
Math 5111 (Algebra 1)

Lecture #8 ∼ October 5th, 2020

Splitting Fields + Algebraic Closures

Splitting Fields, part 2

Algebraic Closures

Separability, part 1

This material represents §2.3.2-2.4.1 from the course notes.



More Splitting Fields, I

Recall our definition of a splitting field from last time:

Definition

If K/F is a field extension, we say that K is a splitting field for the
polynomial p(x) ∈ F [x ] if p splits completely (factors into a
product of linear factors) over K , and p does not split completely
over any proper subfield of K.

As we noted, K is a splitting field for p if and only if
K = F (r1, . . . , rn) where the ri are the roots of p(x) in K .

We also proved that splitting fields always exist and are unique up
to isomorphism.



More Splitting Fields, II

We also introduced cyclotomic fields last time:

Definition

The splitting field Q(ζn) of p(x) = xn − 1 over Q is called the
cyclotomic field of nth roots of unity.

Here, ζn represents a primitive nth root of unity. One possible
choice is ζn = e2πi/n = cos(2π/n) + i sin(2π/n).

Cyclotomic fields show up very naturally when looking at field
extensions obtained by taking nth roots.



More Splitting Fields, III

It is a nontrivial problem to compute the degree [Q(ζn) : Q], which
is equivalent to determining the degree of the minimal polynomial
of ζn over Q.

For some small values of n this is not so hard to do explicitly,
since we just have to find the factorization of xn − 1 over Q.
The easiest way to compute the roots is to use Euler’s identity
(which of course requires remembering basic trigonometry):
the roots of xn − 1 are ζkn = cos(2πk/n) + i sin(2πk/n).

n = 2: x2 − 1 = (x − 1)(x + 1), with degree 1 over Q.
n = 3: x3 − 1 = (x − 1)(x2 + x + 1).

The roots are 1 and
−1± i

√
3

2
. The splitting field has degree

2.
n = 4: x4 − 1 = (x − 1)(x + 1)(x2 + 1).

The roots are 1, −1, i , and −i . The splitting field has degree
2.



More Splitting Fields, IV

n = 5: x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1).
Here is the first case where it is not so clear what the degree
is. In fact, the second polynomial is irreducible over Q (it
does not have any roots nor does it factor as a product of
quadratics). By setting y = x + 1/x one can obtain a
quadratic for y and solve it to see that the roots are 1,

−1 +
√

5± i
√

10 + 2
√

5

4
and
−1−

√
5± i

√
10− 2

√
5

4
. The

splitting field has degree 4.

n = 6: x6 − 1 = (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1).

The roots are 1, −1, and
±1± i

√
3

2
for all four possible

choices of the ± signs. The splitting field has degree 2.



More Splitting Fields, V

n = 7: x7 − 1 = (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1).
Again, it turns out that the second factor is irreducible
(though of course this is even more unpleasant than in the
case n = 5 to prove directly), so the splitting field has degree
6.

n = 8: x8 − 1 = (x − 1)(x + 1)(x2 + 1)(x4 + 1).

The roots are 1, −1, ±i , and
±1± i√

2
, for all four choices of

sign. The splitting field is Q(i ,
√

2) and has degree 4.

n = 9: x9 − 1 = (x − 1)(x2 + x + 1)(x6 + x3 + 1).
It can be shown that the degree-6 polynomial is irreducible,
and so the splitting field has degree 6.



More Splitting Fields, VI

In the case where n = p is a prime, however, we can compute the
degree of the splitting field now:

Proposition (Prime Cyclotomic Fields)

If p is a prime, the degree [Q(ζp) : Q] is equal to p − 1.

The idea is to show that
xp − 1

x − 1
= xp−1 + xp−2 + · · ·+ x + 1 is

irreducible.



More Splitting Fields, VII

Proof:

As noted above, the degree [Q(ζp) : Q] is equal to the degree
of the minimal polynomial of ζp over Q.

Since ζp 6= 1, and since x − 1 divides xp − 1, by the factor
theorem we see that ζp is a root of the polynomial

Φp(x) =
xp − 1

x − 1
= xp−1 + xp−2 + · · ·+ x + 1.

We claim that Φp(x) is irreducible over Q, and is therefore
the minimal polynomial of ζp.

To show this, first observe that Φp(x) is irreducible if and only
if Φp(x + 1) is irreducible (since any factorization
Φp(x + 1) = a(x)b(x) would yield a factorization
Φp(x) = a(x − 1)b(x − 1) and vice versa).



More Splitting Fields, VIII

Proof (continuedly):

Then Φp(x + 1) =
(x + 1)p − 1

(x + 1)− 1
=

1

x
·

p∑
k=1

(p
k

)
xk =

p∑
k=1

(p
k

)
xk−1 = xp−1 + pxp−2 + · · ·+ p.

Each of the binomial coefficients
(p
k

)
= p!

k!(p−k)! with

0 < k < p is divisible by p (since there is a p in the numerator
but not the denominator) and the constant term of Φp(x + 1)
is not divisible by p2.

Thus, Φp(x + 1) is irreducible over Q by Eisenstein’s criterion
(with prime p), and so Φp(x) is also irreducible over Q.

Therefore, Φp(x) is the minimal polynomial of ζp, and
[Q(ζp) : Q] = deg Φp = p − 1.



More Splitting Fields, IX

Example: If p is a prime, find the splitting field K for
q(x) = xp − 3 over Q and compute the degree [K : Q].

We begin by observing that the roots of q(x) in C are ζkp ·
p
√

3
for 0 ≤ k ≤ p − 1, since each of these is a root of q and they
are all distinct. (Here, as elsewhere, p

√
3 represents the real

pth root of 3.)

Therefore, the splitting field for p over Q is
K = Q( p

√
3, ζp

p
√

3, . . . , ζp−1p
p
√

3) = Q( p
√

3, ζp), since both
fields contains the generators for the other.



More Splitting Fields, IX
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More Splitting Fields, X

Example: If p is a prime, find the splitting field K for
q(x) = xp − 3 over Q and compute the degree [K : Q].

Notice that K is the composite of the fields E = Q( p
√

3) and
F = Q(ζp), and so [K : Q] ≤ [E : Q] · [F : Q].

We showed that [F : Q] = p − 1 above, and for [E : Q],
because xp − 3 is irreducible over Q by Eisenstein’s criterion
(with prime 3), xp − 3 is necessarily the minimal polynomial
of p
√

3, so [Q( p
√

3) : Q] = p.

Therefore, [K : Q] ≤ p(p − 1).

However, since E and F are both subfields of K , [K : Q] is
divisible by both [E : Q] = p and [F : Q] = p − 1, and thus
(since they are relatively prime) by their product. We must
therefore have equality, meaning that [K : Q] = p(p − 1).



More Splitting Fields, XI

Example: If p is a prime, find the splitting field K for
q(x) = xp − 3 over Q and compute the degree [K : Q].

We can glean some non-obvious facts from this calculation
[K : Q] ≤ p(p − 1).

For example, because K/E has degree p − 1 and is generated
by ζp (which is a root of the degree-(p − 1) polynomial
Φp(x) ∈ Q[x ]), we see in fact that Φp(x) is irreducible over
Q( p
√

3).

By the same reasoning, we can also deduce that xp − 3 is
irreducible over Q(ζp).



More Splitting Fields, XII

Example: Find the splitting field K for p(x) = x8 − 2 over Q and
compute the degree [K : Q].

As in the previous example, we can see that the roots of p(x)
in C are ζk8 ·

8
√

2 for 0 ≤ k ≤ 7.

Therefore, the splitting field for p over Q is
K = Q( 8

√
2, ζ8

8
√

2, . . . , ζ78
8
√

2) = Q( 8
√

2, ζ8), since both fields
contains the generators for the other.

We can compute (in fact, I did earlier!) that
ζ8 = cos(2π/8) + i sin(2π/8) =

√
2/2 + i

√
2/2, and so since√

2 = ( 8
√

2)4, we see that K contains
√

2 · ζ8 − 1 = i .

Then, since K contains i and 8
√

2, and because Q( 8
√

2, i)
contains the generators of K , we in fact have K = Q( 8

√
2, i).



More Splitting Fields, XII
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More Splitting Fields, XIII

Example: Find the splitting field K for p(x) = x8 − 2 over Q and
compute the degree [K : Q].

By the multiplicativity of field degrees,
[K : Q] = [K : Q( 8

√
2)] · [Q( 8

√
2) : Q].

Because x8 − 2 is irreducible over Q, it is necessarily the
minimal polynomial of 8

√
2, and so [Q( 8

√
2) : Q] = 8.

To compute [K : Q( 8
√

2)], notice that Q( 8
√

2) is a subfield of
R but K is not, since it contains the nonreal number i .

On the other hand, since K/Q( 8
√

2) is generated by i , the
extension degree is at most the degree of the minimal
polynomial of i over Q, which is 2.

Thus, the only possibility is to have [K : Q( 8
√

2)] = 2, and so
[K : Q] = 16.



More Splitting Fields, XIV

Example: Find the splitting field K for p(x) = x8 − 2 over Q and
compute the degree [K : Q].

If we simply tried to reproduce the same argument given in
the example for xp − 3, we would first proceed by noting that
K = Q(21/8, ζ8).

Then we would compute Q(21/8) = 8 and Q(ζ8) = 4, since
the respective minimal polynomials are x8 − 2 and x4 + 1.

However, this information by itself only implies that [K : Q] is
8, 16, or 32. We can eliminate 8 by noting that ζ8 6∈ R.

In order to show that the degree is 16 and not 32, we would
have to identify an algebraic relation between ζ8 and 21/8.

It is perhaps not so obvious how to do this, but one such
relation is ζ8 + ζ78 =

√
2 = (21/8)4.

The point is that the information we can deduce depends a lot
on what generators we select.



Algebraic Closures, I

As we have shown, for any polynomial p ∈ F [x ], there exists a field
extension K/F with the property that K contains all of the roots
of p.

A natural extension of this question is: does there exist a field
extension K/F with the property that K contains all of the
roots of every polynomial p ∈ F [x ]?

One example of such an extension is C/R, since every
polynomial in R[x ] splits completely over C. (This statement
is really just a rephrasing of the fundamental theorem of
algebra.)

Given an arbitrary field F , we would like to construct an
analogous extension that contains all of the roots of all
polynomials in F [x ]: this extension represents the closure of F
under algebraic operations (i.e., solving polynomials) and is
called the algebraic closure of F .



Algebraic Closures, II

Definition

If F is a field, the field F is an algebraic closure of F if F is
algebraic over F and every polynomial in F [x ] splits completely
over F .

This is a perfectly reasonable definition, of course, but it is not
clear that F must actually have an algebraic closure, nor whether
algebraic closures are necessarily unique.

It does seem fairly reasonable to think that such an extension
would exist (since we may construct towers of extensions having
roots of more and more polynomials of larger and larger degrees),
but in fact this question is substantially more delicate than it
might seem.



Algebraic Closures, III

Intuitively, we would like to think of the algebraic closure of F as
the composite of all of the splitting fields of the polynomials in
F [x ].

However, the composite of two arbitrary fields is not defined:
we have only defined the composite of two subfields of a
larger field.

Thus, saying that the algebraic closure is “the composite of
all of the splitting fields” presupposes the existence of some
larger field that contains all of these splitting fields, and this is
entirely circular since this larger field is precisely what the
algebraic closure would be!



Algebraic Closures, IV

Let us instead examine another feature of C: not only is it the
algebraic closure of R, it is the algebraic closure of itself.

This follows by the observation that every polynomial in C[x ]
splits completely over C (which is, again, simply the
fundamental theorem of algebra).

This tells us that C has no nontrivial algebraic extensions: if
L/C were an algebraic extension, any element α ∈ L would be
a root of its minimal polynomial in C[x ], but the only
irreducible polynomials in C[x ] are linear polynomials.



Algebraic Closures, V

In other words, C is “algebraically closed”:

Definition

The field F is algebraically closed if every polynomial in F [x ] has a
root in F .

By the factor theorem and a trivial induction, if every
polynomial in F [x ] has a root in F , then in fact it must split
completely over F .

Equivalently, by the same logic as given above for C, a field is
algebraically closed whenever it has no nontrivial algebraic
extensions.



Algebraic Closures, VI

Based on the similarity of the names, and the fact that C is both
an algebraic closure (namely, of R) and is itself algebraically
closed, it is reasonable to guess that algebraic closures are
algebraically closed. This is in fact true:

Proposition (Algebraic Closures are Algebraically Closed)

If F is any field, then any algebraic closure F is algebraically

closed. Symbolically, F = F .



Algebraic Closures, VII

Proof:

Suppose that p(x) ∈ F [x ] is a polynomial and α is any root of

p(x) in F . Then F (α) is an algebraic extension of F , and F is
an algebraic extension of F .

We have previously shown that an algebraic extension of an
algebraic extension is algebraic, so applying it to F (α)/F and
F/F shows that F (α)/F is algebraic, which is to say, α is
algebraic over F .

But since F contains all elements algebraic over F , we see

α ∈ F , so F = F .



Algebraic Closures, VIII

It is not so clear how we can actually try to establish the existence
of algebraic closures, but the issues are very similar those we had
with splitting fields.

Our construction of the splitting field for p(x) over F
proceeded by adjoining the roots of p one at a time, using the
quotient ring F [x ]/(q) for an irreducible factor q.

To construct an algebraic closure, we could try the same
thing: just start iteratively extending by taking splitting fields
of polynomials, one at a time, and continue doing this until
we have exhausted all polynomials in F [x ].

Unfortunately, there are infinitely many polynomials in F [x ],
perhaps even uncountably many.

However, there does not seem to be any obvious obstruction
to an approach of this form. This is precisely the kind of
situation where Zorn’s lemma comes in handy.



Algebraic Closures, IX

Our strategy for showing that every field F has an algebraic closure
is to show that F is a subfield of an algebraically closed field L,
and we will accomplish this using Zorn’s lemma.

If we can show the above, then the subfield of L consisting of
all elements algebraic over F is then an algebraic closure of F .
(Recall that we showed previously that the collection of all
algebraic elements is a subfield.)

Theorem (Algebraic Closures)

If F is a field, then F is a subfield of an algebraically closed field.

The approach here, which was first given by Artin, is to use
polynomial rings to do the necessary bookkeeping.



Algebraic Closures, X

Proof:

First observe that in any commutative ring R with 1, if I is
any proper ideal of R, then there exists a maximal ideal M of
R containing I .

This fact is a consequence of Zorn’s lemma, and is a mild
generalization of a problem from last week’s homework (to
show that any ring with 1 has a maximal ideal).

We also require another important fact about maximal ideals
in commutative rings; namely, that if M is maximal then R/M
is a field. (This is in fact an if-and-only-if.)

This follows immediately from the fourth isomorphism
theorem: there is a bijection between ideals of R containing I
and ideals of R/I , so since R/I is a field if and only if its only
ideals are 0 and R/I , that means R/I is a field if and only if
the only ideals of R containing I are I and R.



Algebraic Closures, XI

Proof (more):

Now take R to be a polynomial ring in infinitely many
variables Xf , indexed by the polynomials f (x) ∈ F [x ] of
positive degree. (The elements of R are the polynomials
involving finitely many of the Xf , with coefficients from F .)

Let I be the smallest ideal of R containing all of the elements
fi (Xfi ), for each polynomial fi ∈ F [x ] of positive degree.

Then I is a proper ideal of R, because if not, 1 would be an
element of I and so there would exist a relation of the form
r1f1(Xf1) + r2f2(Xf2) + · · ·+ rnfn(Xfn) = 1 for some irreducible
fi ∈ F [x ] of positive degree and some elements ri ∈ R. If we
take K to be the splitting field of f1f2 · · · fn and choose a root
αi ∈ K of each fi , then evaluating both sides of this relation
at Xf1 = α1, ... , Xfn = αn yields 0 = 1, which is impossible.



Algebraic Closures, XII

Proof (morer):

Thus, I is a proper ideal of R so it is contained in some
maximal ideal M.

The quotient ring L = R/M is then a field.

We can view this field as an extension of F , since F embeds
in L as the images of the constant polynomials.

Every polynomial f (x) ∈ F [x ] of positive degree then has a
root in L since f (Xf ) = 0 in the quotient ring (this is because
f (Xf ) ∈ M since it is in I ).

Unfortunately. this is not quite enough to say that L is
algebraically closed: although every polynomial in F [x ] now
has a root in L, there may exist polynomials in L[x ] having no
roots in L.



Algebraic Closures, XIII

Proof (morerer):

To deal with this issue, we iterate the construction to obtain
an infinite sequence of fields F ⊆ L1 ⊆ L2 ⊆ L3 ⊆ · · · , where
every polynomial in Li [x ] has at least one root in Li+1.

We may then take the union of this infinite sequence of fields
(technically, we actually take a colimit, because this collection
of fields is not naturally a subset of any particular set we have
identified) to obtain a set F .

By essentially the same argument as from homework 1, the
union of an ascending chain of fields is a field, so F is a field.

Each element of F is contained in some Li , so any polynomial
with coefficients from F has all its coefficients from some Li ,
and this polynomial has a root in Li+1 (hence in F ).

Thus, this colimit field F is algebraically closed, meaning that
F embeds into an algebraically closed field, as claimed.



Algebraic Closures, XIV

We can now deduce the existence of algebraic closures, as
promised:

Corollary (Existence of Algebraic Closures)

If F is a field, then there exists an algebraic closure F of F .
Furthermore, the algebraic closure F is unique up to isomorphism.

Proof:

By the previous theorem, F is a subfield of an algebraically
closed field L. Then the collection of all elements of L that
are algebraic over F is a subfield of L, and is an algebraic
closure of F .

For the uniqueness, one may use an argument similar to the
one we used to establish that splitting fields are unique up to
isomorphism.



Algebraic Closures, XV

Proof (semi-continued):

More explicitly, by a similar argument as used for splitting
fields (along with an invocation of Zorn’s lemma), one may
show that if K/F is algebraic and L/K is also algebraic, then
there exists an embedding of K into F , and an embedding
extending this one that embeds L into F . (By “an embedding
of E into F ” we mean a map that is an isomorphism of E
with a subfield of F .)

Now suppose that E1 and E2 are both algebraic closures of F .

By applying the above observation, we obtain an embedding
of E1 into E2, and so E1 is isomorphic to a subfield of E2.

But then E2 is an algebraic extension of (a field isomorphic
to) E1, but E1 has no nontrivial algebraic extensions: thus,
the embedding of E1 into E2 is actually an isomorphism.



Algebraic Closures, XVI

The existence of algebraic closures is very useful, because it allows
us (in essentially any situation) to make any of our general
calculations with field extensions more concrete.

For example, since C is algebraically closed by the
fundamental theorem of algebra, by the argument above it
contains an algebraic closure of any of its subfields.

In particular, this means that we can always view any question
about algebraic extensions of Q as taking place inside of C
(as, in fact, we have already implicitly been doing).

Furthermore, we also see that the set Q of elements of C that
are algebraic over Q is an algebraically closed field.



Separability, I

As we have shown, for any field F and any polynomial p ∈ F [x ],
there exists an extension field K/F that contains all the roots of p.

In many cases, the roots of a polynomial will be distinct.
However, there certainly exist cases in which polynomials have
“repeated roots”, such as p(x) = x3 or p(x) = x2(x − 1)2.

None of these polynomials is irreducible, and it is difficult
(and as we will explain, with good reason!) to find examples
of irreducible polynomials with repeated roots.



Separability, II

Definition

If F is a field with q ∈ F [x ], and the factorization of
q(x) = c(x − r1)d1(x − r2)d2 · · · (x − rk)dk with the di ≥ 1, we say
that di is the multiplicity of ri .
Furthermore, ri is a simple root if di = 1, and is a repeated root
(or multiple root) if di ≥ 2.
If all of the roots of q are simple, then we say q is separable, and
otherwise q is inseparable.

To emphasize, a separable polynomial is one that has no repeated
roots (we often phrase this as saying the polynomial has “distinct
roots”), while an inseparable polynomial has a repeated root.



Separability, III

Examples:

1. The polynomial x2(x − 1)2(x2 + 1) has two repeated roots (0
and 1) and two simple roots (i and −i) over Q, and is
inseparable.

2. The polynomial x3 + 4x has three simple roots (0, 2i , and
−2i) over Q, and is separable.

3. Over F = F2(t), the field of rational functions in t with
coefficients in F2, the polynomial q(x) = x2 − t is irreducible
(it has no roots in F since there is no rational function whose
square is t). Nonetheless, q has a repeated root t1/2, because
in its splitting field the polynomial q(x) factors as
q(x) = (x − t1/2)2, and so q is inseparable. The root t1/2 of
q(x) is a repeated root.



Separability, III

Examples:

4. Over F = F3(t), the polynomial q(x) = x6 − t is irreducible:
this is not so easy to see directly, but we can also use
Eisenstein’s criterion here with the “prime” equal to t. (If you
like, you can go through the details of proving Eisenstein’s
criterion for polynomials with coefficients from F [t].)
Inside its splitting field, we can factor this polynomial as
q(x) = (x − t1/6)3(x + t1/6)3, so q is inseparable since it has
two repeated roots t1/6 and −t1/6.



Separability, IV

As a first goal, we can give a necessary condition for when a
polynomial has repeated roots.

Recall from calculus that we can test whether a polynomial
has a double root at r by testing whether q(r) = q′(r) = 0.
By the factor theorem, this is equivalent to saying that q and
q′ are both divisible by x − r .

We can formulate a similar test over any field, since we may
give a purely algebraic definition of the derivative. (In fact,
you saw one way of doing this on homework 1.)



Separability, V

Definition

If q(x) =
∑n

k=0 akxk is a polynomial in F [x ], its derivative is the
polynomial q′(x) =

∑n
k=0 kakxk−1.

The standard differentiation rules apply:
(f + g)′(x) = f ′(x) + g ′(x) and (fg)′(x) = f ′(x)g(x) + f (x)g ′(x).
(These are now just calculations.)

Examples:

In C[x ], the derivative of x6 − 4x2 + x is 6x5 − 8x + 1.

In Fp[x ], the derivative of xp2 − x is p2xp2−1 − 1 = −1.
Notice here that although the degree of the original
polynomial is p2, the degree of its derivative is 0.



Separability, VI

We can detect separability using the derivative:

Proposition (Derivatives and Separability)

Let F be a field and q ∈ F [x ]. Then r is a repeated root of q (in a
splitting field) if and only if q(r) = q′(r) = 0. Furthermore, the
polynomial q(x) is separable if and only if q(x) and q′(x) are
relatively prime in F [x ].



Separability, VII

Proof:

First suppose q(x) has a repeated root r in some extension
K/F : then q(x) = (x − r)2s(x) for some s(x) ∈ K [x ].

Taking the derivative yields q′(x) =
2(x − r)s(x) + (x − r)2s ′(x) = (x − r) · [2s(x) + (x − r)s ′(x)].

Thus, q′ is also divisible by x − r in K [x ]. By the factor
theorem, we conclude that q(r) = q′(r) = 0.



Separability, VIII

Proof (continuated):

Conversely, if q(r) = q′(r) = 0, then by the factor theorem
x − r divides q(x), so we may write q(x) = (x − r)a(x).

Then q′(x) = a(x) + (x − r)a′(x), so q′(r) = a(r).

Thus a(r) = 0 and so x − r divides a(x): then q(x) is divisible
by (x − r)2 so r is a repeated root.

For the statement about separability, any root of a common
factor of q and q′ is a multiple root (by the above) and
conversely any repeated root of q yields a nontrivial common
factor of q and q′ in F [x ] (namely, the minimal polynomial of
the repeated root).



Separability, IX

In characteristic 0, this result implies that every irreducible
polynomial is separable:

Corollary (Separability in Characteristic 0)

If F is a field of characteristic 0 and q(x) ∈ F [x ] is irreducible,
then q(x) is separable.

Proof:

From the result above, we know that q is separable if and only
if q and q′ have a common factor in F [x ].

Since q is irreducible in F [x ], up to associates the only
possible common factors are q and 1.

In characteristic 0, if q has degree n then q′ has degree n − 1,
so q cannot divide q′.

Thus, the only possibility is for q and q′ to be relatively prime,
meaning that q is separable.



Summary

We discussed some more examples of splitting fields, along with
some properties of cyclotomic extensions.

We discussed algebraic closures and algebraically closed fields.

We introduced separability for polynomials.

Next lecture: More separability and inseparability.


