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Classical Geometry, I

One aspect of classical Euclidean geometry, per Euclid, is
concerned with describing geometric constructions using
straightedge and compass.

Among various problems that can be solved with straightedge
and compass are: bisecting (or trisecting) a segment,
bisecting an angle, projecting a point onto a line, or drawing a
line parallel to a given line passing through a given point.



Classical Geometry, II

As a pleasant application of some of our results on degrees in field
extensions, we can establish the impossibility of several classical
geometric problems, originally posed by the ancient Greeks:

Doubling the Cube: Is it possible to construct, with
straightedge and compass, a cube whose volume is twice that
of a given cube?

Trisecting an Angle: Given an arbitrary angle, is it possible
to trisect it with straightedge and compass? (In other words,
to construct an angle with 1/3 the measure of the given
angle.)

Squaring the Circle: Given a circle, is it possible using
straightedge and compass to construct a square with the same
area as the circle?



Classical Geometry, III

In order to discuss these problems, we must first translate the
allowed operations of straightedge-and-compass constructions into
algebraic language.

A straightedge is an (unmarked) straight segment of arbitrary
length, and may be used to draw the line between two given
points.

A compass may be used to draw a circle with center at one
given point passing through another given point.

If two lines, a line and a circle, or two circles intersect, we
may draw a new point where they intersect.



Classical Geometry, IV

Each of these problems begins with two given points: by
translating and rescaling, we may assume the distance is 1 and the
points are (0, 0) and (1, 0).

Any distance is determined by its length in terms of this unit
distance, so we may view distances as elements of R, and view
points as elements of the Cartesian plane R2.



Classical Geometry, V

Definition

A point (x , y) ∈ R2 is constructible if, starting with the points
(0, 0) and (1, 0), there is a sequence of straightedge-and-compass
constructions creating (x , y), while a real number d is
constructible if we can construct two points of distance d.

Constructibility of lengths and points are equivalent:

It is a standard Euclidean construction to project a point onto
a line, so if we can construct (a, b) ∈ R2, we can construct
both a and b.

Conversely, if we can construct lengths a and b, then we may
construct (a, b) by drawing x = a and y = b and finding their
intersection.

Any problem of constructibility reduces to determining
whether the appropriate coordinates are constructible.



Classical Geometry, VI

The set of constructible real numbers is a field, and we can also
take square roots:

Proposition

If a and b are constructible lengths, then so are a± b, ab, a/b,
and
√

a. In particular, the set of constructible lengths is a field.

From the proposition we can immediately see that the set of
constructible lengths (and their negatives) is a subfield of R.

In particular, we can construct all of Q, and we may also take
arbitrary square roots (possibly iteratively).



Classical Geometry, VII

Proof:

Each of these is a standard Euclidean geometry construction:



Classical Geometry, VIII

What we would now like to do is characterize constructible
numbers using field theory.

Suppose that all of the lengths in our constructions so far lie
in the field F : we want to know what kind of field extension
we may obtain by performing another construction step. We
will go through all of the possible operations (there are five):

1. We may draw a line through two points.
2. We may find the intersection of two lines.
3. We may draw a circle with a given center and radius.
4. We may find the intersection of a line and a circle.
5. We may find the intersection of two circles.



Classical Geometry, IX

1. We may draw a line through two constructible points.

Suppose the points are P = (a, b) and Q = (c , d).
It is straightforward to verify that an equation for this
line is (c − a)(y − b) = (d − b)(x − a), which has the
form Ax + By = C for A,B,C rational functions in terms
of a, b, c , d .
Thus, if a, b, c , d ∈ F , then A,B,C ∈ F as well.

2. We may find the intersection of two lines.

If the coefficients of the lines are elements of a field F ,
then so are the coefficients of the intersection points,
since the solution to two simultaneous equations
Ax + By = C and A′x + B ′y = C ′ with
A,B,C ,A′,B ′,C ′ ∈ F will also have x , y ∈ F by basic
linear algebra.



Classical Geometry, X

3. We may draw a circle with a given center and radius.

The equation of such a circle has the form
(x − h)2 + (y − k)2 = r2 where h, k, r ∈ F .
We can see, again, that all of the coefficients of the
equation of the circle lie in F .

4. We may find the intersection of a line and a circle.

If the line has equation Ax + By = C and the circle has
equation (x − h)2 + (y − k)2 = r2, then by solving for x
or y in the equation of the line and plugging into the
equation of the circle, we end up with a quadratic
equation for the other variable.
Thus, both x and y lie in a quadratic extension of F .



Classical Geometry, XI

5. We may find the intersection of two circles.

Suppose the equations are (x − h)2 + (y − k)2 = r2 and
(x − h′)2 + (y − k ′)2 = (r ′)2.
By subtracting the two equations, we may equivalently
intersect the circle (x − h)2 + (y − k)2 = r2 with the line
2(h′−h)x +2(k ′−k)y = r2−(r ′)2−h2+(h′)2−k2+(k ′)2.
Note that this is just the line through the two intersection
points of the circles, presuming that they intersect.
By the previous analysis, x and y again both lie in a
quadratic extension of F .

Since we have gone through all the possible operations, we see
that every operation either yields another element in F or an
element in a quadratic extension of F .



Classical Geometry, XII

Putting all of this together yields the following characterization:

Proposition (Constructibility)

The element α ∈ R is constructible if and only if the field Q(α)
can be obtained by a sequence of quadratic extensions of Q. In
particular, if α is constructible, then [Q(α) : Q] is a power of 2.

Proof:

From our proposition on constructible lengths, and our
characterization of quadratic extensions (as being obtained via
taking square roots), we can see that any α in an extension
field of Q obtained by a sequence of quadratic is in fact
constructible.

The converse follows from our discussion of the possible
extension fields obtained by each step of the construction, as
each individual field extension is either trivial or quadratic.



Classical Geometry, XIII

We can now establish the impossibility of the three classical Greek
problems we listed earlier:

Corollary

None of the three classical Greek problems (doubling the cube,
trisecting an angle, and squaring the circle) can be solved using
straightedge-and-compass constructions.

The point is to show that each of these problems would require
constructing a non-constructible number.



Classical Geometry, XIV

Proof:

Doubling the cube is possible if and only if 3
√

2 is constructible.

However, as we have discussed, [Q( 3
√

2) : Q] = 3, which is not
a power of 2. Thus, 3

√
2 is not constructible.

For trisection, we will show that 20◦ is not constructible
(thus, trisecting an angle of 20◦ is impossible).

If the angle θ can be constructed with straightedge and
compass, then by orienting the angle from the positive x-axis
and intersecting the corresponding ray with the unit circle,
then cos θ is constructible.

Conversely, if cos θ is constructible, then the angle θ can be
obtained in the same way by intersecting the line y = cos θ
with the unit circle.

So we only need to show that cos 20◦ is not constructible.



Classical Geometry, XV

Proof (continued):

The triple angle formula for cosine states
cos 3θ = 4 cos3 θ − 3 cos θ, so taking θ = 20◦, and writing
α = 2 cos 20◦, yields 1

2 = α3/2− 3α/2, so α3 − 3α− 1 = 0.

By the rational root test, x3 − 3x − 1 has no rational roots
and is therefore irreducible (since it has degree 3).

Therefore, [Q(α) : Q] = 3, and so α, and thus α/2 = cos 20◦,
is not constructible.

This means trisecting a 60◦-angle is not possible.

Finally, squaring the circle requires constructing
√
π.

Since π is transcendental, π itself is not even constructible
(let alone

√
π).



Classical Geometry, XVI

Another classical constructibility question is: which n-gons are
constructible?

Since the interior angle of a regular n-gon is π − 2π/n, whose
cosine is − cos(2π/n), this question is equivalent to asking:
for which n is the number cos(2π/n) constructible?

We will return to this problem later once we discuss
cyclotomic extensions, but we will mention that there are
standard constructions for an equilateral triangle (n = 3) and
a regular pentagon (n = 5).

From the addition and subtraction formulas for cosine, and
the half-angle formulas, we can then see that cos 3◦ is
constructible (corresponding to a 120-gon).

Since cos 20◦ is not constructible, this means that cos 1◦ and
cos 2◦ are not constructible, so the smallest constructible
integer-valued angle is 3◦.



Classical Geometry, XVII

As a final remark, all of the constructions we have described rely
on an unmarked straightedge. By using different tools, it is
possible to give solutions to some of these classical problems.

For example, if one uses a ruler (a device that allows one to
mark off specific lengths, while positioning the ruler
arbitrarily), there do exist ruler-and-compass constructions for
doubling the cube and for trisecting an arbitrary angle.

Alternatively, by using a formalization of the operations
allowed in origami (paper folding), it can also be shown that
there exist origami constructions for doubling the cube and
trisecting an arbitrary angle. (One may compute cube roots
using origami, in addition to the Euclidean operations.)

However, a marked ruler and origami constructions can only
create algebraic distances, and therefore squaring the circle is
still impossible, even with these additional tools.



Splitting Fields, I

We now continue investigating the connections between fields and
roots of polynomials.

We have already shown that if p is an irreducible polynomial
in F [x ], then F has a field extension that contains a root of p:
explicitly, in the extension K = F [t]/p(t), the element t ∈ K
has the property that p(t) = 0.

This observation, although it follows essentially tautologically
from our development of polynomial modular arithmetic,
neatly resolves a foundational issue, namely, the question of
whether there must exist a field “somewhere” in which p(x)
has a root.



Splitting Fields, II

We may extend this observation to any polynomial p as follows:

First, find the factorization of p over F [x ], and choose any
irreducible factor q(x).

Then construct the field extension K = F [t]/q(t), and like
before, observe that the element t ∈ K has the property that
q(t) = 0.

Finally, since q divides p in F [x ], we also have p(t) = 0.

Thus, we see that if p is any polynomial in F [x ], then there exists
a field extension of F that contains a root of p.

We will now extend this argument to show that there is a field
extension that contains “all the roots” of p, and in fact there is a
well-defined notion of a “smallest” such field.



Splitting Fields, III

First, we define the notion of when all of a polynomial’s roots lie in
a field:

Definition

If K is an extension field of F , the polynomial p(x) ∈ F [x ]
splits completely (or factors completely) in K [x ] if there exist
c , r1, r2, . . . , rn ∈ K such that p(x) = c(x − r1)(x − r2) · · · (x − rn)
in K [x ].

The terminology is referring to the fact that the individual
irreducible factors of p(x) in F [x ] split apart into linear factors
(i.e., as completely as possible) inside K [x ].



Splitting Fields, IV

Examples:

1. The polynomial x4 − 1 ∈ R[x ] splits completely over C as
(x − 1)(x + 1)(x − i)(x + i).

2. The polynomial x2 − 5 ∈ Q[x ] splits completely over C as
(x −

√
5)(x +

√
5). In fact, it also splits completely with the

same factorization over R, or over Q(
√

5).

3. More generally, every polynomial splits completely over C:
this is the content of the fundamental theorem of algebra.

4. The polynomial x4 − 16x2 + 16 splits completely over
Q(
√

2,
√

3) as
(x −

√
2−
√

6)(x −
√

2 +
√

6)(x +
√

2−
√

6)(x +
√

2 +
√

6).

We would like to show that there is always some extension field of
F in which p(x) splits completely.



Splitting Fields, V

The idea is simply to iterate the construction given before:

We start with an extension K1/F in which p(x) has a root r1.

By the factor theorem, we can then write
p(x) = (x − r1) · p1(x) for a polynomial p1(x) ∈ K1[x ].

Now applying the argument to p1(x) over K1[x ] shows that
there exists a field extension K2/K1 in which p1(x) has at
least one root r2, so like before we can write
p1(x) = (x − r2) · p2(x) for a polynomial p2(x) ∈ K2[x ].

By iterating this argument we eventually obtain a tower of
field extensions Kn/Kn−1/ · · · /K1/K , where n = deg p and
pi−1(x) = (x − ri )pi (x) where pi (x) ∈ Ki [x ] has degree n − i .

Then pn has degree 0 so it is some constant c, and so we
obtain p(x) = c(x − r1)(x − r2) · · · (x − rn) for some
c , r1, r2, . . . , rn ∈ Kn.



Splitting Fields, VI

So, we see that every polynomial in F [x ] does split completely over
some field extension K/F .

If p ∈ F [x ] splits completely over K , then p also splits
completely over any extension field of K : indeed, we saw this
before with the example of x2 − 5, which splits completely
over Q(

√
5) and also in its field extensions R and C.

It is therefore natural to ask: what is the “smallest possible”
field extension of F in which p splits completely?

When we discussed simple extensions inside the extension
K/F , we defined the field F (α) to be the intersection of all
subfields of K containing F and α.

It might seem reasonable to try to use the same approach
here.



Splitting Fields, VII

It seems valid to define this “smallest possible” field extension of F
in which p splits completely to be the intersection of all extension
fields K/F in which p splits completely.

But in fact, this definition only makes sense when all of these
extension fields are themselves subsets of some larger field.

This may seem like a minor inconvenience, but it’s actually
very important.



Splitting Fields, VIII

We can illustrate the difficulties with an example: consider the
polynomial p(x) = x2 + 4 ∈ R[x ].

We can see that p(x) = x2 + 4 splits completely over C as
p(x) = (x − 2i)(x + 2i), and p(x) also splits completely over
the field extension R[t]/(t2 + 4) as p(x) = (x − t)(x + t).

Since both of these fields are degree-2 extensions of R, they
both seem valid candidates for the “smallest possible” field
extension of R in which p splits completely.

Here, it does not really make sense to ask what “the
intersection” of C and R[t]/(t2 + 4) is!

We would need to specify the manner in which these two
fields are to be considered as subsets of some larger collection
before the intersection would make sense.



Splitting Fields, IX

We can avoid this particular thorny issue by instead posing the
definition entirely within the field K itself.

Definition

If K/F is a field extension, we say that K is a splitting field for the
polynomial p(x) ∈ F [x ] if p splits completely over K , and p does
not split completely over any proper subfield of K .

If p splits over K as p(x) = c(x − r1)(x − r2) · · · (x − rn), then
by the remainder theorem, any subfield of K in which p splits
completely must contain r1, . . . , rn, hence F (r1, . . . , rn).

On the other hand, clearly p(x) does split completely over
F (r1, . . . , rn), so saying that p splits completely in K but not
over any proper subfield is equivalent to saying that
K = F (r1, r2, . . . , rn).

In particular, the definition is well-posed. (Phew!)



Splitting Fields, X

For any p ∈ F [x ], a splitting field for p always exists:

Specifically, we run through the construction detailed a few
slides ago to find an extension L/F in which p(x) splits
completely as p(x) = c(x − r1)(x − r2) · · · (x − rn).

Then we just take K = F (r1, r2, . . . , rn).

By the discussion on the last slide, K is then a splitting field
for p.



Splitting Fields, XI

Examples:

1. Q(
√

D) is a splitting field for the polynomial p(x) = x2 − D
over Q.

This follows immediately because
p(x) = (x +

√
D)(x −

√
D) ∈ Q(

√
D)[x ] and

Q(
√

D) = Q(
√

D,−
√

D).

2. Q(
√

2,
√

3) is a splitting field for the polynomial
p(x) = (x2 − 2)(x2 − 3) over Q.

We can see that p(x) splits completely over
K = Q(

√
2,
√

3) because
p(x) = (x −

√
2)(x +

√
2)(x −

√
3)(x +

√
3) in K [x ].

Furthermore, K = Q(
√

2,
√

3) = Q(
√

2,−
√

2,
√

3,−
√

3),
so K is indeed a splitting field.



Splitting Fields, XII

We can give an upper bound on the degree of a splitting field by
formalizing the arguments we gave earlier:

Proposition (Degree of Splitting Fields)

For any field F and any (nonzero) polynomial p ∈ F [x ] of degree
n, there exists a splitting field K/F for p, and [K : F ] ≤ n!.

The idea is simply to keep track of the degrees of the extensions in
the construction we described earlier.



Splitting Fields, XIII

Proof:

Induct on n: for the base case n = 1 with
p(x) = ax + b = a(x + b/a), we have a single root
r1 = −b/a ∈ F . Thus, K = F is a splitting field.

For the inductive step, assume that any polynomial of degree
n − 1 over any field has a splitting field extension of degree at
most (n − 1)!, and let p ∈ F [x ] have degree n.

Choose any irreducible factor (in F [x ]) q of p of degree k ≤ n
and set K1 = F [t]/q(t). Then [K1 : F ] = k by our results on
simple extensions.



Splitting Fields, XIV

Proof (continued):

Furthermore, q(t) = 0 in K1, so since q divides p we have
p(t) = 0 in K1.

So by the factor theorem we may write p(x) = (x − t) · p1(x)
for a polynomial p1(x) ∈ K1[x ] of degree n − 1 and some
element r1 ∈ K1.

By the induction hypothesis, there exists a splitting field L for
p1(x) over K1 of degree at most (n − 1)!.

Then [L : F ] = [L : K1] · [K1 : F ] ≤ (n − 1)! · k ≤ n!, and p(x)
splits completely in L, say as
p(x) = c(x − r1)(x − r2) · · · (x − rn).

The subfield F (r1, r2, . . . , rn) of L is then a splitting field for
p, and its degree is at most [L : F ] ≤ n!, as required.



Splitting Fields, XV

We would now like to analyze the relationships between “different”
possible splitting fields for a given polynomial.

We saw that C is a splitting field for x2 + 4 over R, since
x2 + 4 = (x + 2i)(x − 2i) in C[x ], and C = R(2i ,−2i).

But the field K = R[t]/(t2 + 4) is also a splitting field for
x2 + 4 over R, since x2 + 4 = (x − t)(x + t) in K [x ].

But notice: these two fields are isomorphic, with an explicit
isomorphism being the one that associates t with 2i (extended
in the natural way).

Thus, both of these splitting fields have the same structure.
This turns out to be true for arbitrary splitting fields, although
it is actually easier to prove a slightly stronger result.



Splitting Fields, XVI

Theorem (Uniqueness of Splitting Fields)

Let ϕ : E → F be an isomorphism of fields with
p(x) = a0 + a1x + · · ·+ anxn ∈ E [x ], and set
q(x) = ϕ(a0) + ϕ(a1)x + · · ·+ ϕ(an)xn ∈ F [x ] to be the
polynomial obtained by applying ϕ to the coefficients of p.
If K/E is a splitting field for p, and L/F is a splitting field for q,
then the isomorphism ϕ extends to an isomorphism σ : K → L
(i.e., σ|E = ϕ, or explicitly, for any α ∈ E we have σ(α) = ϕ(α)).
In particular, any two splitting fields for p are isomorphic.

The argument here is mostly bookkeeping.



Splitting Fields, XVII

Proof:

The second statement follows from the first by taking ϕ to be
the identity map, since in that case the first statement says
that if K/E and L/E are both splitting fields of p, then K
and L are isomorphic.

To prove the first statement, we induct on the degree n of p.
For the base case n = 1, as we have already observed, the
splitting field of any degree-1 polynomial over a field is simply
the field itself. Thus, K = E and L = F , so the desired map σ
is simply ϕ.



Splitting Fields, XVIII

Proof (continued more):

Now suppose the result holds for polynomials of degree n − 1,
and let p have degree n.

Choose any monic irreducible factor
a(x) = c0 + c1x + · · ·+ cmxm of p, and set
b(x) = ϕ(c0) + ϕ(c1)x + · · ·+ ϕ(cm)xm.

It is essentially trivial to see that ϕ : E → F extends to an
isomorphism of E [x ] with F [x ]. It therefore preserves
factorizations and thus irreducibility.

Thus, b(x) divides q(x), and b(x) is irreducible in F [x ].

Since every root of a(x) is a root of p(x) we see that K
contains every root of a; similarly L contains every root of b.



Splitting Fields, XIX

Proof (continued even still more):

Consider ϕ̂ : F [x ]→ E (s) defined by ϕ̂(p) = ϕ(p)(s), the
composition of ϕ with the evaluation-at-s map.

This map is a ring homomorphism that is clearly surjective,
and its kernel is the ideal (a(x)).

Thus, by the first isomorphism theorem, we obtain an
isomorphism ϕ̃ : F (r)→ E (s).

Explicitly, ϕ̃ maps the polynomial
d0 + d1r + · · ·+ dm−1rm−1 7→
ϕ(d0) + ϕ(d1)s + · · ·+ ϕ(dm−1)sm−1 for di ∈ F .



Splitting Fields, XX

Proof (continued additionally even still yet more also further):

By the factor theorem, since r is a root of p and s is a root of
q, we may write p(x) = (x − r)p′(x) and q(x) = (x − s)q′(x)
for some polynomials p′ = c(x − r2) · · · (x − rn) and
q′ = d(x − s2) · · · (x − sn) of degree n − 1.

In particular, p′ splits completely over K and q′ splits
completely over L.

Since K is the splitting field of p, we see that
K = F (r , r2, . . . , rn) = F (r)(r2, . . . , rn), and so in fact K is
the splitting field of p′ over F (r). Likewise, L is the splitting
field of q′ over E (s).

Finally, by the induction hypothesis, since we have an
isomorphism ϕ̃ : F (r)→ E (s), we may lift it to obtain an
isomorphism σ : K → L, as required.



Splitting Fields, XXI

The point of that whole long argument was that splitting fields are
unique up to isomorphism.

The isomorphism between two splitting fields is the fairly
natural one of “map the roots of the various equivalent
irreducible factors to one another, taking care to ensure that
everything stays well defined”.

Because splitting fields are unique up to isomorphism, we will
usually commit the mild abuse of terminology of referring to
“the” splitting field of p(x) over F .



Splitting Fields, XXII

Let’s write down some examples now.

In general, it can be quite difficult to compute an explicit
description of a splitting field, because it requires knowing
information about the factorization and the precise nature of
the roots of p(x), along with any sort of algebraic relations
among the roots.

Indeed, attempting to do this in as much generality as
possible quickly leads one in the direction of Galois theory,
since that is precisely how one describes what the algebraic
relations between the roots of a polynomial look like.

But for the moment, we will primarily focus on finding
splitting fields over Q where we can give an explicit description
of the field, since we have irreducibility criteria that can apply
to polynomials of arbitrarily large degree in Q[x ], or of
polynomials of low degree that we can analyze concretely.



Splitting Fields, XXIII

Example: Find the splitting field for p(x) = x2 + 1 over Q, over
F2, and over F3.

Over Q, we can see that Q(i) is a splitting field because
p(x) = (x + i)(x − i) ∈ Q[x ] and Q(i) = Q(i ,−i).

Over F2, the field F2 itself is actually already a splitting field
because p(x) = (x + 1)2 ∈ F2[x ].

Over F3, the polynomial is irreducible (since it has degree 2
and no roots in F3), so any splitting field must be of degree at
least 2 over F3.

On the other hand, in the degree-2 field extension
K = F3[t]/p(t), we can factor p(x) as p(x) = (x − t)(x + t),
and K = F3(t,−t), so we see that K is a splitting field for p.



Splitting Fields, XXIV

The observations from this last example hold in general for
splitting fields of quadratic polynomials.

For any quadratic polynomial p(x) ∈ F [x ], if p has a root in
F , then both its roots are in F .

This follows by observing that if
p(x) = (x − r1)(x − r2) = x2 + ax + b then r2 = −a− r1 ∈ F .

Thus, in this case F itself is the splitting field for p.

Otherwise, if p is irreducible, then p does not split completely
over F , but does split completely over the quadratic extension
F [t]/p(t): thus, F [t]/p(t) will be a splitting field.



Splitting Fields, XXV

Example: Show that Q( 3
√

2, ζ3) is the splitting field for the
polynomial p(x) = x3 − 2 over Q, where
ζ3 = e2πi/3 = (−1 + i

√
3)/2 denotes a nonreal cube root of unity.

As we have mentioned previously, this field K = Q( 3
√

2, ζ3) is
also equal to Q( 3

√
2, ζ3

3
√

2), and has degree 6 over Q.

We can see that p(x) splits completely over K because
p(x) = (x − 3

√
2)(x − ζ3 3

√
2)(x − ζ23

3
√

2) in K [x ].

To see this, one may either compute the third remaining root
of p(x) using polynomial division once the roots 3

√
2 and ζ3

3
√

2
are identified, or by directly observing that ζ23

3
√

2 is also a root.
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Example: Show that Q( 3
√

2, ζ3) is the splitting field for the
polynomial p(x) = x3 − 2 over Q, where
ζ3 = e2πi/3 = (−1 + i

√
3)/2 denotes a nonreal cube root of unity.

Thus, we see that L = Q( 3
√

2, ζ3
3
√

2, ζ23
3
√

2) is a splitting field
for p(x) over Q.

Notice that L contains both generators 3
√

2 and
ζ3 = (ζ3

3
√

2)/( 3
√

2) of K/Q, so L contains K .

On the other hand, K contains all three generators 3
√

2, ζ3
3
√

2,
and ζ23

3
√

2 of L/Q, so K contains L.

Thus, K = L is a splitting field for p(x) as claimed.

It should be relatively obvious that the fields Q( 3
√

2, ζ3
3
√

2, ζ23
3
√

2)
and Q( 3

√
2, ζ3) are the same: the point is that you can construct

the generators of each extension inside the other one.



Splitting Fields, XXVII

Example: Find the splitting field for p(x) = x4 + 64 over Q.

As it happens, this polynomial factors over Q as
p(x) = (x2 − 4x + 8)(x2 + 4x + 8).

Using the quadratic formula, we can see that the roots of
these two quadratics are ±2± 2i .

Therefore, we can see that Q(i) is a splitting field for p, since
it is the subfield of C generated by the roots of p.

Notice in particular that, although p(x) has degree 4, the
degree of the splitting field is only 2. (You should think about
why this can only happen because p factors over Q.)



Splitting Fields, XXVIII

As an aside, I wanted to mention that another way to compute the
roots of p(x) = x4 + 64 in this last example is to write the
corresponding complex numbers in polar form.

This is something I assume you have seen before, but since
it’s useful and we will use it repeatedly when we start working
more with roots of unity, I want to review it now.

The point is that the solutions to the equation zn = re iθ in C,
where r is a nonnegative real number, are z = r1/ne i(θ+2kπ)/n

for k = 0, 1, . . . , n − 1.

We can also use Euler’s identity e iθ = cos θ + i sin θ to write
down the real and imaginary parts explicitly.

The solutions to zn = 1 are the complex nth roots of unity, of
the form e2πik/n = cos(2πk/n) + i sin(2πk/n). We will
discuss them more later.



Splitting Fields, XXIX: Later Is Now

Example: If n is a positive integer, show that the splitting field of
the polynomial xn − 1 over Q is of the form Q(ζn) where ζn is the
complex number ζn = e2πi/n = cos(2π/n) + i sin(2π/n).

As I just noted, ζn = e2πi/n has the property that
ζnn = e2πi = 1, and so ζn is a root of q(x) over C.

Furthermore, for each integer k with 0 ≤ k ≤ n − 1, we see
that ζkn = e2πik/n = cos(2πk/n) + i sin(2πk/n) also has the
property that (ζkn )n = 1k = 1 and so ζkn is also a root of q(x)
over C.

The n complex numbers ζkn for 0 ≤ k ≤ n − 1 are distinct as
elements of C (geometrically, they represent n equally spaced
points around the unit circle |z | = 1 in the complex plane).



Splitting Fields, XXX: After Dark (Literally)

Example: If n is a positive integer, show that the splitting field of
the polynomial xn − 1 over Q is of the form Q(ζn) where ζn is the
complex number ζn = e2πi/n = cos(2π/n) + i sin(2π/n).

So we have the factorization
q(x) = (x − 1)(x − ζn)(x − ζ2n) · · · (x − ζn−1n ).

Thus, the splitting field for q(x) over Q is
Q(1, ζn, ζ

2
n , . . . , ζ

n−1
n ).

This field clearly contains Q(ζn), but since Q(ζn) contains
each of the generators 1, ζn, . . . , ζ

n−1
n , it is equal to Q(ζn) as

claimed.



Splitting Fields, XXXI

Definition

The splitting field Q(ζn) of p(x) = xn − 1 over Q is called the
cyclotomic field of nth roots of unity.

It is a nontrivial problem (and one to which we will return later) to
compute the degree [Q(ζn) : Q], which is equivalent to determining
the degree of the minimal polynomial of ζn over Q.

But I will spoil the answer now and tell you that the degree is
ϕ(n), where ϕ is the Euler ϕ-function. Next time I will prove that
this is the correct degree when n = p is a prime.



Summary

We discussed some classical constructions from Euclidean
geometry.

We introduced splitting fields and established a number of their
properties.

Next lecture: More with splitting fields, algebraic closures


