degree case):

First suppose [K : F ] <∞ and α is separable over K .
Consider the tower K (α)/K/F .

By (3), K (α)/K is separable, and then by (5), the number of
embeddings of K (α)/K into K = F is equal to [K (α) : K ].
Also by (5), there are [K : F ] embeddings of K/F into F .

Furthermore, it is easy to see by composing the appropriate
maps that if we have an embedding of K/F into F and an
embedding of K (α)/K into K = F , then it yields a unique
embedding of K (α)/F into F .

Therefore, the total number of embeddings of K (α)/F into F
equals [K (α) : K ] · [K : F ] = [K (α) : F ]. Then by (5) again,
K (α)/F is separable, so α is separable over F .



Separable Extensions, XVI

6. If K/F is separable, then α is separable over K if and only if
α is separable over F .

Proof (general case):

The general case follows from the finite-degree case.

Specifically, if the minimal polynomial for α over K is
m(x) = bdxd + · · ·+ b0 for bi ∈ K , then α is separable over
F (b0, . . . , bd) since it is separable over K .

The point is that α has the same minimal polynomial over
both fields, but now F (b0, . . . , bd)/F has finite degree since it
is algebraic over F with finitely many generators.

The converse direction is trivial, since if α is separable over F
then by the argument in (4), it is separable over K .



Separable Extensions, XVII

7. If K/F has finite degree and K = F (α1, . . . , αk), then K/F is
separable if and only if each αi is separable over F .

Proof: This follows by repeatedly applying (6) to the tower
K/F (α1, . . . , αk−1)/ · · · /F (α1)/F .

8. If L/K and K/F are separable, then L/F is separable.

Proof: If L/K has finite degree then this follows by writing
L = K (α1, . . . , αk) and applying (7).

The general case follows from the finite-degree case because
for each α ∈ L, α is separable over F if and only if K (α)/F is
separable over L by (3).



Separable Extensions, XVIII

9. The composite of separable extensions is separable.

If the extensions have finite degree then this follows from (7)
by writing K1 = F (α1, . . . , αk) and K2 = F (β1, . . . , βl) and
noting that K1K2 = F (α1, . . . , αk , β1, . . . , βl).

The general case follows from the finite-degree case since any
element of a composite extension is a rational function in
finitely many elements from the given fields.



Separable Extensions: Finally, We’re Done

Okay, so all of that was a technical slog, but now we can basically
forget everything about the annoying proofs and just remember the
results. Enjoy the long weekend!

Specifically, this is intended as a reminder that there is no class
next Monday, October 12th, as it is a university holiday. I will not
be holding office hours that day, as well.



Summary

We used our results on separability to prove some results about
finite fields.

We discussed separability and inseparability for field extensions.

Next lecture: Separable and inseparable degrees, transcendental
extensions.


